
RealPi - A Real Time Operating System on the Raspberry

Pi

Samuel Delaney, Dwight Egbert, and Frederick C. Harris, Jr.

Department of Computer Science and Engineering,
University of Nevada Reno, NV 89557, USA

delaney.samuel@gmail.com egbert@cse.unr.edu fred.harris@cse.unr.edu

Abstract

Academia has always sought to ride the line between established thought and new
developments. No much more so than in the terms of technology. Universities seek to
teach using known and proven methods and resources but also stay relevant with new
technologies to provide students the knowledge they will need to be competitive in the
work place or graduate field. In this work we will present how the University of Nevada
approaches this problem with its Real Time Operating system course. Namely on how
using the established Micro C/OS II Real time Operating System with the new builder
phenomena the Raspberry Pi we can overcome the challenge of updating a tried and true
lesson plan in order to use technology relevant and interesting to the students of today.

1 Introduction

All Computer Science and Computer Engineering disciples have encountered the “real time”
catchphrase at least once in their career. Whether that experience equates to a simple buzz
word or a fundamental understanding is beyond the scope of this article but none the less the
concept has a claim to key concepts in the computing world.

As technology has advanced and computers become faster and more efficient they allow us
more room to error in our programming and still produce acceptable response times. Even the
most observant user will be unable to distinguish the difference of execution time measured in
a few clock cycles. However, as students continue to develop their programming expertise they
will encounter problems were devices are stripped to bare essentials to keep costs down but still
expect timely program execution. This is the realm of the traditional Real Time Operating
System course.

At the University of Nevada, Reno (UNR), students are introduced to the basic funda-
mentals of Real Time computing and how a real time operating system operates within those
fundamentals. To facilitate the process the Micro cOS II Operating system is used for its scal-
ability, availability and robust functionality. Miciruium also provides text books written by
the designer of the Micro cOS II Operating System which are used by the students. Included
with the text books are example programs written by Jean Jacques displaying the functionality
and features of his Operating System. It is using these examples that UNR students begin to
understand the underlying mechanisms that go into a real time operating system.

But as time heals all wounds it also destroys all circuitry. For many years students in
Real Time would use the 8051 micro-controller as the development platform for their course
work. Students today need a processor more in line with the products that today’s software
development companies are utilizing and the Raspberry Pi is such a platform. Utilizing the Pi
hardware but still maintaining the ease of use offered by the 8051 lead to the main focus of this
work and will enable students to run the same simple real time operating examples provided
by Jean Jacques but on a board that will stay pace with them their academic careers.



RealPi Delaney, Egbert, and Harris

To best convey this process from idea to working project, this work will be broken out
as follows: Section 2 will introduce background concepts and other related work. Section 3
will cover the hardware utilized and provide a high level view of specific critical components.
Section 4 will shift focus from hardware to software and the actually porting of the Micro cOS
II Operating system utilizing a starting code base provided from GitHub [4], and Section 5 will
provide a summary of lead into future work.

2 Background and Related Work

Whole courses are spent covering the basic topics in Operating Systems. In this paper we must
assume that the reader has basic knowledge of Operating Systems including kernel’s schedulers,
context switching and multitasking.

For a system to be classified as real-time it must follow a simple rule: Any task must be
completed and correct before its deadline is hit. It seems that if this is all that is required
that almost every computer is running in real-time. Everyday users open their email, play
video games, and run other applications without issue or users walking away in frustration as
they never complete the task but the fact is that there is no guarantee that any of these tasks
will complete in a set time constraint. Browsers may take time to load waiting for resources
to become available, a system with many other applications may not prioritize the latest task
resulting in longer compute times. This lack of a guaranteed result in a set time prevents system
from being considered real-time.

Perhaps the best example of a real-time system is the pacemaker. One of the methods a
pacemaker may use to regulate heart rate is that of Bi-ventricular Pacing to treat Congestive
Heart Failure. In a healthy heart the left ventricle will receive an electrical pulse to compress
the chamber, and the right ventricle will receive a pulse as well in order to contract in unison.
In a patient suffering from Congestive Heart Failure however the right ventricle either receives
a delayed or absent pulse preventing the heart from pumping in unison. When the ventricles
fail to pump in unison the rate of blood flow becomes compromised leaving the patient at risk
of death or disability. With the use of a pacemaker configured to use Bi-ventricular pacing an
embedded device will detect the pulse in the left ventricle and then within milliseconds send a
pulse to the right ventricle to cause it to contract. In this system there is essentially one task:
When a pulse is detected send a pulse. The deadline for this task is configured by the doctors
assessing the patient but it will be under second in time. Its readily apparent that this is a
real time system as the pacemaker will always send a pulse, completing the task, before the
deadline is approached. If it does not the consequences are catastrophic.

