Let’s VR: A Multiplayer Framework for Virtual Reality

Alex Hansen, Kurt Andersen, Brittany Sievert
Jalal Kiswani, Sergiu M. Dascalu, Frederick C. Harris, Jr.

{ahansen2, kandersen, bsievert, jalal}@nevada.unr.edu
{dascalus, fred.harris}@cse.unr.edu

Department of Computer Science and Engineering
University of Nevada, Reno
Reno, Nevada, 89557

Abstract

Virtual reality is an ever-growing market that pro-
vides an immersive and interactive experience. With
the predicted growth of this market, we wanted to meet
future demands by creating a multiplayer framework for
virtual reality devices, specifically for the HTC Vive.
The main objective of this project was to create a
framework for other game developers that facilitates
the simple creation of a multiplayer virtual reality
environment. Setup in a plug and play style, this
framework allows engineers to focus more on the actual
mechanics of their application rather than tedious
networking details. To demonstrate the use of the
framework, we developed a virtual reality multiplayer
game that involves player-to-player interaction. The
game is setup like a first-person shooter, where the
cooperating players fight off multiple waves of enemies.
As the game progresses, the number of enemies in-
creases as well as the difficulty of the enemies. Score
is tracked individually and is tracked on a scoreboard.
The game can be played in a single player experience,
but emphasis is put on the multiplayer aspect to
demonstrate the framework as well as user interactions.

keywords: Networked Multiplayer, Peer to

Peer, HCI, Software Engineering, HTC Vive,
VR

1 Introduction

Let’s VR is a multiplayer, virtual reality, first person
shooter game which has been designed and imple-
mented with Unity. The key point of Let’s VR is
to create a modular multiplayer framework for other
software engineers to use for virtual reality projects.

In this game, users are placed into an open en-

vironment where they are pitted against waves of
enemies. The user is armed with a weapon to protect
themselves from oncoming enemies. In between each
wave of enemies, the user is able to teleport around the
environment to collect enemy boxes.

In the design process, we created a modular frame-
work for the implementation of multiplayer virtual
reality applications. It is a plug and play styled
framework with Unity. The user is import the required
scripts and game objects into Unity, then they will
place the appropriate game objects into the specified
parameters.

By creating a modular framework, this allows fu-
ture developers to have an easier time working on
application features, rather than the back end network
communication. This will speed up the process for other
developers as well making it easier for newer developers
to create complex applications. Overall, the inclusion
of this modular framework allows for flexibility and
variability. This framework is not restricted to games,
but rather, can be utilized by Unity applications.

The rest of this paper is structured as follows:
Section 2 covers previous research put into Let’s VR
and statistics for the chosen virtual reality headset.
Section 3 will discuss the software engineering aspect
of Let’s VR including: functional requirements, non-
functional requirements, design diagrams, and detailed
use cases. Section 4 covers the implementation and
how Let’s VR was constructed. Section 6 discusses the
conclusion and future work for Let’s VR.

2 Background and Literature
Review

Virtual Reality is a fresh new market that deals with
state of the art display systems as well as input systems.

The displays are comprised of two small screens, one
in front of each eye, which gives the illusion of depth
in what is being displayed. The input peripherals are
tracked by senor systems that feed the location and
button presses to the computer. These sensor systems
track the headset as well giving fluid motion within the
virtual environment|2].

In order to create a basic multiplayer framework, we
first looked into which virtual reality headset would
be the most appropriate to work with. According to
online sales trends, the Oculus Rift sold 250,000 units
in 2016, and 850,000 units in 2017; whereas the HTC
Vive sold 400,000 units in 2016, and 950,000 units
in 2017[14]. Aside from sales, Unity had a library
available, ”SteamVR,” that enabled simple interaction
with the peripherals. SteamVR allows use for multiple
VR systems, but we found the HTC Vive interaction
was simple enough. It was also easy for us to choose
this because the research lab we worked in already had
two HTC Vives.

Once the hardware was decided on, we shifted our
research focus to the ratio of multiplayer to single player
games that are already available on the public market.
As of 2018, near the completion of the project, there
are a total of 2351 total single-player games being sold
on the Steam Marketplace that are strictly designed for
virtual reality, while there are a mere 238 multiplayer
games that are being sold on the Steam Marketplace
that are designed for the use of virtual reality[7].

