
Overlay: an Educational Disc Covering Puzzle Game

Ryan Devaney, Sanya Gupta, Vinh Le
Connor Scully-Allison, Frederick C. Harris, Jr. & Sergiu Dascalu
Department of Computer Science, University of Nevada, Reno

Reno, Nevada, 89509, USA
(rgdevaney13, sanyahgupta)@gmail.com
(vle, cscully-allison)@nevada.unr.edu
(fred.harris, dascalus)@cse.unr.edu

Abstract

In the last decade, video games have quickly become
a major contender against present media standards,like
movies and music. While video games often serve as a
form of entertainment, it has had a long history of being
used as an engaging tool for education. However, video
games that are more tailored towards education tend
to fail in compelling their audience to play as strongly
as their non-educational cousins. To address this
problem, this paper presents Overlay: an educationally-
oriented video game that is designed to teach basic
problem-solving skills while maintaining high levels of
engaging entertainment. Overlays core gameplay me-
chanic derives from Richard Kershners Disk Covering
problem, where users use basic geometry to solve a
positioning problem and progress through the game.
As users progress through the game, the levels becomes
increasingly more challenging. Progress is tracked
through the game and the top-ranking scores are stored
online through a web service handling communication
to the main data source. These gameplay aspects
allow Overlay to seamlessly blend STEM education
with viscerally enjoyable entertainment.

keywords: Education, STEM, Unity, Flask,
Python, Puzzle Game

1 Introduction

The blending of education with video games fre-
quently yields a result that betrays the engaging aspect
that is expected of the genre. With the intent of
creating that middle ground where education meets
the challenging and engaging aspects of video games,
our team developed Overlay, a puzzle game that brings
mathematics into a modern gaming setting. In this
game, users place circles inside of a larger revolving
circle with the goal of covering the larger circles surface
area. Once the larger circle is covered, the users score

will update based on their performance in both time
and accuracy, then advance to the next stage. At all
times, Overlays interface states the smallest possible
amount of circles that could be used to cover the larger
circle. If the user places any number of circles exceeding
that of the smallest amount, their scores will be
deducted based on poor accuracy. The smallest amount
of circles is determined mathematically using the disk
covering problem developed by Richard Kersher and
will be covered in Section 2. At the end of each game
session, the total score is calculated based on each
completed stage, the deductions from each stage, and
the overarching timer placed on the entire game session.

At the core of the game, Overlay can be broken
into two major parts: the main game client and
the web service that manages the top ten current
rankings. Overlays main game client was designed
and implemented with the Unity Game Engine and
the C# programming language. The choice of Unity
and C# was determined from Unity being a powerful
and free game engine, while C# was chosen due
to its compatibility to Unity and its robust native
HTTP libraries for web communication. The support
web service for Overlay was implemented with the
Flask Microframework and the Python 3 programming
language. The choice of Flask and Python was made
due to Flask being a very robust and easy to deploy
service framework.

Overlay was implemented with the option of being
deployed as both an executable through Unitys appli-
cation support and as a mobile application for modern
smart phones. Additionally, all stages were designed
based off a modular template that allows for new
gameplay mechanics to be easily added such as different
geometric shapes, new stages, and new user challenges.
This customizability allows users the option to create a
new experience for future play and offer a viable choice
for replay value. The rest of this paper is structured
as follows: Section 2 covers the background of the
disk covering problem and similar work to Overlay in



the field of educational gaming. Section 3 covers the
software engineering aspect of Overlay which includes
functional requirements, non-functional requirements,
and use cases. Section 4 covers the implementation of
Overlay. Finally, section 5 covers the conclusion and
future work for Overlay.

2 Background and Related
Work

Figure 1: This is a visual representation of the Disc
Covering problem. With the dashed line indicating the
larger circle being covered, we see the optimal number
of smaller disks required to cover it up.

The fundamental mechanic of Overlay is based on
a fundamental mathematical problem introduced by
Richard Kershner [5]. The problem explores the mini-
mal amount of circles required to “cover a set.” That is,
how many smaller circles of a given radius are required
to cover one large circle of a given radius. A visual
example of this problem can be seen in Figure 1. The
specifics of this paper are highly esoteric and hard for
laymen to grasp however, because of it’s mathematical
basis it provided two benefits to the design of this
game. First, it provided a clear, and easily implemented
optimal solution for each puzzle. Second, it provided a
unique opportunity to educate players about otherwise

arcane mathematical concepts and hopefully drive a
general interest in mathematics.

