
Data Imputation with an Improved Robust and
Sparse Fuzzy K-Means Algorithm

Connor Scully-Allison†, Rui Wu§, Sergiu M. Dascalu†, Lee Barford†‡, Frederick C Harris, Jr.†

†Dept. of Computer Science and Engineering §Dept. of Computer Science ‡Keysight Laboratories
University of Nevada, Reno East Carolina University Keysight Technologies

Reno, NV Greenville, NC Reno, NV

cscully-allison@nevada.unr.edu, {dascalus,fred.harris}@cse.unr.edu, wur18@ecu.edu, lee.barford@ieee.org

Abstract—Missing data may be one of the biggest problems
hindering modern research science. It occurs frequently, for
various reasons, and slows down crucial data analytics required
to answer important questions related to global issues like
climate change and water management. The modern answer to
this problem of missing data is data imputation. Specifically,
data imputation with advanced machine learning techniques.
Unfortunately, an approach with demonstrable success for ac-
curate imputation, Fuzzy K-Means Clustering, is famously slow
compared to other algorithms. This paper aims to remedy this
foible of such a promising method by proposing a Robust and
Sparse Fuzzy K-Means algorithm that operates on multiple
GPUs. We demonstrate the effectiveness of our implementation
with multiple experiments, clustering real environmental sensor
data. These experiments show that the our improved multi-GPU
implementation is significantly faster than sequential implemen-
tations with 185 times speedup over 8 GPUs. Experiments also
indicated greater than 300x increase in throughput with 8 GPUs
and 95% efficiency with two GPUs compared to one.

I. INTRODUCTION

With any dataset collected in large volumes and at high ve-
locities, missing data will occur. For the Nevada Research Data
Center(NRDC), a Nevada-based data management center, the
occurrence of missing data can be frustrating.[1] Data holes
hinder data analytics by reducing usable data. Oftentimes, en-
tire rows of downloaded measurements are thrown out by data
users to simplify pre-processing. Any loss or lack of usable
data slows down research being done by various institutions
on issues like water conservation and global warming. This, in
turn, reduces the production of actionable intelligence which
can be used to drive institutional policies on these matters.

Myriad phenomena can poke holes in otherwise valid
datasets, and can result in long sequential strings of missing
data. When a large series of data points goes missing, it makes
data repair that much harder than if scattered holes were found.
Specifically, sequences of missing data preclude the use of
intuitive varieties of data imputation, like interpolation. With
interpolation, a singular hole in time series data can be filled
by finding the mean between the preceding and following data
points and inserting that value. While not foolproof, methods
like this can be simple and effective, however, they start to
fail as the gaps between known data points get wider.

To surmount this problem more advanced imputation tech-
niques are required. Many approaches exist to accurately fill
data holes, however one of the most effective techniques comes
from the domain unsupervised machine learning: clustering,
specifically Fuzzy K-Means (FKM) clustering. [2] By using
multivariate data from other sites and sensors, a missing value
can be assigned into multiple clusters with similar values
according to the similarity of other values, or “features”,
collected at the missing timestamp. Even in the occurrence
of large strings of missing data points, accurate clustering is
still possible and provides sufficient contextual information for
imputing data.

This method comes with a downside however. Fuzzy K
Means clustering is a notoriously slow algorithm, especially
when compared with other common imputation methods [2].
FKM often requires hundreds of iterations of tens of thousands
of euclidean distance comparisons. If naively implemented,
this algorithm can take hours to separate 40,000 vectors of
floating point measurements into meaningful groups.

To address this, we propose to leverage the power of GPUs
to enable the massive concurrent processing of embarrassingly
parallel distance and optimization calculations used by FKM
Clustering. Specifically, this paper proposes modifications to a
specific Fuzzy K Means algorithm, called “Robust and Sparse
Fuzzy K Means”. This algorithm ensures that robust and
accurate clustering occurs with any number of GPUs. This
paper shows that our proposed improved Robust and Sparse
Fuzzy K-Means (iRSFKM) algorithm provides accuracy results
sufficient for the imputation needs of the NRDC with up
to 180x speedup over an optimized implementation of the
original.