There are a number of games that we used to design
our product. Some virtual reality game samples, which
are all off of the Steam Marketplace, include but
are not limited to: Space Pirate Trainer, The Lab,
Job Simulator, Rec Room, and Spell Fighter VR][T7].
Each sample provided different aspects of implementing
aesthetically-pleasing and intuitive interactions to give
us a solid foundation for our project development.

To provide a hands-on and interactive demonstration
of the multiplayer functionality, we created a survival
shooting game similar to Call of Duty’s Zombie Mode[1]
or Gears of War’s Horde Mode[15]. As the project pro-
gressed, the demonstration was used by us to provide
a visualization of progress for investors. The game was
developed in Unity[16] and the implementation of the
game’s components was split into multiple sections that
are outlined in the following section.

3 Software Engineering

3.1 Requirements Specification

The requirements detailed in the following subsec-
tions include descriptions of the functional and non-

functional requirements used by the system for this
project. The functional requirements detail how the
system should behave, while the non-functional require-
ments describe the constraints on the features offered
by the system [13].The elicitation process was given to
us at the conception of the project by our advisor as well
as other stakeholders that had a hand in the project.

3.1.1 Functional

1. Main Menu: A user shall be able to use a menu to
interact with the application and navigate through
various settings.

2. Game Environment: The system shall have an
environment for the user to interact with during
the game.

3. Player Movement: A user shall be able to
move within the environment through the use of
teleportation.

4. Shooting Functionality: A user shall be able to
shoot a gun to defend themselves from oncoming
enemies.

5. Enemy Spawning: The system shall spawn
enemies randomly throughout the environment for
the user to interact with.

6. Enemy AI Pathfinding: The system shall im-
plement enemy Al pathfinding, where enemies will
adapt and move around obstacles to reach their
intended goal.

7. Player Heads Up Display (HUD): A user shall
have an interactive HUD available, allowing them
to keep track of ammo capacity, reserve ammo,
total health, the current enemy wave, and their
score.

8. Enemy Waves and Increased Difficulty: The
system shall implement enemy waves that increase
in number and difficulty as the game progresses.

9. Weapon Accuracy: A user shall experience
realistic weapon accuracy throughout the game,
implementing functionality such as bullet drop
creating a more realistic experience.

10. Item Collection: A user shall be able to collect
items that randomly drop from enemies. These
items will give the user additional health, ammo,
or power-ups that give the user a temporary
advantage.

11. Networking Functionality: The system shall
implement multiplayer functionality, allowing users
to interact and play the game with others.

3.1.2 Non-Functional

1. Unity Game Engine: The system uses Unity, as
the entire project was built using this engine.

2. Performance Requirements: The system shall
operate using the HTC Vive. Users will need an
Intel Core 15-4590 or AMD FX 8350 equivalent or
better processor, an NVIDIA GeForce GTX 970 or
AMD Radeon RX 480 equivalent or better graphics
card, and at least 4 GB RAM [19].

3. Platform Constraints: The system shall operate
on Unity in conjunction with the Steam platform
to get the VR capabilities from the HTC Vive.

4. Reliability: The system shall operate such that
the hardware and software that the user interacts
with must be robust and intuitive throughout the
entire experience.

5. Security: The system shall operate such that the
user does not come into any physical harm while
playing the game. This is ensured by limiting user
actions and creating visuals in the game to prevent
any harm from coming to the user.

3.2 Detailed Use Cases

The Use Cases describe the interaction between users
and the system as seen in Figure 1. The numbering
order for each Use Case shown in Figure 1 are described
in further detail in this section.

1. Choose Role: The player will be able to choose
an in-game role that will provide bonuses to the
player.

2. Choose Mode: The player has different choices
on how the game can be initiated. Once the choices
have been made, the main portion of the Lets VR
application begins.

3. Single or Multiplayer Mode: A player has
the choice of initiating the game through a local
instance or by playing over a network.

4. Manage Game: This gives the player options to
configure the game correctly to their system for a
streamlined experience.