Overlay is certainly not the first game built using
mathematical concepts as a core gameplay element.
Many games in the puzzle genre often employ basic
geometry and associated mathematical theorems to
determine optimal play. Tetris, a classic game puz-
zle game, has complex combinatorics underlying it’s
gameplay [1, 8]. Similarly, other games like Valve’s
critically acclaimed Portal and the indie hit Anticham-
ber frequently utilize geometric mathematics to create
complex looking 3D puzzles with clearly-defined, opti-
mal solutions [2, 9]. Although well saturated, Overlay
contributes uniquely to this field by providing a fast
paced, easy to pick up experience with almost no
learning curve. Additionally, Overlay offers a unique
entry point into the specific Disc Covering problem
employed as a gameplay mechanic.

The field of educational games has been well re-
searched with significant academic work researched
for Overlay. Specific to the field of puzzle games,
the educational merit of mathematical and geometric
games has been explored by Sarah Newcombe [7]. In
this paper, Newcombe argues that puzzle games like
Tetris, can have a positive impact on a student’s
spatial thinking required to succeed in STEM fields.
In addition to the stated goal of driving interest in
Math topics, Overlay meets many criteria expressed
by Newcombe required to bolster a students spatial
thinking. This work reinforced many game design
decisions made to optimize the educational aspects of
this software.

In addition to the work by Newcombe, other authors
have also shown that puzzle games like Overlay can have
a positive educational impact on players. Bobby Law
showed a positive correlation between puzzle games
an computational thinking, indicating another possible
avenue of educational value for Overlay [6]. Fokides, in
a 2016 case study, also indicated the promise of Math-
based educational games by comparing a game-using
primary school group against a non-game-using control
group from the same school[3]. The results were very
positive in favor of the the game group and further
indicates the promise of games like Overlay.

Outside of broad indications that games can be a
valid educational tool, significant recent work has been
done to understand how best to design video games
for educational purposes. In thier educational paper,
Horn et. al., explored how to evaluate the strategies
used by players as a metric of educational impact [4].
In another paper by Scozzi et. al., a novel approach
was proposed by the authors to best iterate on the
design of educational games [10]. Both of these works
were considered in Overlay’s game design so that any



educational aspects of the game could be best evaluated
and expanded upon.

3 Software Specification

This section is broken into three main parts: func-
tional requirements, non-function requirements, and
the use cases associated with this software. The
functional requirements provided detail the technical
functionality present within Overlay and are organized
in levels to differentiate core features from secondary
ones. The non-functional requirements serve as con-
straints, both in hardware and software, on the Overlay
game. Finally, the use cases show the interaction
between users and the Overlay game.

3.1 Functional Requirements

Regarding base level feature, the Overlay game con-
sists of six total functional requirements. The first
requirement of Overlay indicates the necessity of a
main menu screen to start the game, change user
settings, view the current leaderboard, and exit the
application. The second requirement is that a user
may interact with game client during a game session,
through a mouse click or touch input. The third
requirement ensures that once progress is made inside
the Overlay game, the ensuing levels will increase in
difficulty by implementing a new game mechanic. The
fourth requirement is that a score will be kept up to
date and visibly shown during the extent of the session.
The fifth requirement involves the losing state of the
game, where a dynamic number of losing states will
be added to the game as the user progresses deeper.
Finally, the sixth requirement is that the Overlay game
will communicate with a web service to transmit a
score for evaluation and update the global leaderboard
appropriately. Additional features were also added
that are considered as level two requirements. The
first requirement was the ability for users to customize
the theme and music of their game instance through
the settings page. The second requirement allowed
users the option to customize their gaming experience
by importing their own game objects. Finally, the
third requirement involved specialized visual and audio
notifications that were triggered when a user progresses
deeper within the game. These notifications indicated
that a user either increased the difficulty, unlocked new
losing states, or are severely approaching a losing state.

3.2 Non-Functional Requirements

During the development of Overlay, a handful of
constraints were placed on the system in the form

Figure 2: Use case diagram for Overlay showing user
interactions with the system.

of non-functional requirements. The first constraint
required that the Overlay game client be available
as an executable on a computer or as an application
on a mobile device. The second constraint required
the game to be built with the Unity Game engine.
The third constraint required that the game client be
developed with C# as the main scripting language.
The fourth constraint required the Overlay web service
to be developed with the Flask Microframework and
the Python programming language. Finally, the fifth
constraint is that the Overlay game requires internet
access in order to save scores of a game session.

