
Clowiz: A Model-driven Development Platform for
Cloud-based Information Systems

1st Jalal Kiswani
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA

jalal@nevada.unr.edu

2nd Sergiu M. Dascalu
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA

dascalus@cse.unr.edu

3rd Muhanna Muhanna
Department of Interactive Media

Luminus Technical University
Amman, Jordan

m.muhanna@luminuseducation.com

4th Frederick C Harris, Jr.
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA

fred.harris@cse.unr.edu

Abstract—Cloud-based solution of software systems develop-
ment is currently the preferred approach over traditional on-
premise one. In fact, utilizing cloud computing can reduce cost,
time to market and allows for potential growth and scalability.
However, this approach requires special quality attributes (i.e.
non-functional requirements) to be taken into consideration.
These attributes include traceability, recoverability, portability,
and hot-deployability, along with the more common attributes of
usability, reliability, efficiency, availability and security. Conse-
quently, this increases the complexity of design and implementa-
tion of such applications. Therefore, such systems have a higher-
cost and longer development time than traditional applications.
In this paper, Clowiz is proposed. In particular, it is a cloud-based
platform enabling rapid application development for building
high-quality information systems applications. It is based on a
model-driven development approach. In this approach, software
developers shall use a web-based modeling toolkit to develop
Internet based information systems, and modify them on the fly.
The development process includes building application’s views
map (i.e. workflow), design systems entities (e.g. tables), and
develop user interface forms. The platform enables application
preview and deployment. In addition, it enables monitoring
applications behavior at run time. The work presented in this
paper contains a full waterfall software engineering process
with full standard deliverables based on the UML modeling
language, starting from requirements, and continuing to design
and architecture, development, testing, and evolution.

Index Terms—Cloud computing, software as a service, infor-
mation systems , model-driven development, cloud applications.

I. INTRODUCTION

Information Systems (IS) is an important category of soft-
ware applications [1]. It is widely used to automate many parts
of any business in any scale. Enterprise Resource Planning
(ERP) systems are an examples of IS [2]. Traditional IS were
developed using traditional development processes such as
waterfall, that includes requirements, design, development and
evolution [3]. Furthermore, traditional software development
tools were used which included manual programming for

forms and data persistence. In fact, relational database has
been the standard data persistence mechanism for most IS [4].

However, developing IS in the traditional approach in-
troduces many risks and higher percentage of failures. In
particular, the gap in requirements, code duplications, and
unavailability of technical expertise, are some of the risks [5].
Moreover, unawareness of best software architecture styles,
patterns, and best practices, make it harder in achieving desired
quality attributes of the system [6].

Even through IS development follows a general software
development process most of the time, there are some special
activities and tasks that are specific to the development of
IS. They include database design and implementation, ap-
plications workflow, and entities operations. Database design
and implementations include designing a logical view such
as Entity Relationship Diagram (ERD) [7], and physical-
view such as schema, tables and columns [4]. Applications
workflow includes the automated navigation between pages
or processes in the applications. The workflow is performed
either grammatically or using a workflow engine such as
jBPM [8]. On the other-hand, operations on entities (e.g.
database tables), include operations such as Create, Read,
Update and Delete (CRUD). In most IS, CRUD operations
are programmed manually for every entity.

If those specific activities required for developing informa-
tion systems are performed in a traditional way (e.g. manual
programming), CRUD operations code will be duplicated,
forms development, validation rules, fields masking, will be
hard-coded inside applications, forms consistency will be hard
to achieve which will consequently cause a lack of usability,
and maintainability will become a serious risk [9].

As a solution for the high percentage of duplications in user-
interface, functionality, and code, a meta-data driven approach
can reduce development time, increase quality and achieve
better usability [10]. Moreover, implementing and using the
appropriate software infrastructure, such as version-control,



unit-testing, continuous-integration, and continuous-delivery,
shall increase the software’s overall quality, and reduce de-
livery time [11].

Even though implementing a meta-data driven approach,
and utilization of the right software infrastructure in IS de-
velopment have many benefits, some challenges still exist. In
particular, the development requires software developers with
specific expertise. In addition, any change to the meta-data or
code requires compilations and new deployments [10].