A real-time operating system servers as a facilitator for real-time applications by using an
advanced scheduler that ensures the most important task is giving priority in execution time.
There are different methods in how this scheduler approaches executions of tasks.

A few of the most prevalent types of scheduling algorithms found in a RTOS are cooperative
scheduling, preemptive scheduling, and earliest deadline first scheduling. Despite the algorithm
that is implemented an RTOS requires that this scheduler not run into a situation where it can
become starved for jobs or resource hogging. As a result most scheduling algorithms in real
time systems are highly advanced and are key components of the system.

The main real time operating system that this paper will focus on is the MicroC/OS-II The
Real Time Kernel. While it has been replaced commercially by a new version MicroC/OS-III
version II still remains a main stay choice. Part of this viability is no doubt due to its free
licensing for personal or educational use, but MicroC/OS-II has other key features that appeal
to hobbyists and large developers alike. First of these features is the scalability of the OS, by

2



RealPi Delaney, Egbert, and Harris

scalability it means that the developer can choose what features to build into the kernel and
leave out unused modules keeping the kernel size as small as possible. This is also known as
avoiding bloat or space dedicated to programs that are never used. For scheduling MicroC/OS-
II uses a preemptive scheduler so all context switching is performed by the OS itself. In addition
to being preemptive it is also deterministic ensuring that all tasks will be completed on time
and correctly [6].

The concept of running a Real Time Operating System on the Raspberry Pi has been
milling around on many INTERNET forums since the Raspberry Pi was released. The project
of porting an RTOS to the Raspberry Pi had been discussed though most users found that
through virtualization of the RTOS that the performance was within the threshold needed
for the hobbyist. Most predominate of these virtualizations was FreeRTOS. FreeRTOS is a
real time operating system offered as an open source and free RTOS solution for a multitude
of processors. Built as a collaboration effort from leading chip companies and possessing a
small foot print, the OS has found wide spread use through out the industry, with a significant
presence in the micro-controller market. For this reason alone it makes sense that this would
be an entry point for having a RTOS running on the Raspberry Pi and to date is the most
complete ported RTOS available for the Raspberry Pi [3].

3 Hardware

While Real Time Operating systems differ greatly from their bigger more well known counter
parts the hardware used is essentially the same. Porting software is simply the task of writing
the interface code that will allow the software to use the hardware. In cases of embedded
systems this file is sometimes referred to as the board support package file or BSP file.

While computer enthusiasts have been readily abundant since the first do it yourself com-
puters were released in the early 70s, the initial cost was ever on the rise. In response to this
absence of a low cost all in one computer the Raspberry Pi was developed. Developed in the
United Kingdom by the Raspberry Pi foundation, the main goal of the Pi was to create a cost
effective platform to teach children Computer Science. By providing an all in one board which
only requires a SD card, monitor, input device to run it was a practical and affordable device.

Another appeal of the Pi is that it is almost unbrickable or it is unable to be programmed in
such a way that it will never run correctly again. The Pi was built with a key feature in mind
that students and hobbyists and even professional programmers make mistakes in the programs
they write, by having no Read Only Memory this prevents the user from flashing firmware that
might turn the Pi into an inoperable board. Another appealing factor is the small power draw
from the device as it can be powered by a usb port from another computer or from a small 5v
charger [2]. A picture of the Pi we used can be seen in Figure 1

4 Implementation

4.1 Tool chain

Before we can delve into the workings of the Raspberry Pi and Micro C/OS-II we need to be able
to convert our source files into a language that the Raspberry Pi can use. This is accomplished
through the use of a tool chain. A tool chain, like it’s namesake, is a group of tools, in our case
programs, that when linked or grouped together create a software program. One of the most
prevalent examples tool chain use is the Integrated Development Environment or IDE. Most

3



RealPi Delaney, Egbert, and Harris

Figure 1: Pi 1 Hardware

IDEs like Microsoft’s Visual Studio provide the ability to edit code, compile and link objects.
The more advanced of these tool-chains build “hooks” into the developers programs that allow
on the fly debugging. It is worth to note however that not all IDEs provide all these features
and may only provide subsets of the previous mentioned capabilities.

