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ABSTRACT

Reducing the number of link crossings in a net-
work to a minimum is a difficult problem which
has nonetheless important applications. Circuit de-
sign with very-large-scale integration (VLSI) is an
example of such an application. This problem is
known as the crossing number problem. Finding a
general solution to this problem has been shown to
be NP-hard. Hence, solutions for particular classes
of graphs have been proposed. In this paper, we
focus on tori as they have proven very popular as
interconnection network of massively parallel sys-
tems; see for instance the Fujitsu K and Cray Ti-
tan supercomputers. We start by devising an opti-
mal upper bound on the crossing number of a two-
dimensional k-ary torus. This first result is ex-
tended to obtain an upper bound on the crossing
number of a three-dimensional k-ary torus. Finally,
we derive from these discussions an upper bound
on the crossing number of a k-ary n-dimensional
torus. The proposed bounds and drawing methods
are empirically evaluated with experiments involv-
ing system-generated torus drawings and the auto-
matic calculation of their crossing numbers.
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1 INTRODUCTION

Informally, the crossing number of a graph is
the minimum number of edge crossings when
drawing the graph on a surface. This graph
drawing problem has important applications in
various domains: circuit design (VLSI) [1, 2,
3] and graph visualisation [4] are two exam-
ples of such applications. This problem is fa-

mous for its complexity. Indeed, it has been
shown to be NP-hard [5]. General solutions
for the crossing number problem have been no-
tably studied by Erdős and Guy [6], Turán [7],
and somewhat more recently in [8]. Besides,
an algorithm for calculating the crossing num-
ber (i.e., an optimal solution to the crossing
number problem) has been proposed in [9].
Given the NP-hard complexity of this problem,
it has been solved for special classes of graphs.
For instance, Sýkora and Vrťo focused on hy-
percubes [10]. More recently, new results have
been obtained by Faria et al. for this same class
of graphs (hypercubes and their variants) [11].
Other examples of specific classes of graphs
for which the crossing number problem has
been studied include complete graphs [12, 13]
and stars [14].
In this paper, we focus on such a class of
graphs: tori. Effectively, as shown for instance
by the TOP500 ranking, many major super-
computers such as the Fujitsu K, the Cray Ti-
tan and IBM Blue Gene/P are relying on the
torus topology for their interconnection net-
work. Tori are very popular as interconnection
network of massively parallel systems for their
simplicity and scalability properties, amongst
others [15, 16].
The rest of this paper is organised as fol-
lows. Important notations, definitions and re-
sults used throughout this paper are recalled
in Section 2. The crossing number of a two-
dimensional k-ary torus is then discussed in
Section 3, and that of a three-dimensional k-
ary torus is discussed in Section 4. Next, an
upper bound on the crossing number of an n-
dimensional k-ary torus is derived in Section
5. Preliminary empirical evaluation of the pro-
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Figure 1. (a) A 2-dimensional 4-ary torus T (2, 4). (b)
A 3-dimensional 3-ary torus T (3, 3).

posed method is conducted with experiments
in Section 6. Finally, this paper is concluded in
Section 7.

2 PRELIMINARIES

We recall in this section several definitions and
notations used throughout this paper. First, the
definition of the torus network topology is re-
called.

Definition 1. An n-dimensional k-ary torus
T (n, k) is an undirected graph whose vertices
consist in the kn n-vectors induced by the set
{0, 1, . . . , k − 1}n. Furthermore, two nodes
u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn)
of a T (n, k) are adjacent if and only if ∃j
(1 ≤ j ≤ n) such that ∀i (1 ≤ i ≤ n, i 6= j)
ui = vi and uj = vj ± 1 (mod k).