In addition to these multiple software constraints,
further constraints were placed upon the hardware
Overlay was expected to run on. First, Overlay was
only required to run on android mobile devices and
Windows PCs. Additionally, to best facilitate the
running on these devices, Overlay was required to
compile into an executable taking up no more than
1GB of persistent memory on the device. It was also



Figure 3: When the application is run, the main menu is loaded for the user to navigate.

required to be extremely responsive to touch inputs,
with absolute minimal latency between touching a
mobile screen and the spawning of a circle.

3.3 Detailed Use Cases

This section presents the detailed use cases that serve
as a representation of the interaction between the role
of user and the Overlay game system. Further details
are shown below about each individual use case and a
use case diagram is provided in Figure 2.

• Game: The user is ultimately interacting with the
entire game throughout.

• Select Level: When the user wants to play they
will be selecting the first level.

• Update Leaderboard: After a user submits their
score, their score will be reflected onto the leader-
board if it meets the criteria.

• Place Circle: The user will be able to place a circle
with mouse clicking or touch input while in the
game.

• Remove Circle: The user will have circles removed
after they have covered the background circle.

• Go to Main Menu: The user will be able to go to
the main menu after completing a game.

4 Implementation

The documentation outlined in Section 3 was used
to create a development process that would be both
flexible and robust. Our team worked with advisors
very closely and often so that guidance could be given
very quickly. Tasks were given out based upon the
individual’s comfort with that task. Initially, we
first developed one working level and game specific
mechanics were added incrementally to make the level
more interesting. Once a singular level was finalized,
additional levels and features were added in batches to
the game.

4.1 Main Menu

The game includes a main menu so that users are able
to select which aspect of the game they want to access.
This menu interface is the first thing that comes up
at the very start of the games execution, as shown in
Figure 3. The menu includes a play button that starts a
new game session and leads players into game interface
described below. In addition to the play button, there is
also an options menu that allows users to change game
settings, add music, and upload game assets. Next,
there is a rankings button that will query a web service
for a global ranking list and show the top ten scores.
Finally, there is an exit button that will allow users to
quit the game and shut down the application.



Figure 4: An example of the core gameplay loop.
Players can place down as many circles as desired;
however, circles which exceed the number required for
an optimal solution will detract points. Also taking
excessive time to solve the puzzle will also result in lost
points.

4.2 Game

This interface is produced when invoking the play
button from the main menu. The major aspect of
the game session is to fill in a larger revolving circle
with the fewest amount of smaller circles, as shown
in Figure 4. As the game continues, each millisecond
decreases the over score, which can be decremented past
zero. Completing a stage with the appropriate amount
of circles will yield the users a set amount of points,
however if that amount is violated, then a portion will
be deducted. Each of these statistics: time, circles
placed, smallest amount needed, current stage, and the
total score are made viewable on the left side of the
game interface. In order to keep the game fun and
challenging, new mechanics were added every ten levels,
shown in Figure 5. These mechanics can include circles

Figure 5: After each subsequent series of 10 stages
has been surpassed users will see this message. The
difficulty scales with the addition of a new ”gimmick,”
like a super-short timer or an reverse spinning circle.

Figure 6: After losing the game, users are presented
with this screen. When a name is input, the associated
score is uploaded via an HTTP call to a persistent data
structure on a remote server.

the user placed disappearing after a set time, the user
automatically losing after a certain amount of time, or
a culmination of many. Finally, a score is given to the
user after they completed the game and if high enough,
this score will be sent to the web service to be updated
on the global leaderboard.

4.3 Ranking

This interface is generated from two sources, the main
menu from the ranking button or after a finished session
from the main game. In this interface, the game client
immediately queries the global ranking list from the
support web service and shows it in a list to the user.
It must be noted that by entering the ranking interface
via the main menu, it does not allow the user to input a
score. However, after the user has ended the game, they
are sent to a score submission screen, as shown in Figure
6. Here the user can input their name and email and
this information then gets sent to a web service that
evaluates the score and potentially saves the top ten
scores. It is then that the user is sent to the Ranking
interface to view whether their score made it to the
global rankings.