Moreover, and with the current trend of cloud computing,
the need of faster time to market, a reduced development
cycle and cost, and higher quality software, a new approach
is needed. In fact, the percentage of organizations from all
levels that are adopting cloud computing increases year after
year [12].

To overcome the risks and issues produced by IS’s tra-
ditional software development, to build-on and enhance the
metadata driven approach, and to enable building a cloud-
based IS more effectively, Clowiz is presented. In partic-
ular, Clowiz is a platform for building high-quality cloud-
based information systems rapidly and more effectively. In
this platform, rapid application development is achieved by
utilizing a Model-Driven Development (MDD) approach [13].
Furthermore, developers are able to build meta-data models for
their intended applications using a web-based visual designer
[14]. These models include entities and their relationships,
forms, view workflows, validation rules, user-interface fields
masking, and other. All these meta-data are utilized to build
all application’s assets dynamically and on the fly without the
need for application recompilation or redeployment. These
assets include user interface, data-access layer and services
in between. Clowiz enables developers to build these models
in an effective way using the Clowiz Implementation Toolkit
(CIT). In particular, CIT is a web-based application and design
tool considered as an online and realtime integrated develop-
ment environment for software developers and domain users,
where modifications can be reflected directly on applications,
without the need of application redeployment in which is
known as hot-deployment [15].

In Clowiz design, usability in the model’s development was
given a high-priority, to enable rapid application development
and efficiency for developers.

To the best of our knowledge, the best available tools that
can achieve some of the goals of Clowiz are Zoho creator [16]
and Sales-force platform [17].

Even though the available options are solutions that have
been developed and provided by companies that have long-
term investment and expertise in cloud software systems. We
think that their current functionalities are some what limited
and does not achieve some of the objectives proposed in our
solution. In particular, the novelty in the work presented in
this paper is the cloud-based model-driven modeling technique
and implementation toolkit that were designed to be modern
and usable. In addition, the hot and dynamic generation of
all application artifacts at runtime id done in an efficient and
reliable way.

This paper is organized into 4 sections. This section covers
the introduction and background. Then, it is followed by Sec-
tion 2, which includes the implementation details of Clowiz.
Section 3 discusses the results of the work presented in this
paper. Finally, Section 4 concludes the paper and identifies
several directions of future work.

II. IMPLEMENTATION

Clowiz can be considered both Business-to-Business (B2B)
and Business-to-Consumer (B2C) business models [18].
Clowiz developers shall be able to develop IS applications
either for themselves, their organizations, or their clients. In
fact, those developers will not require to have technical or cod-
ing skills, so domain users without any software development
background can be able to develop a cloud-based software
applications with same quality or maybe even better than
professional software developers. Therefore, the intended users
of the platform are people who aim to build a cloud-based
information system, and have the required domain expertise.

Fig. 1. Clowiz UML context diagram

Implementation of Clowiz followed the standard waterfall
process model [3]. In particular, the process started by require-
ments definition phase, where interviews with stakeholders
was conducted, followed by documenting these requirements
in a Software Requirement Specification (SRS). The following
phase was system and software design; in this phase, high-
level, medium level, and low level design was created and doc-
umented. Later, software was developed in the implementation
and unit testing phase. After that, the phase of integration and
system testing was significant to insure the required software
was built based on the specifications and was built right.



Finally, Clowiz was deployed in the maintenance and operation
phase. Figure 1 shows the context diagram for it.

The following subsections will include stakeholder inter-
views, functional requirements, non-functional requirements,
and use case models. The source code of Clowiz is available as
open-source on Github, and can be found on the main author’s
GitHub repository [19]. The prototype of the final version can
be accessed at the website [20].

A. Technology and Tools

During the different project life-cycle phases, Unified Mod-
eling Language (UML) was extensively used [21]. On the
other-hand, and from the technology perspective, portability
is required to enable smooth and transparent migration to dif-
ferent cloud-providers, thus a platform independent technology
is required. In addition, a mature and standard technology
is needed to ensure long-term stability and support for the
application. Furthermore, having a native-support for cloud-
based features will guarantee an improved compatibility and
performance. Therefore, Java technology [22] and Spring
framework [23] was chosen to implement the back-end of
Clowiz. On the other-hand, and to give the users more inter-
action and better user experience, Google Angular has been
chosen as the front-end technology [24].