A 2-dimensional 4-ary torus T (2, 4) and a 3-
dimensional 3-ary torus T (3, 3) are illustrated
in Figure 1.
Regarding the notations used hereinafter, most
are standard and thus self-explanatory, and the
number of vertices (a.k.a. nodes) and edges of
a graphG are denoted by |G| and ||G||, respec-
tively.
Next, several definitions and results relating to
the crossing number of a graph are recalled.
First and foremost, a point refers hereinafter to
a geometrical coordinate; it should thus not be
confused with a graph vertex. One graph ver-
tex induces one point.
A drawing of a graph G is the representation
of its vertices and edges on a surface (typically,
a plane). It connects vertices with arcs corre-
sponding to the edges of G; the two endpoints

of an arc thus correspond to two adjacent ver-
tices. Regions correspond to the complement
of the union of the arcs (i.e., the points making
the arcs) of a drawing of G.
An embedding of a graph G on a surface S is
a drawing of G on S such that any two arcs
may intersect only at the point corresponding
to the vertex to which they are both incident. If
S is a plane, then the graph induced by such an
embedding is called a plane graph.
A region is a 2-cell if and only if any closed
curve contained by the region can be contin-
uously contracted to a single point. If all the
regions of an embedding are 2-cells, such an
embedding is called a 2-cell embedding.
We can now recall the well-known Euler for-
mula [17] in the below theorem.

Theorem 1 (Euler’s formula). Let G be a con-
nected graph of n vertices, m edges and with a
2-cell embedding of r regions. Then,

n−m+ r = 2

Considering a drawing in the plane of a graph,
a crossing is a point included by exactly two
distinct arcs and that is not an endpoint of both
arcs. A crossing is thus induced by one pair of
arcs. Note that any two distinct arc pairs each
inducing a crossing result into two crossings,
and this even if the two crossings are the same
point in the plane.

Definition 2. The crossing number cr(G) of a
graph G is the minimum number of crossings
amongst the drawings of G in the plane.

Definition 2 directly induces that a graphG sat-
isfies cr(G) = 0 if and only if it is a plane
graph.

3 ON THE CROSSING NUMBER OF A
T (2, k)

In this section, we give a constructive proof
for an upper bound on the crossing number of
cr(T (2, k)). This construction of a T (2, k) in
three steps is illustrated in Figure 2.
First, the corresponding 2-dimensional k-ary
mesh is considered. A mesh is by definition
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Figure 2. Illustrating the proposed T (2, k) construction
method in three steps (1) to (3) with a T (2, 4), inducing
an upper bound on cr(T (2, k)).

a planar graph; it has (k − 1)2 + 1 regions (+1
to count the outside, unbounded region).
Second, the wrap-around edges of one dimen-
sion of the torus are drawn such that they do not
induce any crossing. These k new edges induce
k new regions; the number of regions in the ob-
tained graph is now (k−1)2+1+k. The graph
is indeed still planar as assured by Theorem 1:
k2− [2k(k − 1) + k]+[(k − 1)2 + 1 + k] = 2.
Third, the wrap-around edges of the remain-
ing dimension are added. Each such new edge
crosses at least k− 2 edges and thus induces at
least k − 2 crossings. Therefore, in total, the
minimum number of crossings in such a draw-
ing of a T (2, k) is equal to k(k − 2).

Theorem 2. The crossing number of a T (2, k)
is as follows:

cr(T (2, k)) = k(k − 2)

Proof. We have already given a constructive
proof that shows the relation

cr(T (2, k)) ≤ k(k − 2)

We next show that this upper bound on the
crossing number of T (2, k) is tight.
A T (2, k) torus consists of k rings, each made
of k nodes (i.e., a k-ring). More generally, a
T (2, k) torus consists of k subgraphs that are
each isomorphic to a k-ring. Hence, depending
on the location of the k nodes, zero or more
crossings are induced for each k-ring; refer to
Figure 3a. The nodes of such k-rings can be
connected by going through the inside of the
ring or not (i.e., staying outside of the ring).
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Figure 3. (a) Illustrating the crossings induced by a ring
and a few of its isomorphisms when k = 4: 0, 1, 2
and 3 crossings are induced. (b) Connection of nodes of
different rings.