The remainder of this paper is organized as follows: Sec-
tion II describes the background of data imputation, FKM
clustering, and the use of GPUs in these domains. Section
II also describes in more significant detail the background
required to understand the RSFKM algorithm which this paper
modifies. Section III describes the details of implementing
and adapting the RSFKM algorithm to one GPU and multiple
GPUs. Section IV outlines the experiments run and results
which validate the iRSFKM implementation on one GPU and



multiple GPUs. Section V concludes the paper and outlines
avenues and opportunities for future research based on this
work.

II. BACKGROUND RELATED WORKS

“Missing data imputation” describes the process of filling
in holes that occur in sufficiently large data sets [3]. To
ensure valid statistical analyses with a dataset these holes must
be filled with accurate estimations of “ground truth” values.
Although many simple and effective statistical imputation
methods exist, like K Nearest Neighbors which takes a simple
mean of “closely related” data points [4], not every dataset
is as sympathetic to these approaches as others. Accordingly,
when choosing approaches to data imputation, multiple factors
must be considered. The randomness of missing data and the
structure of the dataset being imputed are a few examples of
this.

The work of Schmitt et. al. explores these factors in
detail with a comparative analysis of six common methods
of data imputation [2]. In this paper, the authors compare
the imputation methods of a simple Mean, KNN, fuzzy K-
means, singular value decomposition (SVD), Bayesian prin-
cipal component analysis (bPCA) and multiple imputations
by chained equations (MICE). Using a quantitative analysis
gauging the accuracy of imputed data on multiple benchmark
data sets, the authors largely concluded that – for both large
and small datasets – FKM provided accurate results at the
cost of a very poor execution time. This trade-off indicates
a clear opportunity for optimization with the aid of modern
GPU programming techniques.

Fuzzy K-Means clustering algorithms are modifications of
traditional K-Means clustering. These algorithms exploit fuzzy
set theory to define membership as a percentage allowing for
a data point to have membership in multiple clusters [5]. This
approach to clustering has proven to be very effective for
applications in the domains of computer vision and pattern
recognition [6], [7]. Data imputation as an application of FKM
has been explored by many authors [8], [9], but in the recent
past, ”pure” FKM approached to Data Imputation fallen out
of vogue, yielding to hybrid approaches with other machine
learning techniques [10], [11]. Accordingly, there currently
exists a research gap in the area of utilizing a standalone FKM
algorithm for Data Imputation.

Finally, the concept of leveraging GPUs to accelerate the
time consuming process of clustering is not a new one. A
handful of publications have been produced exploring how
best GPUs can be leveraged for clustering. However, many of
these publications are now outdated [12], [13], having been
released very shortly after the introduction of NVIDIA’s GPU
processing framework, CUDA. Accordingly, they do not reflect
significant changes to GPU hardware and software. Changes
which certainly affect the structure of proposed algorithms and
implementations. Additionally, more prominent contemporary
articles do not consider applications of data imputation and,
more importantly, do not create Multi-GPU implementations
of their algorithms [14]. We assert that the inclusion of

Multiple GPUs is a substantial contribution of this paper over
prior work.

A. Fuzzy K Means

The traditional approach to Fuzzy K-Means, as introduced
by Dunn[5], is relatively simple. A set X of n objects can be
grouped into c clusters with membership coefficients U defined
by centroids in matrix V with the following algorithm:

while Not Converge do
Compute centroids V via (1)
Compute coefficients of memberships for U via (2)

end while
The equations referenced in the above algorithm follow here

with a brief explination:

vk =

∑
x wk(x)

mx∑
x wk(x)m

(1)

n∑
i=1

c∑
j=1

uij =
1∑c

k=1 (
‖xi−vj‖
‖xi−vk‖ )

2
m−1

(2)

uij in the above equation describes a specific cell of
membership matrix U which defines the membership of object
xi in centroid vj .

B. Robust and Sparse Fuzzy K-Means

The fundamental algorithm modified and used in this work
is derived from Xu et. al. [15]. This algorithm, called “Ro-
bust and Sparse Fuzzy K-Means Clustering,” makes several
adjustments to traditional Fuzzy K Means Algorithms to
enforce “robustness” and “sparsity” of the clustering. In this
context, “robustness” refers to a characteristic of centroids
which mitigates outlier influence in updating their mean value.
“Sparsity” refers to a cluster’s membership characteristics. A
membership vector is sparse if a data point is wholly a member
of only one cluster and no others. It is the authors’ assertion
that there exists an optimal sparsity for each data point where
it belongs to a few clusters but not others.