As the Raspberry Pi is a minimalist computer which is marketed as a cost effective tinker/de-
velopment platform, it makes sense to use a minimalist approach to develop our software. As
such for the toolkit used in this project we will be using readily available freeware. The free
tool-chain that does all the steps and works on the processor we need is called Yagarto.

The Yagarto Tool-chain was developed in 2006 to allow hobbyists and other individuals a
free way to compile and deploy ARM based programs. Until Yagarto was developed there were
very few Windows applications that could compile ARM based programs without either being
very expensive or so difficult to work with that development was hindered. To address this issue
Yagarto was created and considered feature compete five years later. Since it’s development new
tool-chains and IDE’s have been developed to deploy ARM programs however the simplicity of
use and proven track record keep Yagarto a stable of ARM hobbyists [9].

4.2 Making the Kernel

The Yagarto tool-chain uses the GCC compiler, basically allowing us to use C++, to build
and link objects which are then packaged into a Kernel image based on the ARM architecture

4



RealPi Delaney, Egbert, and Harris

specified in our make file. While Yagarto will provide us that ARM kernel shell, without the
specific operating system code it is not enough to run the processor much less a full board. To
actually allow the target board, in our case the Pi, to run we need to provide the operating
system itself.

Micro c/OS-II, while aged, was still written with the concept that operating systems should
not have specific hardware dependencies. As such we are able to use the source code as is from
the developer Micurium. This is a huge boon as any changes made to the Micro c/OS-II code
would prompt significant testing changes to ensure we didn’t accidentally alter functionality.
However, we are not able to simply drop in the code and hit run. There are two other key
components that we need to address to bridge the gap from our high level source code to the
low level assembly that drives the hardware. Specifically the board support package or bsp and
the port of the OS CPU file. It is these two parts that will allow our software the knowledge
it needs about the hardware to fully utilize the device. However, we need to eat this elephant
one bite at a time and the board support package and cpu port will be discussed once we are
further along in the process.

Early Goals Before bumping into the unknown blindly we set out to see if any Pi Enthusiasts
or those in Academia had dabbled with the MicroC/OS-II system and could provide any ground
work to build off of. During this research we found two projects that would benefit us greatly.
The first was a bare metal programming of the Raspberry Pi to run simple tasks written by
a developer named Dave Welch [8]. The term bare metal has many meanings to many people
so we should clarify that in this context it is the most simple programming of a device we
can do; very reminiscent of the old paper programs where we need to tell the device how to
everything from storing data to turning LEDs on and off. Mr Welch’s simple programs however
were critical in development as it provided the memory map that would allow me to access
the hardware components on the Pi. Remember the Board Support Package we mentioned
earlier? The memory addresses provided by Mr Welch were essential in building the BSP as
they provided all the memory address and simple calls that could be used to access the hardware
on the Raspberry Pi. The second project was found on GitHub developed by Weng Kai which
allowed a basic port of the Micro C/OS-II operating system to the original Raspberry Pi [4].
With his port we were able to see how he structured the build in order to utilize the Yagarto
tool-chain in a user friendly manner and also create a build directory that wouldn’t confuse
entry level programmers. It also provided us with a safe starting point for our build.

The first step to build a working prototype was simply to ensure an SD Card with the Micro
C/OS-II image would boot and begin execution of Mr Kai’s simple program. This step could
best be described as merely merging two projects into one, as the memory map provided from
Dave Welch’s Bare Metal programming as was able to create the start up sequence that would
boot the Pi and then simply point to the task switching program written by Mr Kai. As all
things go, this turned out to be slightly more difficult than expected. The first issue to arise
was that the code provided by Mr Kai, wasn’t complete. The main working parts were there
but upon the first attempt to build the amount of declaration errors was significant. This of
course required the tedious task of ensuring all C++ and header files were linking appropriately
and also modernizing some of the data types used throughout the program. All understandable
as this original code was written in 2005. With this complete we can move to the next step:
addressing the issue of creating a CPU port.