Areas inside and outside a ring are indicated in
Figure 3a with “I” and “O” letters, respectively.
Except the two nodes at both extremities of the
ring (obviously, this can be any two nodes), it
is necessary so as to connect nodes of distinct
rings to either go through the inside of the ring,
which thus induces at least one crossing with
the ring, or to go through the outside of the
ring, which thus induces at least one crossing
with an edge connecting two nodes of different
rings. See Figure 3b; crossings in both situa-
tions are highlighted in red.
Therefore, given that there are k such rings and
that the previously described crossing situation
occurs at k − 2 nodes on each ring, we can de-
duce that a T (2, k) includes at least k(k − 2)
crossings. This number is obviously increased
if, as shown in Figure 3a, rings themselves in-
clude crossings, or if the rings have some over-
laps.
Finally, if there are r (≥ 0) concentric ring
clusters, say with each ring cluster made of
c1, c2, . . . , cr rings, connection of the nodes of
the innermost rings induces in total at least
(c1 + c2 + . . . + cr)(k − 2) crossings. Hence,
at least k(k − 2) crossings are induced in total
for cluster rings and non-cluster rings.

4 ON THE CROSSING NUMBER OF A
T (3, k)

In this section, we give a constructive proof
for an upper bound on the crossing number
cr(T (3, k)). An illustration of the proposed
T (3, k) drawing method is given in Figure 4.
For convenience, the edges of a sub-torus
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Figure 4. Illustrating the proposed upper bound on cr(T (3, k)) with a T (3, 4). The 1–16 and A–P edges are cut for
disposition matters only; they induce no additional crossing.
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Figure 5. Naming sub-torus edges for the sake of read-
ability.

T (2, k) are named according to four cate-
gories: wrap-around horizontal, wrap-around
vertical, internal horizontal and internal verti-
cal. This naming scheme is detailed in Figure
5.

4.1 T (3, k) construction

Our torus construction approach relies on the
recursive property of a torus; precisely, a
T (n, k) torus consists of k sub-tori T (n−1, k).
Thus, the proposed drawing of a T (3, k) is
based on k drawings of a T (2, k) as per Sec-
tion 3. Hence, the number of crossings in such
a drawing of a T (3, k) is as follows:

cr(T (3, k)) ≤ k · cr(T (2, k)) + α

with α the number of crossings induced by the
edges of the third dimension (a.k.a. the new
edges, i.e., the edges connecting nodes of dif-
ferent sub-tori). It should be noted that even
if the drawing of a T (2, k) as per Section 3 is
optimal with respect to the crossing number,
there is no guarantee that an optimal drawing
of a T (3, k) can be derived from such optimal
T (2, k) drawings. In other words, we have the
relation cr(T (3, k)) ≤ k · cr(T (2, k)) + α as
stated previously, but it remains to be proved
that cr(T (3, k)) = k · cr(T (2, k)) + α holds.
In practice, the proposed construction arranges
the k drawings of sub-tori T (2, k) horizontally
one beside the other. For the sake of clarity,
the third dimension edges (a.k.a. new edges),
drawn in green hereinafter, are categorised as
either IN or OUT edges depending on whether
they connect a vertex from the left (IN edges)
or from the right (OUT edges) of a sub-torus.
Inside each sub-torus T (2, k), the vertices are

classified according to their vertical position y:
a vertex is thus of class y = i with 1 ≤ i ≤ k.
By convention, the class y = 1 specifies the
vertices at the top of the sub-torus.
Depending on the y position of sub-torus
nodes, three cases are distinguished to draw the
third dimension edges.

Case y = 1
This is a special case. The IN edges con-
nect vertices from above such that they do
not cross each other, and avoiding wrap-
around vertical edges as much as possible.
The OUT edges connect vertices from be-
low such that they do not cross each other
when connecting the vertices of the next
sub-torus.

Case 2 ≤ y ≤ k − 1
This is the general case. The IN edges
connect vertices from above such that they
do not cross each other The OUT edges
connect vertices from below such that
they do not cross each other when con-
necting the vertices of the next sub-torus.

Case y = k
This is a special case. The IN edges con-
nect vertices from below such that they do
not cross each other, and avoiding wrap-
around vertical edges as much as possi-
ble. The OUT edges connect vertices from
above such that they do not cross each
other when connecting the vertices of the
next sub-torus.