5. Start Game: This allows the player to resume
playing the game if it has been paused or in another
state.

6. Pause Game: While the player is playing the
game, the play has the ability to stop the game
and take a break.

7. End Game: When a player is done playing the
single player or multiplayer game, the player can
select this option to return to the main menu.

8. Play Game: This allows the player to start
the game after finalizing all options. All player
interactions shift from the menu to the main game.

9. Shoot Enemies: The player is able to defend
themselves from oncoming enemies in the game.
The player will have limited ammo.

Let's VR
Application

: Choose Role

:Choose Mode J—
R 1’ Start Game

<<Includes>

= ’%’slnclude&,. =
— Manage Game |---- » Pause Game)

— ~u, —

<<|Hc|ud@>>)
Player A ™~
B (End Game)

(| Play Game | =<<include>>
_.- --.__.’ —

R

-:Shoot Enemies:-

==Include== e
¥ =slnclude=>
| Create Objects | | Collect ltems |

Figure 1: Use case diagram for Let’s VR demonstrating
the flow of interactions within the system.

10. Collect Items: As enemies are eliminated by the
player, they drop items that can be collected by
the player at the end of the enemy wave.

11. Create Objects: During intermediate rounds,
the player will be able to create objects that
obstructs enemy pathing.

4 Implementation

At the initial stages of the project’s development,
we utilized the documentation outlined in Section 3 to
create an agile development process that would adapt
to future development hurdles as well as reinforce team
oriented coding practices.

To ensure these goals, software components that
needed to be developed were assigned to individuals
based off of interest, rather than programming skill. In
regards to project and team understanding, we utilized
weekly meetings that involved all team members to
analyze progress and possible roadblocks of the project.
Lastly, pair programming[10, 13] was utilized as much
as possible to ensure the project’s modules worked in
a cohesive manner and to ensure each team member

understanding of the developed system.

Once team dynamics were outlined and addressed,
we began developing a single player environment. This
direction would allow us to ensure all functionalities
would be implemented and perfected before multiplayer
functionality was incorporated. Once single player
was optimized, we began to merge the system into
multiplayer modules. We utilized test driven devel-
opment strategies comprised of unit, component, and
integration tests to ensure the migration was successful
and met the project’s specifications[10, 13].

4.1 Unity Integration

4.1.1 Game Menu

To ensure a player can navigate the game effectively, we
created a game menu that is loaded and displayed at the
start of the application. Figure 2 displays a snapshot of
the menu players interact with. This menu allows the
player to initiate a single player or multiplayer game,
see their high score, initiate a tutorial, or change in
game settings. Additionally, when a player is in the
game, there is a menu the player can activate to exit
the game.

Figure 2: When the application is initialized, the main
menu is loaded for player usability.

4.1.2 Game Environment

To ensure an immersive experience, we took the ini-
tiative to incorporate as many features as possible to
mimic the real world. In game features such as lighting,
wind, sounds, and interactive objects were incorporated
and optimized to the best of our ability. Although many
of these features are not a necessity, these small details
play a big role in creating an immersive experience.

4.1.3 Artificial Intelligence (AI)

To provide a goal for the players taking part in the
game, robot enemies were implemented with the goal
of eliminating the player. There are a total of four
different enemy types, two of which utilize melee attacks
and the other two utilize ranged attacks. The two melee
enemies are shown in Figure 3. To ensure the system
acts in a realistic manner, we utilized rigs that were fully
animated to provided walking, attacking, and death
animations. Additionally, we used NavMesh Agents[17]
and NavMesh Baking[18] to allow the AI to navigate
the world to reach the player. Both of these systems
were crucial to provide a realistic experience for players
when autonomous system mimic the real world.

Figure 3: Two of the enemy types that players will
encounter when playing the game.

4.1.4 Networking Interface

When implementing networking in Unity, we utilized
C# scripts as well as multiple game object settings that
interacted with the Unity’s development environment.
Additionally, we utilized a Peer-to-peer networking
architecture[9] when implementing the multi player
framework. This architecture was chosen due to the
resources we had as well as our architecture analysis.

4.2 Libraries Used

We make use of a few pre-made libraries within Let’s
VR. We use these libraries because we did not want to
rewrite preexisting code that already functioned well.
This allowed us to focus more on the construction of the
framework rather than the functionality of the game.