The algorithm proposed by Xu et. al. modifies the core FKM
algorithm expressed above with the modification of equations
(1) and (2). Several supplementary equations were also in-
troduced by the authors of this paper to enforce robustness
and sparsity. The following equations replaces (2) and (1),
respectively:

min
ui1=1,
ui≥0

‖ui − h̃i‖22 (3)

This equation optimizes membership for a value denoted
by row ui, where 1 ≤ i ≤ n, and n is the number of rows
in our data matrix. Equation (3) is a wholly independent sub
problem for each line. So with n values this minimization
can be performed entirely in parallel with n cores. h̃i is an
auxiliary variable used to enforce sparsity that is stored in an
auxiliary H matrix. The next equation updates the centroids
and replaces (1):



vk =

∑n
i=1 sikuikxi∑n
i=1 sikuik

(4)

sik in this equation is an auxiliary variable which enforces
robustness. If a euclidean distance between a centroid and
data vector is within a user defined threshold then sik will be
defined as the reciprocal of that distance, which reduces the
weight of farther points. If its outside the threshold then sik
will be defined as 0. This prevents outliers from influencing
centroid updates. uik describes the membership percentage
of data vector i in cluster k, and xi describes data vector
i out of n values being clustered. As many calculations in
this algorithm require numerous auxiliary matrices and sum
reductions plentiful opportunities for parallelization could be
found.

C. Imputation Method

Data imputation with Fuzzy K-Means algorithms is rela-
tively simplistic. After all data objects have been clustered, a
missing data value j for a specific data vector xi can be filled
in with the following equation [8]:

xi,j =

V∑
k=1

U(xi, vk) ∗ vk,j (5)

To explain this formula in greater detail, U(xi, vk) describes
a membership value for a particular vector xi in a cluster vk.
This value between, 0 and 1, can be used as a weight to scale
how much a given centroid k should influence the sum which
yields our missing value. The sum itself is the summation
of the value at feature j in each centroid. With the weights,
this should accurately place our missing value between all
centroids of which it has some membership, this should also
accurately reflect it’s true value.

III. METHODS

Four iterations of the improved RSFKM algorithm were
implemented for experimentation and analysis. First, a stan-
dard CPU implementation of the RSFKM was implemented
using a generic solver for equation (3). This implementation
was developed to provide a clear baseline of the existing
algorithm for timing purposes. Next, the sequential CPU-
only implementation was optimized with the introduction of
library free convex optimizer in lieu of the generic solver.
From there, a single GPU implementation was introduced
and optimized for speed and overhead efficiency. Finally, to
account for restrictions on GPU memory and produce more
consistent results, a multi-GPU iteration of this software was
implemented.

A. Convex Optimization

In the work by Xu et. al., the authors reference the use of
”the technique” utilized by Huang et. al. [16] to solve (3).
To speed up development time for this baseline code and to
promote reproducibility among computer scientists who are
not intimately familiar with convex optimization, we diverged

from the method in Xu et. al. and utilized ECOS convex
optimization solver[17] through the CVXpy interface [18].
Unfortunately, the introduction of this generic solver cased
problems for plans of a GPU adaptation of this algorithm.

Presently, no generic solver currently exists which leverages
the power of GPUs to speed up its numerous and dense
calculations. Since preliminary timings of this solver indicated
that this was a substantial bottleneck in the RSFKM algorithm,
a workaround was necessary to enable the use of GPU archi-
tectures with RSFKM. To solve this problem, a library free
solver, comprised of optimized C code generated by CVXGEN
[19], was integrated into a modified sequential implementation
of RSFKM. This improved implementation was significantly
faster and provides a best case baseline to measure GPU
versions against.

The code generated by CVXGEN was much more sym-
pathetic to a GPU implementation of RSFKM compared to
CVXpy as it was library free and written in C, which directly
maps to CUDA. However, this code also introduced new
problems hindering a successful GPU implementation. First,
it generates code that only works on a pre-defined, constant
vector size. In our case, that means it only works for a
fixed number of centroids. Next, as this generated code was
optimized for embedded systems, many frequently accessed
variables were set at global scope. As this code would have
to be adapted to run sequentially on a single thread (but
with multiple instances running in parallel across multiple
cores) this scoping creates problems. CUDA doesn’t have
an equivalent global scope that exists independently for each
thread, so a means to trick the architecture was required.