B. Stakeholders Interview

Requirements of Clowiz were based on interviews with
information technology stakeholders in the financial and gov-
ernmental sectors. In fact, those stakeholders are domain
experts in these fields with long years (5-25) of experience.
The following are the list of questions that were asked:

• Q1. Did your organization have developed any cloud-
based applications so far? If yes, what are these systems?
If not, what are the reason for not doing that?

• Q2. What do you think are the advantages of building
cloud-based software applications?

• Q3. What do you think are the disadvantages of building
cloud-based software applications?

• Q4. Does your organization have any concerns migrating
legacy traditional systems or building new ones as cloud-
based? Please explain.

• Q5. Do you think developing cloud-based software sys-
tems is different from developing traditional on-premise
systems? Please explain.

• Q6. Do you think the current expertise and human
resources available in the market are sufficient to migrate
traditional systems or build new cloud-based solutions?
Please explain.

• Q7. Does your organization have any plans to build
cloud-based software systems in the next 5 years? Please
explain

• Q8. Did your organization utilized any visual modeling
tools for developing software systems? If yes, discuss this
experience. If not, why?

• Q9. In the perfect world, what do you think would be
the most efficient way to build cloud-based software
applications? Please explain.

• Q10. If you find a solution that can enable building
high-quality cloud-based software systems on much lower
cost than traditional software development, would you
consider it for your future projects?

• Q11. What do you prefer, enabling domain users to build
software systems directly using model-driven approach,
or to keep software development tasks conducted by
developers? Please explain.

Based on the responses received in the interviews, all
the interviewees think that cloud computing is the future of
software industry, especially for B2C, small-medium busi-
nesses. On the other hand, they think that large and enterprise
organizations such as banking and governments will keep
their core software systems internal for many reasons related
to security and political issues. However, they can definitely
go for the cloud for non-core systems such as customers
relations management (CRM) and recruitment systems. Re-
garding development costs, they think the main challenges of
migrating and start building cloud-based software solutions,
are immaturity of this field, lack of human resources that
can build high quality software systems, and the unavailability
of reliable and efficient tools. However, they all agreed that
having a platform to build high-quality cloud-based solutions,
with minimal efforts and cost, will certainly determine them
move to the cloud faster.

C. Functional Requirements

Functional requirements of Clowiz are summarized in Table
I. The numbering format is FR.X.Y.; X represents the release
of Clowiz, future releases may include new features and
requirements. Y represent the order of requirements based on
its priority.

TABLE I
FUNCTIONAL REQUIREMENTS OF CLOWIZ

Requirement ID Description
FR.1.1 Platform’s users shall be able to model application’s

simple entities using visual representations
FR.1.2 Platform’s users shall be able to model application’s

forms using visual representations
FR.1.3 Platform’s users shall be able to model application

workflow using visual representations
FR.1.4 Platform users shall be able to deploy application
FR.1.5 Application users shall be able to access dynamically

generated forms and views

D. Non Functional Requirements

The non-functional requirements of Clowiz are shown in
Table II. As discussed in the previous section, the numbering
format is NFR.X.Y; X represents the release of the Clowiz,
Y represents the order of the functional requirement based on
the priority. Usability is given a higher priority because the
authors think it is the most important factor for user traction
in cloud-based applications.



TABLE II
NON-FUNCTIONAL REQUIREMENTS OF CLOWIZ

Requirement ID Description
NFR.1.1 The applications shall be usable
NFR.1.2 The applications shall be hot-deployable
NFR.1.3 The applications shall be secured
NFR.1.4 The applications shall be scalable

E. Use Case models

Clowiz mainly have three user’s roles: (i) platform users,
(ii) application administrators, (iii) and application users. As
shown in Figure 2, a platform user(i.e. application developer)
can develop a dynamically generated application. In particular,
he/she will be able to develop, preview, and manage applica-
tions.

Fig. 2. Use case diagram for application development on the Clowiz platform

Figure 3 shows the use cases that can be executed on a dy-
namically generated applications by application administrators
or application users. Application administrators will be able to
manage application’s security and configurations. On the other
hand, the application users will be able to use the dynamically
generated application.