CPU Port The CPU port itself is relatively simple in relation to our goals as we are mainly
concerned with two things, the Stack and the Registers. These two components are essentially

5



RealPi Delaney, Egbert, and Harris

the life blood of the project and are needed to perform any form of context switching. While
a true port of a CPU would be a massive en-devour encompassing all aspects of the CPU our
port only requires from us the where and how to do the context switching. This all takes place
over two files. One file is a C++ file that is simply providing the memory location for the Stack.
The memory locations used are the same ones provided by all ARM ports used by Micerium.
The other file is an assembler source file and requires us to actually think as it is a bit more
difficult. We now must tell the CPU how to to perform the context switching tasks using the
stack we specified in our C file. We will take solace in the fact that we really only need to
handle five aspects: 1) Storing the current working registers 2) Save our state 3) Handle an
interrupt 4) Load a new state 5) Load new working registers

Utilizing other ports provided by Micerium we can see that each port essentially performs
the same functions in context switching, it’s just a matter of syntax. It’s essentially just a matter
of ensuring your compiler understands the assembly language you are using. For example, if a
function’s intent it to put this value in register 2, we simply need to write the corresponding
assembly for our compiler to take a value and place it in register 2.

With what essentially amounted to code house keeping complete we were able to build a
kernel that would boot from the microSD card and start Micro C/OS II with two tasks. These
tasks would simply write “Task 1” and “Task 2” back and forth as each interrupt was triggered
but again the goal here was to have something that worked and we could go back to when it
stopped working. Now our goal was to move from two simple tasks interrupting one another to
examples provided to the students.

4.3 Micro C/OS-II examples

The textbook Micro C/OS II, the Real Time Kernel by Jean Lebrasse [5] has five examples
that display the more predominant features of the Micro C/OS II operating system. Students
compile and run these samples with minor modifications to understand the basics of the OS.
However, the programs were meant to be compiled with a Borland 4.5 compiler and run on a
system executing the DOS operating system, not a Raspberry Pi

To port these examples the following objectives were identified: Remove DOS entry and
return protocols, remove and replace Borland specific functionality with gcc functionality and
remove screen video display with serial port communications.

With the examples modified to remove all DOS references, Borland dependencies and in-
formation being passed through the serial port we are now able to move the software into our
kernel image. The easiest way to create our bootable SD card with our kernel is to inject our
kernel into a prebuilt bootable SD card. To do this we need to download the Raspbian OS from
the Raspberry Pi Organization website [2]. With OS in hand we can utilize a SD writing tool
to burn the Raspbian OS to the SD card.

With the kernel in place we now have a complete OS and as a sense of poetic irony the
fanfare of running is as subtle as the OS itself. As the Pi has no native display we will rely
on a host PC to run the Putty [7] Serial application so we can see our tasks executing. Putty
Configuration can be seen in Figure 2. Using a serial to GPIO cable attached to both the Pi
and our host PC we need only to apply power to the Pi and let the program run. By observing
the Putty terminal we will shortly see the application begin to populate the terminal window
with a graphical output and run the loaded project. The build of the kernel can be seen in
Figure 3, and the output of a running example can be seen in Figure 4.

6



RealPi Delaney, Egbert, and Harris

Figure 2: Sample Putty Configuration

Figure 3: A successful build output

4.4 Running Micro C/OS-II on the Pi

A complete description of the process with more details including step by step instructions
can be found in the appendix of [1]. The source code for this project can be found at https:

//github.com/samj3sus/Real-Pi.

5 Conclusions and Future Work

5.1 Conclusions

This work provided a look into how exposing students to new hardware but teaching thoroughly
tested and reviewed software methodology we can both educate and motivate hand in hand.

7

https://github.com/samj3sus/Real-Pi
https://github.com/samj3sus/Real-Pi


RealPi Delaney, Egbert, and Harris

Figure 4: Running Example

We started by assembling all the components necessary to build our program. Preliminary
research assisted us with the establishment of a simple working prototype. From there we
assembled the tools needed to build a bootable kernel that could be used in the Raspberry
Pi. Key to all of this was keeping students and their needs in mind. Aside from the board
itself nothing in this project had to be purchased. Starting with simple freeware programs we
were able to construct a tool-chain that would build a working kernel. Under the education
license we could access all the components of the uCOS-II software for use. Finally with a few
modifications this build could be converted to work in the Linux operating environment.