B. GPU Adaptation

As alluded to in Section III.A., the approach of prioritizing
the adaptation of optimization code to GPUs came from
two directions. First, the mathematical minimization formula
for membership is fundamentally independent, indicating that
calculations for membership vector ui can occur at the same
time as ui+1. This makes the corresponding algorithm em-
barrassingly parallel. Second, the significant bottleneck of
this minimization problem demanded resolution before other
approaches to optimization and parallelization could be con-
sidered.

The problem of the globally scoped variables was solved
first. To properly adapt the generated C code, a method was
devised to maintain the structure of the program as developed
to run on a CPU. To maintain the illusion of global scope,
per-thread, the entirety of generated code, approximately 1500
lines, was encapsulated into a class-like struct. Encasing our
C code into a struct allowed all required variables to be
treated like private members which could be freely and safely
accessed by the component functions which performed the
minimization solving. The struct functions themselves were
labeled as “ device ” functions and could then be called
freely by individual threads from the ”Update Membership”
kernel.



Fig. 1. A diagram showing a basic breakdown of the implementation and
operation of the core solver implemented as a CUDA struct from modified
C code. This diagram shows the mapping of the solver to each block and
indicates how the problem is decomposed, where each line in our membership
matrix is solved in parallel on the GPU. The decision to call this solver kernel
on one thread per block came from slowdown observed with more than one
thread per block.

As can be seen in figure 1, the modifed kernel was called on
n blocks, each using one thread. Although this configuration
seems naive, attempts to call this sequential code with multiple
threads per block, in multiples of 32 to take advantage of
warp efficiency, saw much slower results than the one-thread-
per-block approach. Furthermore, very few threads-per-block
could be instantiated due to a lack of register space. This is
likely due to the size of the solver struct being loaded to run
on the GPU. By using this structure, our solver could make
the best use of GPU resources to perform the embarrassingly
parallel computations promised by Equation (3) in the most
straightforward manner possible.

C. Further Optimization

After converting the primary bottleneck of the minimiza-
tion solver into GPU code, many other opportunities for
optimization became evident. In addition to the aforemen-
tioned ”Update Membership” function, there existed three
other computationally intensive functions which comprised
the core functionality of this algorithm. Those functions are
build h matrix, find centroids, update S. Generally, these
functions involved some kind of matrix manipulation with a
sum reduction and could be easily mapped one matrix cell
to a block with multiple threads doing reduction and simple
addition work in parallel. Shared memory was used for each of
these functions as a buffer to hold summed data, pre-reduction,
for fast access and simplicity of implementation.

Through rewriting these functions in CUDA to run on the
GPU, and adding supplemental functions to store and calculate
auxiliary scalars between iterations, the entirety of this pro-
gram (within a single iteration) was successfully configured
to run on the GPU. We successfully minimized overhead with

TABLE I
AN EXCERPT OF ENVIRONMENTAL DATA USED FOR BENCH MARKING THE

EFFECTIVENESS OF THE IMPROVED RSFKM CLUSTERING ALGORITHM.
THE VALUES DEPICTED HERE ARE HUMIDITY AND TEMPERATURE

MEASUREMENTS COLLECTED FROM MANY SITES.

1/25/2018 1:19 -5.678 -6.482 -6.499 -6.455 0.491
1/25/2018 1:20 -5.654 -6.474 -6.499 -6.452 0.492
1/25/2018 1:21 -5.697 -6.462 -6.479 -6.452 0.494
1/25/2018 1:22 -5.774 -6.481 -6.499 -6.449 0.494 . . .
1/25/2018 1:23 -5.788 -6.491 -6.515 -6.472 0.494
1/25/2018 1:24 -5.793 -6.503 -6.519 -6.478 0.492
1/25/2018 1:25 -5.732 -6.515 -6.538 -6.492 0.494

this full conversion by initializing all derived matrices, U,V,H,
and S in global memory on the GPU. Each of these matrices
can be maintained on the GPUs main memory between the
core kernel calls which perform the computations of our
clustering algorithm. Although highly efficient, this memory
configuration caused problems in terms of space efficiency
which are addressed by the multi-GPU implementation of this
algorithm.