5 Discussion

As a case study, to prove the effectiveness of this
software, Overlay was exhibited at a campus wide inno-
vation day. Hundreds of individuals attend this yearly
event to view top projects produced by the University
of Nevada Reno. Among those participants, many
of whom are children in our intended demographic,
over 120 users were given the opportunity to play this
game and give informally structured feedback on their
experiences. From this exposition we draw much of our



conclusions.

Paramount to the primary goal of Overlay, we found
that, through playing, many users expressed an interest
in understanding the math underlying the disc covering
mechanic central to gameplay. This was often casually
expressed with questions like “How do [we] balance
gameplay,” and “How could I get a perfect score?”
Questions like these clearly indicated an interest in the
mechanics of the game but also in the underlying logic
of how the game works. Explanations of the underlying
mathematical theory were well received by users who
asked questions like these. We suspect that it may be
tied to the an investment generated by the fast paced
and visceral gameplay.

In addition this this educational reception of our
software, it was also observed that Overlay was strongly
validated with a second metric: enjoyment. Users
overwhelmingly had fun playing this game. Many
users, especially those in the 8-12 year old demographic,
crowded around the Overlay booth and competed
against each other for high scores. Users frequently re-
quested the opportunity for an additional play through
after hitting the game over screen. Additionally, many
players also commented positively on the visual design
of Overlay, noting how “vibrant” and “unique” it is.

6 Conclusion and Future Work

This paper presented a new video game aimed at
providing both a sense of engaging entertainment and
an education value centered around geometry and
mathematics. The main characteristics of the new game
have been detailed through the software specification
and the implementation. We believe that this game
application brings a strong collaboration between edu-
cational gaming and modern game design concepts.

Future development of Overlay includes transferring
the entire game client over to a web application. This
would allow the game to be available on all platforms
and operating systems through a web browser and
internet connection. This would not eliminate any
previous iterations of the game, so the web application
would be in addition to the current executable and the
mobile application.

Currently, the Overlay game runs off ten iterations
of the disk covering problem that are repeated with
different and harder mechanics to create additional
level. In the future, we would develop finer detailed
levels of the disk covering problem. This would create
a stronger enforcement of the geometric lesson being
taught and create more challenging levels through the
greater amount of circles being placed.

Finally, the Overlay web service currently runs on a

virtual machine in a physical machine while communi-
cating to a local data source. In the future, we would
like to expand to using cloud technologies to host the
game on a cloud instance, such as Amazon AWS. In
addition, we would like to instead monitor scores and
other user data, such as mouse activity and time spent
on a specific level, through autonomously storing data
on a database, such as SQL Server.

References

[1] Davide Baccherini and Donatella Merlini. Com-
binatorial analysis of tetris-like games. Discrete
Mathematics, 308(18):4165–4176, 2008.

[2] Alexander Bruce. Antichamber. https://store.

steampowered.com/app/219890/Antichamber/,
Jan 2013. Last Access Aug 20, 2018.

[3] Emmanuel Fokides. Digital educational games and
mathematics. results of a case study in primary
school settings. Education and Information
Technologies, 23(2):851–867, 2018.

[4] Britton Horn, Amy K Hoover, Jackie Barnes,
Yetunde Folajimi, Gillian Smith, and Casper
Harteveld. Opening the black box of play: Strategy
analysis of an educational game. In Proceedings of
the 2016 Annual Symposium on Computer-Human
Interaction in Play, pages 142–153. ACM, 2016.

[5] Richard Kershner. The number of circles covering a
set. American Journal of mathematics, 61(3):665–
671, 1939.

[6] Bobby Law. Puzzle games: A metaphor for
computational thinking. In European Conference
on Games Based Learning, page 344. Academic
Conferences International Limited, 2016.

[7] Nora S Newcombe. Picture this: Increasing math
and science learning by improving spatial thinking.
American Educator, 34(2):29, 2010.

[8] Alexey Pajitnov. Tetris. https://tetris.com/.
Last Access Aug 20, 2018.

[9] Valve Software. Portal. https://store.

steampowered.com/app/400/Portal/, Oct 2007.
Last Access Aug 20, 2018.

[10] Monica Visani Scozzi, Ioanna Iacovides, and Conor
Linehan. A mixed method approach for evaluating
and improving the design of learning in puzzle
games. In Proceedings of the Annual Symposium on
Computer-Human Interaction in Play, pages 217–
228. ACM, 2017.