With such a connection scheme, we are able to
guarantee that the new edges do not cross each
other. In Figure 4, the 1–16 and A–P edges
are cut for disposition matters only; it is easy
to see that they induce no additional crossing
since the 1–16 and A–P edge sequences are in
the same order.

4.2 Counting the number of induced cross-
ings

The objective of this section is to count the
number of crossings induced by the third di-
mension edges, that is calculating the value of



α. We first count such a number of crossings
inside one sub-torus T (2, k), and then multi-
ply this number by k the number of sub-tori to
eventually obtain α.
The number of crossings induced by the third
dimension edges inside one sub-torus is estab-
lished by distinguishing as in Section 4.1 the
three vertex classes y = 1, 2 ≤ y ≤ k − 1 and
y = k. Let #(C) be the number of crossings
induced by the new edges inside one sub-torus
for all the nodes of class C. So, the number
of crossings β induced by the new edges inside
one sub-torus is as follows:

β = #(y = 1)+#(2 ≤ y ≤ k−1)+#(y = k)

Thus, the total number of crossings induced by
the new edges α is as follows:

α = k · β

The counting #(C) for the three vertex classes
C is detailed below. The sums from 1 to k
are used to iterate the horizontal position of
vertices inside the sub-torus. For each vertex
class, the crossing count is realised separately
for the IN and OUT edges.

Calculation of #(y = 1)
The number of crossings induced by the
IN edges:[

k∑
i=1

(k − i)

]
︸ ︷︷ ︸
wrap-around vertical

+ (k − 2)︸ ︷︷ ︸
wrap-around

horizontal

The number of crossings induced by the
OUT edges:

k∑
i=1

(k − i)︸ ︷︷ ︸
internal vertical

Hence,

#(y = 1)

=

[
k∑

i=1

(k − i)

]
+ (k − 2) +

k∑
i=1

(k − i)

= k2 − 2

Calculation of #(2 ≤ y ≤ k − 1)
The number of crossings induced by the
IN edges:

k2︸︷︷︸
wrap-around

vertical

+ (k − 2)︸ ︷︷ ︸
wrap-around

horizontal

+
k∑

i=1

(k − i)︸ ︷︷ ︸
internal vertical

The number of crossings induced by the
OUT edges:

k∑
i=1

(k − i)︸ ︷︷ ︸
internal vertical

Hence,

#(2 ≤ y ≤ k − 1)

= (k − 2)︸ ︷︷ ︸
for each y

in 2≤y≤k−1

·

[
k2 + (k − 2)

+
k∑

i=1

(k − i) +
k∑

i=1

(k − i)

]
= 2k3 − 4k2 − 2k + 4

Calculation of #(y = k)
The number of crossings induced by the
IN edges:

k∑
i=1

(k − i)︸ ︷︷ ︸
wrap-around vertical

The number of crossings induced by the
OUT edges:[

k∑
i=1

(k − i)

]
︸ ︷︷ ︸

internal vertical

+ (k − 2)︸ ︷︷ ︸
wrap-around

horizontal

Hence,

#(y = k)

=
k∑

i=1

(k − i) +
k∑

i=1

(k − i) + (k − 2)

= k2 − 2



As a result, we have

β = 2k3 − 2k2 − 2k

and
α = 2k4 − 2k3 − 2k2

This discussion on an upper bound for
cr(T (3, k)) is summarised in the following
theorem.

Theorem 3. The crossing number of a T (3, k)
satisfies the following relation:

cr(T (3, k)) ≤ 2k4 − k3 − 4k2

Proof. This can be easily derived from the pre-
viously established expression cr(T (3, k)) ≤
k · cr(T (2, k)) + α.