The only matrix which could not be initialized on the GPU
was the original data matrix X, because its contents are read
from the disk. This however does not significantly impact
overall run time because the overhead of transferring this data
to the GPU occurs only once before clustering begins. After
this, the only continuous data transfer occurs at the end of each
iteration when our centroids, V, are transferred back down
to the CPU to check for convergence. The overhead of this
transfer is very minimal however, as the number of centroids
is generally going to be relatively small to provide meaningful
clustering. The final overhead from data movement between
host and device comes from the output of the membership
matrix U. Like our data matrix, this matrix transmits between
GPU to CPU only one time after all the iterations of this
clustering algorithm have concluded. Because of this, the
overhead of this retrieval can be considered negligible.

D. Multi-GPU

The need for a multi-GPU implementation of this algorithm
was driven by the memory limitations of our single-GPU im-
plementation. calculate centroids requires a substantial sum
reduction resulting from a matrix multiplication between the
data matrix and an auxiliary matrix which holds a regulating
scalar. After multiplication, but before reduction, result vectors
are stored in shared memory assigned to a block. This requires
our shared buffer to hold n spaces of size 8 bytes for the double
precision values. CUDA provides a max of 48 KB per block.
Accordingly, this only allows for approximately 6,000 double
precision values to be processed by this function.At one point
in this algorithm, this function handles every data value we
intend to cluster. With the space limitations, this indicates that
we cannot cluster more than 6,000 values with this program.

Although there are certainly many approaches and solutions
to this problem, we chose to leverage data decomposition
and split our calculations across multiple GPUs. By randomly
sampling data points and distributing them across GPUs



Fig. 2. A line plot showing the runtimes of the RSFKM algorithm running
sequentially on a CPU and in parallel on one, two, four and eight GPUs.
The runtimes are per iteration of the clustering algorithm and averaged over
ten trials. The dotted line indicates a trendline which shows the projected
runtimes of a single GPU experiment. The equation next to the trendline was
used to derive runtime values for efficiency calculations.

we can accurately cluster up to 48,000 data points in the
same amount of time it would take for 6000. Although the
memory limitation remains, per-gpu, it becomes significantly
less impactful with each GPU we add. This horizontal scaling
is not significantly impacted by overhead due to the design
of our per-gpu algorithm, where all substantial matrices are
instantiated and maintained on each GPU’s main memory.
Data transfer occurs minimally in between interactions to
check for convergence and at the end to transfer back results
for imputation.

E. Data Imputation

The data imputation algorithm was implemented in Python
as a collection of methods which performed basic pre-
processing, called the above detailed GPU clustering algo-
rithm, removed data for imputation and performed the impu-
tation algorithm specified in Equation (5) using the centroids
and returned membership matrix retrieved from the GPU. The
implemented imputation method checked its accuracy using
a simple RMSE algorithm finding the difference between the
actual values removed from the dataset earlier against those
which were imputed.

IV. EXPERIMENTS AND ANALYSIS

To evaluate the improved RSFKM algorithm on a single
GPU and multiple GPUs, timings were collected on repeated
clustering of a set of environmental sensor data downloaded
from the Nevada Research Data Center’s website [1]. Prelimi-
nary experiments showed that changing the number of features
on our data and adjusting the number of centroids did very
little to influence overall runtimes for either CPU or GPU
implementations of this algorithm. So, for all the following
experiments, the number of centroids used is fixed at 15 and
the number of features is fixed at 11.

Fig. 3. A line plot showing the per-iteration speedup factor of singular and
multi-GPU experiments run with the RSFKM algorithm. For larger numbers
of clustered values, the addition of more GPUs produces near equivalently
scaled speedup factors.

A. Experimental Setup

The following experiments were performed on a remote
server containing 24 2.00 Ghz Intel Xeon CPUs connected
over two PCIe buses to 8 GeForce GTX 1080 GPUs. The
GTX 1080s are grouped 4 cards to a single bus. Each GPU
has an available memory of 8GB with 6KB of shared memory
available per block. Each GPU implements the Pascal architec-
ture which provides support for advanced processing features
like unified memory.