With the tools assembled we then focused on modifying our code to work with the Raspberry
Pi hardware and CPU. Utilizing other ports as a guide, the build of the stack was complete and
our program had access to the hardware components needed to run a simple program. From a
working simple program we then added the working examples provided from Micrium.

Finally, with ported software we were able to assemble a bootable SD card that would
run a Raspberry Pi that would provide a host PC running a Putty terminal our graphical
interface that mirrored the DOS version identically. With the port complete the hope is to
allow University students to build their knowledge and understanding of Real Time Operating
systems on a system that will grow with them as they progress through their undergraduate
careers.

5.2 Future Work

During the development of this project the Raspberry Pi foundation certainly did not rest on
its laurels. With the growth of the home brew programming niche and with increasing demand
for better boards new versions of the Raspberry Pi were released every few months. Foremost
of these was the Pi Zero, a compact and cheap reproduction of the original Pi but with built in
Wifi. With no significant changes to the CPU no changes were required to run the current port
of the Micro cOS II RTOS. For cost purposes and sheer novelty of the power to size ratio, the
Pi Zero will most likely be the candidate for students to utilize during a Real Time Operating
Systems Course.

While the new Raspberry Pi Zero provides a cost efficient board with full capabilities to
meet the requirements for the Real Time Operating Course, there is still work that could be

8



RealPi Delaney, Egbert, and Harris

accomplished. The Pi 3 provides a 64 bit processor and even more ram than the Pi or Pi 2.
However, of interesting note is that the Pi 3 does not natively run in a 64 bit environment
even though it utilizes a 64 bit processor. Work has already begun amongst tinkerers in the
community to fix this issue and we do believe that it would prove a challenge for another
graduate student to see what performance enhancements could be gained by running uCOS-II
natively in a 64 bit environment.

Another limitation found during the development of this project was the direct writing to
the frame buffer pixels. With the development of “hats” - small boards that attach directly
to the pi, usually with LCD displays - it would be a great enhancement to develop a graphics
library and BSP to replace the serial communications and allow the Pi to operate completely
independently. In addition to the video port, many of the other internal hardware components
were not added to the bsp as they were not needed. Future work could implement these
devices and allow the uCOS-II tasks to operate them and build real applications for academia
or industry. The functionality of the Raspberry Pi was barely tapped in this project, and as a
working base the sky is truly the limit for future projects to build upon.

Acknowledgments

This material is based in part upon work supported by the National Science Foundation under
grant number IIA- 1301726. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] Samuel Francis Delaney. RealPi - A Real Time Operating System on the Raspberry Pi. Master’s
thesis, University of Nevada, Reno, Reno, NV, 89557, USA, December 2018. https://www.cse.

unr.edu/~fredh/papers/thesis/075-delaney/thesis.pdf.

[2] Raspberry Pi Foundation. Raspberry Pi, Last accessed Mar 2017. https://www.raspberrypi.org/.

[3] FreeRTOS. FreeRTOS, Last accessed Mar 2017. https://www.freertos.org/.

[4] Weng Kai. Github, 2013. https://github.com/fmlab/ucos_RaspberryPi.

[5] Jean Labrosse. MicroC OS II: The Real Time Kernel. Focal Press, Burlington, MA, second edition,
2015.

[6] Micrium. Micrium embedded software, Last accessed Mar 2017. https://www.micrium.com/rtos/
kernels/.

[7] Simon Tatham. Download PuTTY, Last accessed Nov 2018. https://www.putty.org/.

[8] David Welch. Github, 2016. https://github.com/dwelch67/raspberrypi.

[9] Yagarto. Yagarto, Last accessed Mar 2017. http://www.yagarto.org/.

9

https://www.cse.unr.edu/~fredh/papers/thesis/075-delaney/thesis.pdf
https://www.cse.unr.edu/~fredh/papers/thesis/075-delaney/thesis.pdf
https://www.raspberrypi.org/
https://www.freertos.org/
https://github.com/fmlab/ucos_RaspberryPi
https://www.micrium.com/rtos/kernels/
https://www.micrium.com/rtos/kernels/
https://www.putty.org/
https://github.com/dwelch67/raspberrypi
http://www.yagarto.org/

	Introduction
	Background and Related Work
	Hardware
	Implementation
	Tool chain
	Making the Kernel
	Micro C/OS-II examples
	Running Micro C/OS-II on the Pi

	Conclusions and Future Work
	Conclusions
	Future Work

	Acknowledgements
	References