5 DERIVING AN UPPER BOUND ON
THE CROSSING NUMBER OF A
T (n, k)

We advance this discussion by deriving an up-
per bound on the crossing number of a T (n, k)
from the previously established upper bound
on the crossing number of a T (3, k). Providing
a tight estimation is difficult; we proceed sim-
ply as follows and aim at refining the obtained
bound in future works.
Because it is impractical to derive an upper
bound on the crossing number of a T (n, k) by
a method similar to that of Section 4, we de-
rive one as follows: for each n-th dimension
edge (a.k.a. new edge) count amply the maxi-
mum number of crossed edges in one sub-torus
T (n − 1, k), then multiply this number by the
number of n-th dimension edges in one sub-
torus, and finally multiply by the total number
of sub-tori T (n − 1, k). In this approach, we
assume that the n-th dimension edges do not
cross each other. The validity of this assump-
tion is explained later.
In other words, the idea is to maximise the
number of crossings per n-th dimension edge,
and to define recursively an upper bound on
the crossing number of a T (n, k). It should be
noted that in this approach we derive a drawing
of a T (n, k) from several T (n− 1, k) sub-tori,
even though it remains to be proved that the

number of crossings in a T (n, k) is minimal
when reusing T (n−1, k) sub-tori as is. This is
expressed formally below.
First, C the maximum number of crossings in-
duced by n-th dimension edges in a T (n, k) is
defined as follows:

C ≤ k︸︷︷︸
for each
sub-torus

· 2kn−1︸ ︷︷ ︸
for each node
2 new edges

· δ︸︷︷︸
max # of

crossings for
1 new edge

where δ the maximum number of crossings
for one n-th dimension edge in one sub-torus
T (n− 1, k) can be obviously safely defined as

δ = ||T (n− 1, k)|| = (n− 1)kn−1

Therefore, relying on Theorem 3, an upper
bound is recursively deduced as follows:

cr(T (2, k)) ≤ k(k − 2)

cr(T (3, k)) ≤ 2k4 − k3 − 4k2

cr(T (n, k)) ≤ k · cr(T (n− 1, k)) + C
≤ k · cr(T (n− 1, k))

+ 2(n− 1)k2n−1

Regarding the assumption that the n-th dimen-
sion edges do not cross each other, it is indeed
all right to assume so since these edges can be
drawn in a similar fashion as for a T (3, k) as
illustrated in Figure 6. The dimension (i.e.,
value of n) does not matter; as stated in Sec-
tion 4, since we take care to retain the IN and
OUT edge order of the new edges, they can be
connected without additional crossing. So, it is
sound to assume that each n-th dimension edge
crosses at most δ = ||T (n − 1, k)|| = (n −
1)kn−1 edges inside one sub-torus T (n− 1, k).
The above discussion is summarised in the fol-
lowing theorem.

Theorem 4. The crossing number of a T (n, k)
satisfies the following relation:

cr(T (n, k)) ≤ k·cr(T (n−1, k))+2(n−1)k2n−1

6 PRELIMINARY EXPERIMENT

We have conducted a preliminary empirical
evaluation to experimentally validate the pro-
posed method and the corresponding quantita-
tive results.
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Figure 6. Drawing the n-th dimension edges (in green)
so that they do not cross each other. Several edges are
abbreviated for clarity.

To this end, we have implemented a function
that calculates the minimum number of cross-
ings in a graph given a natural number g that
defines a g × g square grid. This grid is used
for the repartition of graph vertices. The larger
the value of g, the higher number of possible
graph drawings. Because this parameter g can
be infinitely large, it suffices to avoid consid-
ering curved edges (i.e., edges are drawn with
straight lines only).
The initial implementation of this function sat-
isfies total correctness as, given a g, it pro-
cesses each of all the grid position permuta-
tions, one by one, each vertex being assigned
to one such grid position. Since the number of
permutations is obviously finite, this program
eventually terminates, returning the minimum
number of crossings found. Yet, this exhaus-
tive approach takes much time and becomes
rapidly impracticable as the order of the input
graph increases. Hence, we have relied for this
experiment on a second implementation, this
time satisfying only partial correctness, that in-
stead of going through all the grid position per-
mutations processes random ones. The algo-
rithm terminates if a graph drawing with no
crossing is found, but in practice, the interme-
diary values of the minimum number of cross-
ings are used as experimental data. The results
of this experiment are measured as follows:
if the current number of crossings is smaller
than the previously stored number of crossings,
the former replaces the latter, and this value is
output together with the total time taken until
finding the corresponding graph drawing. The

Table 1. The minimum number of crossings in a T (2, 3)
as obtained from the experimentation.