As an initial proof of concept, the clustered data set was a
selection of 550,000 data points of time series data organized
into 50,000 vectors with 11 features. Each vector represented a
per-minute log of autonomously collected meteorological data
with each feature representing a measurement collected at that
minute from a distinct sensor. Table I shows an excerpt of the
data set used.

B. Data Imputation

Although not explored in great detail for this paper due
to constraints of space, this algorithm performed well in
providing reasonably accurate data imputation. With RMSE
values as low as 0.18 the GPU implementation of this al-
gorithm provided accurate clustering on par with the CPU
implementation. Since the applications and datasets were very
different between this paper and those tested by Xu et. al.
[15], a more detailed imputation experiment will be required
and explored in future work.

C. Timings

Fuzzy K Means clustering, is a variable length iterative
algorithm that does not converge uniformly at a set number of
iterations. Between runs where the same data set is organized
into the same number of clusters, convergence can occur in
half as many iterations as expected. Accordingly, this makes
collecting timings of full program runs problematic, because
times can vary wildly. To solve this problem the runtimes
collected and manipulated in the following sections were



Fig. 4. A line plot showing per-iteration throughput of the RSFKM algorithm
as run on CPU, one, two, four and eight GPUs. Throughput for this paper
was expressed in terms of vectors/ms and was calculated as thp = n/ms
where n is the number of vectors input for clustering. GPU throughput handily
outstrips sequential throughput by a wide amount, even when processing a
small number of values.

calculated per-iteration by dividing the overall runtime of this
algorithm by the number of iterations taken. Using this timing
scheme significantly reduced outliers in our timing data and
produced meaningful results.

The raw per-iteration timings, shown in Fig. 2, show a
comparison between the sequential implementation of RSFKM
and our modified GPU implementation, on one, two, four and
eight GPUs. The sequential runtimes, indicated by the grey
line, indicate a clear linear curve which is to be expected by
the O(NVF) complexity of our algorithm. As V, the number of
centroids, and F, the number of features in the data vectors,
are fixed at relatively small sizes compared to N, the algorithm
becomes linear as N becomes sufficiently large.

At a glance its evident that GPU implementations were
very successful in reducing the runtimes compared to the
sequential algorithm. On this logarithmically scaled graph, per-
iteration runtimes of GPU implementations remain relatively
level as data inputs scale from 90 vectors to approx. 40000,
ending with runtimes of 128ms up from 6ms. By comparison,
across the same spread of processed data points the CPU
implementation grows significantly in runtimes, from 128ms
to almost 32000ms. The difference between these runtimes is
so severe that when rendered with the CPU runtimes, without
a logarithmic scaling, the GPU runtimes cannot be seen as
anything other than a multicolored horizontal line on the
bottom of the graph.

The significance of this difference in runtimes is further
reinforced by Fig. 3 which shows the speedup factor of various
GPU timings when compared with the sequential timings.
The speedup factor, S, was calculated with the following
equation: S = ts/tp, with ts and tp representing sequential
and GPU runtimes respectively. Overall, the speedup was very
promising with a low of around 10x speedup for 8 GPUs (with
a small number of values) and a high of over 180x speedup
for 8 GPUs. Speedup was shown to be more significant as

Fig. 5. A line plot showing the relative efficiency of multi gpu implemen-
tations vs. single GPU implementation. Calculated as E = tgpu/(tgpuN ∗
N) ∗ 100, where N is the number of GPUs being used, this graph indicates
how much meaningful work each GPU is performing.

more GPUs were added and additional data points could be
processed. This increase in speedup is certainly consistent with
expectations because there is very little cost to calculations
performed with two GPUs, compared to one due to a lack
of communication overhead. Broadly this indicates that when
the fundamental overhead of CPU/GPU communication is
overcome by data processing then speedup scales with the
number of GPUs utilized. Analysis of throughput and effi-
ciency reinforce the conclusions made in reference to timings
and speedup. In Fig. 4, its shown that overall throughput
increases with more GPUs but only for sufficiently large
amounts of data. For smaller amounts of clustered data we see
a general dropoff of throughput when compared with fewer
GPU configurations, again likely due to increased overhead
that comes with the addition of multiple GPUs.