MultiuserVive[3]: When developing the multi-
player system, we utilized open source code that helped
integrate with some of Unity’s multiplayer components.
Unity incorporates multiplayer capabilities and this
library enabled us to better understand and implement
our goals. An in game multiplayer avatar was provided

Figure 4: When in mulitplayer mode, the players are
displayed as the white figure.

in the library for players to see and interact with
eachother. This multiplayer avatar is shown in Figure 4
as a white circle.

Player Teleportation[3]: During the initial devel-
opment of the project, we utilized this library to get a
better understanding of how to develop a single player
experience.

4.3 Assets Used

The assests that we use in Let’s VR add to the
aesthetic of the game. It makes the overall product
look nicer, and made development of the game easier.
This allowed us to set the majority of our focus on the
construction of the framework for Let’s VR.

Enemy Models[5]: These models were selected due
to them being rigged with animations. The use of
the animations provide an immersive experience when
utilized with other in game assets.

Skybox[11]: With the game taking place in an
outdoors setting, a skybox was used to represent an
outdoor theme.

Curved Menu[6]: Through multiple VR menu
tests, an in game asset was needed to provide a menu
feature. Utilizing an in game object as well, rather
than attached to the player’s screen, as a curved screen
provided intuitive player understanding.

Nature Environment[12]: To ensure a consistent
outdoors theme, nature assets were used provide a
diverse and organic environment for players.

Grass Models[21]: This asset was used due to the
original grass game object not fitting the theme the
game was trying to achieve.

SteamVR Plugin[8]: To interact our Virtual Real-
ity (VR) hardware with Unity[16], we incorporated this
asset to bridge that gap.

M16 Gun Model[20]: To provide an intuitive
understanding by the player, a simple gun model was
utilized which made it easier to point and shoot towards
the enemy robots.

Game Sounds[4]: To provide an immersive experi-
ence, a wide range of sounds was used to ensure actions
that occurred in the environment or by players would
be representative of real world interactions.

5 Discussion

Let’s VR was showcased at a yearly event called Inno-
vation Day hosted by the University of Nevada, Reno.
This event usually has close to five thousand guests in
attendance. Amongst the guests, approximately 150
guests interacted with Let’s VR. These interactions told
us about the usability of our system.

Let’s VR was setup as an individual booth with
a singular setup to allow guests to play the game.
Throughout the entirety of the event, the game was
in constant use. Because of the framework we created,
Let’s VR did not run into any issues. The robust design
of the framework ensured a fulfilling test of Let’s VR.
The only issue that ever arose is a minimal amount of
latency between each user.

Nearly every person that used Let’s VR at Innovation
Day gave positive feedback. Users enjoyed the game
and were not affected by motion sickness. Some of
the feedback received was:“The game was fun and
difficult,” “The game ran smoothly and the controls
were intuitive,” and “The friendly player seemed to be
lagging slightly in their movements.” There was some
latency issues due to network setup, but there was never
a loss of connection between the players.

6 Conclusion and Future Work

The majority of features from the project’s concep-
tion were implemented through the current lifetime
of this project. There were minor features that were
not added, but the majority of these were more for
gameplay quality rather than for networking perfor-
mance. Some of the gameplay features that were not
implemented include but are not limited to: individ-
ual player roles, polished player models, aesthetically-
pleasing user interface, and interactive tutorial.

6.1 Conclusion

The novelty factor of this project is the networking
framework being geared towards modularity rather
than being custom built for this project specifically.
Another novelty factor is that this is a multiplayer
virtual reality game, where as noted earlier in Section 2,
the number of multiplayer virtual reality games is
extremely lacking when compared to the number of
single-player games.

By having a modular networking framework, other
game developers will be able to create their own
instances of multiplayer virtual reality games or appli-
cations with ease.

Given more time to work on this application, we plan
to address the issues stated in the Section ?7?. We also
wish to add voice communication between the users
within the application. Including this will add another
layer of immersion as well as making it easier for the
players to communicate between each other. As of right
now they can only gesture at each other.

Another major functionality that we wish to change
is the way the network is set up. The network is set up
in a peer-to-peer style. We would like to change to a
server-client setup for ease of communication between
all users. This will be especially useful when more than
two users will be using the application at once.