Fig. 3. Use case diagram for applications usage on the Clowiz platform

The core functionality of the platform is developing IS
applications using MDD web-based tools. It enables users to
develop all aspects of desired applications using visual models.
This includes creating models for entities, their fields, and their
relationships. In fact, these entities are considered the data-
model of the target application. Furthermore, the entity models
include all the main attributes of entity’s fields. For example,
they include the data-types, length, null-ability. In addition,
they include some user-interface attributes, such as width
of the form, masking, label, and translation for localization
purposes. On the other hand, users shall be able to design
models for user interface forms. These forms will be built from
composites of entities and may have some calculated fields.
Also, users shall be able to create the application’s workflow
among the modeled forms. Moreover, the user shall have the
ability to create themes for their applications or pick current
predefined themes.

Moreover, platform users shall be also able to preview
applications directly from within the platform. This feature
will enhance the users’ experience and make them more
productive, instead of consume their time switching between
different views and browsers.

After finishing an application development and preview, and
when the application is ready for use by end users, the platform
user shall be able to manage the application, by being able
to deploy or undeploy it. Furthermore, users can be able to
monitor the application for load and security purposes.

After an application is deployed, it will be ready for use by
application administrators and users. In particular, applications
administrator can manage the security of application, and
manage the general configurations. Managing the security
includes roles, privileges, roles privileges, users, and user-
roles. Furthermore, it includes management views to handle
the application configurations such as mail server information.
Consequently, the application will be ready for user to use
from both technical and configuration perspectives.

Fig. 4. Application-map for the Clowiz platform

Figure 4 shows the application-map for the Clowiz platform,
and the names of views that can be accessed by platform
users.



III. RESULTS

The main results of the work presented in this paper is
an open-source project available for public access at GitHub
[19]. In addition, a functional prototype of Clowiz [20],
has been built based on the waterfall process model. This
section contains important prototype screenshots of the Clowiz
implementation toolkit.

The entry point for the platform implementation toolkit is
the Clowiz login page.

Fig. 5. Login page of the Clowiz platform

After the user logging in, he/she will be redirected auto-
matically to the platform dashboard, as shown in Figure 6.
In this view, application developers can create, view, deploy
and undeploy applications. Moreover, current available appli-
cations will be shown with their status clear, with appropriate
background color and available functionalities for each project.
These statuses will be: (i) ready for deployment, (ii) not ready
for deployment due to errors, (iii) deployed.

Fig. 6. Dashboard page of the Clowiz platform

Figure 7 shows the Clowiz application builder view. In this
view, the user can input the general application’s information,
such as name and description. In addition, it includes a tabbed
pane for the application’s builder core components such as
application views map, entity designs and theme configuration.

In the views map, the developer can create new views and
include them in the navigation. Furthermore, he/she can select
one view and click on ”open selected view in Form Designer”
button to design the view.

Fig. 7. Application Developer view of the Clowiz platform

In the Form Designer view, users can design the views
using domain entities. A domain entity contains the meta-data
for data that should be input, processed or outputted using
the generated application instances. To allow users to create
a domain entity’s meta-data directly from this view without
getting back to the application builder home page, New entity
button is available to enable application developer to add
entity meta-data directly. On the other-hand, the Entity View
Designer enables application developers to design the domain
entities meta-data using the drag and drop user interface tool.
In particular, a developer can configure the entity attributes,
their data types, and their relations with other entities.

Fig. 8. Entity Developer view of the Clowiz platform

Using the application builder views, application developers
can build an entire application’s aspects and assets meta-
data using a model driven approach with diagramming tools,
without the need of having any coding skills.



IV. CONCLUSION AND FUTURE WORK

In this paper, many aspects about information systems were
discussed. In particular, their importance, characteristics, and
the traditional way of developing them. Furthermore, the
limitations and challenges of traditional development were
presented, and how the meta-data development reduces the risk
and development costs. However, since the meta-data approach
requires developers, and doesn’t fit well with the new trends of
cloud computing, Clowiz was introduced. In particular, Clowiz
includes a model-driven based platform, which is cloud-based,
to enable rapid IS application development.