Elapsed time Minimum number
(in seconds) of crossings

0 40
0.001 23
0.002 17
0.003 15

g = 5 0.004 14
0.005 12
0.007 10
0.015 4
1.496 3

pseudo-code of this function is given in Algo-
rithm 1.

Algorithm 1 randomized(g, n, k)

Input: The grid side g, a dimension n and an arity k,
inducing a T (n, k).
p← (0 1 2 . . . g2 − 1) // initial vertex positioning
a← +∞ // result accumulator
while a > 0 do

Coord2D coords[kn] // coordinate from position index
for i← 0 to kn − 1 do

coords[i]← (bpi/gc, pi mod g)
end for
c← crossings(coords) // get the number of crossings
if c < a then

a← c
print c // the current minimum number of crossings

end if
p← shuffle p

end while

First, the results obtained in the case of a 2-
dimensional 3-ary torus T (2, 3) are given in
Table 1. The crossing number as established in
Theorem 2, that is 3, is obtained in this experi-
ment as well (the program lastly outputs 3, and
continues to search for a smaller crossing num-
ber, which exists not as proven), thus experi-
mentally confirming Theorem 2 for a T (2, 3).
Second, the experimental results obtained in
the cases of a T (2, 4) and of a T (3, 3) are re-
spectively given in Figures 7 and 8. The up-
per bound on the crossing number as calculated
from the proposed method is also plotted for
reference (labelled “proposed”). In one plot,
the results obtained with several grid sizes (i.e.,
different values of g) are given.
As plotted, the theoretical upper bound on the
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Figure 7. The minimum number of crossings in a
T (2, 4) as obtained from experimentation.
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Figure 8. The minimum number of crossings in a
T (3, 3) as obtained from experimentation.

crossing number of a T (2, 4) is 8, and that of
a T (3, 3) is 99. Hence, the obtained empiri-
cal results show that our constructive proof of
a torus provides a non-trivial upper bound on
the crossing number of a torus as experimen-
tally considering random graph drawings tends
towards, but remains at some distance from,
these established upper bounds (and the cor-
responding drawings). Besides, it can also be
noticed especially on Figure 8 that the size of
the grid used to draw graphs ought to be care-
fully devised: it should be neither too small,
in which case the graph vertex arrangement
granularity would be too big, nor too large, in
which case the running time required would
explode due to the increased number of pos-
sible vertex repartitions.

7 CONCLUSIONS

Finding the crossing number of a graph is a
problem which has important applications in
domains such as circuit design (VLSI) and

graph visualisation. Deriving a general so-
lution to this problem has been shown to be
NP-hard. Hence, solutions are given for spe-
cific classes of graphs. In this paper, we fo-
cus on tori for that they are very popular as
interconnection network of massively parallel
systems. We have first derived an optimal up-
per bound on the crossing number of a two-
dimensional k-ary torus. Then, we have ex-
tended this discussion to obtain an upper bound
on the crossing number of a three-dimensional
k-ary torus. Precisely, we have shown that
cr(T (3, k)) the crossing number of a T (3, k)
satisfies cr(T (3, k)) ≤ 2k4 − k3 − 4k2. Fi-
nally, we have derived from these results an
upper bound on the crossing number of a k-
ary n-dimensional torus. Precisely, we have
shown that cr(T (n, k)) the crossing number of
a T (n, k) satisfies cr(T (n, k)) ≤ k · cr(T (n−
1, k)) + 2(n − 1)k2n−1. The proposed bounds
and the corresponding drawing methods have
been empirically evaluated with several exper-
iments involving the automatic calculation of
the crossing number of system-generated torus
drawings.
Regarding future works, the refining of the pro-
posed upper bounds is one meaningful objec-
tive. In addition, improving the efficiency of
the algorithm used for the experiment is an-
other interesting work as it could lead to even
more assertive results regarding the established
upper bounds.
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