Acknowledgement

This material is based in part upon work supported
by the National Science Foundation under grant num-
bers [TA1329469 and ITA-1301726. Any opinions, find-
ings, and conclusions or recommendations expressed
in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

References

[1] Activision. In Zombie Mode, 2018. [https://www.
callofduty.com/wwii/zombies n.d. Last Accessed
May 10, 2018].

[2] Christoph Anthes, Rubén Jesis Garcia-Herndndez,
Markus Wiedemann, and Dieter Kranzlmiiller. State
of the art of virtual reality technology. In Aerospace
Conference, 2016 IEEE, pages 1-19. IEEE, 2016.

[3] Pascal Auberson. In Multiuser Vive, 2016. [https:
//github.com/pauberson/MultiuserVive n.d. Last
Accessed May 5, 2018].

[4] Audioblocks. In Storyblocks, 2018. [https://www.
audioblocks.com/ n.d. Last Accessed May 10, 2018].

[5] POLYGON BLACKSMITH. In Battle Droids Pack,
2018. [https://assetstore.unity.com/packages/3d/

[9]

[10]

[11]

[12]

[13]

[14]

characters/humanoids/battle-droids-pack-74088
n.d. Last Accessed May 10, 2018].

CHISELY. In Curved UI, 2018. [https://assetstore.
unity.com/packages/tools/gui/curved-ui-vr-
ready-solution-to-bend-warp-your-canvas-5325

n.d. Last Accessed May 10, 2018].

VALVE CORPORATION, 2018. [https://www.store.
steampowered.com/ n.d. Last Accessed May 13, 2018].

VALVE CORPORATION. In SteamVR Plugin,
2018. [https://assetstore.unity.com/packages/
templates/systems/steamvr-plugin-32647 n.d. Last
Accessed May 10, 2018].

PC Magazine. In Encyclopedia, 2018. [https:
//www.pcmag . com/encyclopedia/term/49056/peer—
to-peer-network n.d. Last Accessed May 10, 2018].

Robert C. Martin. A code of conduct for professional
programmers. In The Clean Coder. Prentice Hall, 2011.

MGSVEVO. In Classic Skybozx, 2018. |https:
//assetstore.unity.com/packages/2d/textures—
materials/sky/classic-skybox-24923 n.d. Last
Accessed May 10, 2018].

SHAPES. In Nature Starter Kit 2, 2018.
[https://assetstore.unity.com/packages/3d/
environments/nature-starter-kit-2-52977 n.d.

Last Accessed May 10, 2018].

Tan Sommerville.
2016.

Statista. In Worldwide virtual reality (VR) headset
unit sales by brand in 2016 and 2017 (in millions),
2018. [https://www.statista.com/statistics/
752110/global-vr-headset-sales-by-brand/ n.d.
Last Accesed May 13, 2018].

Microsoft Studios. In Horde Mode, 2018. |[http:
//gearsofwar.wikia.com/wiki/Horde n.d. Last Ac-
cessed May 10, 2018].

Unity. In Unity Game Engine, 2018. [https://
unity3d.com/ n.d. Last Accessed May 10, 2018].

Unity. In NevMesh Agent, 2018. [https://unity3d.
com/learn/tutorials/topics/navigation/navmesh-
baking n.d. Last Accessed May 10, 2018].

Unity. In NevMesh Baking, 2018. [https://docs.
unity3d.com/Manual/class-NavMeshAgent.html n.d.
Last Accessed May 10, 2018].

VIVE. 2018. [https://www.vive.com/us/ready/ n.d.
Last Accessed May 13, 2018].

Warhead3D. In M16A1 Assault Rifle, 2018.
[https://www.turbosquid.com/3d-models/mi16al-
assault-rifle-m16-3ds-free/523322 n.d. Last
Accessed May 10, 2018].

PATRYK ZATYLNY. In Hand Painted Forest
Envrionment Free Sample, 2018. [https://
assetstore.unity.com/packages/3d/environments/
hand-painted-forest-environment-free-sample-
35361 n.d. Last Accessed May 10, 2018].

In Software Engineering. Pearson,