The waterfall approach was followed in the development
of Clowiz and details about it were presented. This includes
the scope of work which was defined by interviews with
domain experts, followed by detailed design and architecture,
development, testing and evolution. Furthermore, technology
chosen, development process, deliverables, and final results
were presented.

Clowiz source code is available at Github; In addition, a
prototype is available publicly on the Internet.

Clowiz can be the base for future work in cloud and Internet
based model-driven development applications. Some future
directions may include enabling model driven development
approach for building Big Data management and Big Data
analysis web-based projects. In addition, it will be useful to
make the platform more generic to include non IS systems.
Furthermore, enabling integration through standard interfaces
can make Clowiz interoperable and integrable with other
systems.

V. ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under grant number IIA-1301726.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] David Avison and Guy Fitzgerald. Information systems development:
methodologies, techniques and tools. McGraw Hill, 2003.

[2] Daniel E O’Leary. Enterprise resource planning systems: systems, life
cycle, electronic commerce, and risk. Cambridge university press,
2000.

[3] Sommerville. Software Engineering (10th Edition). AddisonWesley,
2015. pp.45-53.

[4] Ramez Elmasri and Shamkant Navathe. Fundamentals of database
systems. Addison-Wesley Publishing Company, 2010.

[5] Elisabeth J Umble, Ronald R Haft, and M Michael Umble. Enterprise
resource planning: Implementation procedures and critical success
factors. European journal of operational research, 146(2):241–257,
2003.

[6] Rick Kazman Len Bass, Paul Clements. Software Architecture in
Practice (3rd Edition). ”Addison-Wesley Professional”, 2012.

[7] Peter Pin-Shan Chen. The entity-relationship modeltoward a unified
view of data. In Readings in artificial intelligence and databases,
pages 98–111. Elsevier, 1988.

[8] jBPM. Retrieved Jan 2018, from https://www.jbpm.org.
[9] Kent Beck, Martin Fowler, and Grandma Beck. Bad smells in code.

Refactoring: Improving the design of existing code, pages 75–88, 1999.
[10] Jalal Kiswani, Muhanna Muhanna, and Abdullah Qusef. Using

metadata in optimizing the design and development of enterprise
information systems. In Information and Communication Systems
(ICICS), 2017 8th International Conference on, pages 188–193. IEEE,
2017.

[11] Jalal Kiswani, Muhanna Muhanna, Sergiu Dascalu, and Frederick
Harris. Software infrastructure to reduce the cost and time of building
enterprise software applications: Practices and case studies. In
Proceedings of ISCA 26th International Conference on Software
Engineering and Data Engineering (SEDE 2017). ISCA, 2017.

[12] RightScale. State of the cloud report. Technical report, RightScale,
2017.

[13] Oscar Pastor, Sergio España, José Ignacio Panach, and Nathalie
Aquino. Model-driven development. Informatik-Spektrum,
31(5):394–407, 2008.

[14] Akon Dey, Gajanan Chinchwadkar, Alan Fekete, and Krishna
Ramachandran. Metadata-as-a-service. In Data Engineering
Workshops (ICDEW), 2015 31st IEEE International Conference on,
pages 6–9. IEEE, 2015.

[15] Redhat. Hot vs cold deployment. Retrieved Jan 2018, from
https://developer.jboss.org/wiki/HotVsColdDeployment.

[16] Zoho. Retrieved Jan 2018, from http://zoho.com.
[17] Salesforce. Retrieved Jan 2018, from http://salesforce.com.
[18] Allan Afuah and Christopher L Tucci. Internet business models and

strategies. McGraw-Hill New York, 2001.
[19] Clowiz-source. Retrieved Jan 2018, from

https://github.com/kiswanij/clowiz.
[20] Clowiz-website. Retrieved Jan 2018, from http://clowiz.com.
[21] Ivar Jacobson Grady Booch Rumbaugh, James. Unified modeling

language reference manual. Pearson Higher Education, 2004.
[22] Java. Retrieved Jan 2018, from

https://go.java/index.html?intcmp=gojava-banner-java-com.
[23] Spring cloud native applications. Retrieved Jan 2018, from

https://pivotal.io/spring-app-framework.
[24] Angular. Retrieved Jan 2018, from http://angular.io.