Similarly, Fig. 5 most clearly shows that at lower values
very little work is being done on each GPU. As more GPUs
are added the lack of work being done is exacerbated dra-
matically. For 360 values, 2 GPUs get near 40% efficiency
with below 10% 8 GPUs. This difference in efficiency drops
off dramatically however as more data is processed by each
GPU. We do see that overall efficiency still drops off with
the addition of more GPUs despite increased throughput and
speedup. Again, this is likely due to increased competition for
bus access which is harder to offset as more GPUs are added.

Within the GPU runtimes themselves some characteristics
of these lines should be noted. First, there is a trendline on
the single GPU runtimes. As explained in Section III, space
limitations prevented successful operation of this program on
one GPU with more than 6000 initial values. A trendline
enables us to visualize and estimate runtimes going out to-
wards the max processed 40,000 values. This trendline and its
derived data will help provide efficiency data for our multi-
GPU implementations.

It should be noted that with the two, four and eight GPU
experiments in Fig. 2 a bow-like curvature can be seen. This
is almost certainly due to the overhead of transferred data



between our multiple GPUs and the CPU. Since only two
PCIe buses connect GPUs and CPUs the overhead of data
transfer becomes more pronounced as GPUs are added and
each GPU must compete to transfer data. And, even though
there is relatively little data transferred between the GPU and
CPU with this algorithm, there is certainly enough, especially
with the per iteration transfer of our centroids, that slowdowns
occur when there is not a sufficient amount of data for each
GPU to process. The downward curve occurs as a result of
more data being computed on each GPU and causing less
frequent calls back to the CPU to check for convergence.
This in turn, reduces simultaneous demand for the limited bus
access.

V. CONCLUSION AND FUTURE WORKS

This paper presented improvements to an existing Robust
and Sparse Fuzzy K Means algorithm, that allowed for the
entirety of its processing to be performed on a single GPU or
multiple GPUs. This improved algorithm was demonstrated
to provide accurate imputation and facilitate much faster
clustering through numerous experiments performed on en-
vironmental time-series data acquired from the NRDC.

Specifically, this paper demonstrated that robust clustering
can be performed on a single GPU with as much as 34 times
speedup. It was also shown that this algorithm scales very
well horizontally with allowing for the use of up to 8 GPUs,
resulting in as much as 185 times speedup over sequential
methods. It was also demonstrated that this algorithm was
very efficiently designed to minimize communication overhead
between CPU and GPU, with efficiencies as high as 97%
shown with two GPUs.

In developing this GPU-based iRSFKM algorithm many
avenues for continued development and research appeared.
First, adjustments to current memory organization in this
algorithm which are needed to facilitate each GPU handling
more than 6000 data points. When a key goal of graphics
processing is the ability to manipulate large amounts of data
quickly, this restriction significantly limits the applicability of
iRSFKM (even with the help of additional GPUs).

A further area of research which expands on this work
would certainly be a much more comprehensive exploration
of the effectiveness of data imputation with this algorithm on
environmental sensor data. A better curated and pre-processed
data set could provide significantly better results for data
imputation than what was shown in this paper. Additionally,
the data imputation algorithm in this paper was implemented
for CPU only and can be adapted for GPUs. By implementing
code which performs the imputation itself in CUDA the overall
algorithm could run much faster and be better encapsulated
into a distributable package for active use by data scientists in
need of fast, effective imputation.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under grant number IIA1301726.
Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] NRDC. (2018) Nevada Research Data Center. [last accessed December
12, 2018]. [Online]. Available: http://sensor.nevada.edu/NRDC/

[2] P. Schmitt, J. Mandel, and M. Guedj, “A comparison of six methods for
missing data imputation,” Journal of Biometrics & Biostatistics, vol. 06,
May 2015.

[3] M. Soley-Bori, “Dealing with missing data: Key assumptions and
methods for applied analysis,” Boston University, School of Public
Health, Department of Health Policy and Management, Tech. Rep. 4,
May 2013.

[4] L. Beretta and A. Santaniello, “Nearest neighbor imputation algorithms:
a critical evaluation,” BMC medical informatics and decision making,
vol. 16, no. 3, p. 74, 2016.

[5] J. C. Dunn, “A fuzzy relative of the isodata process and its use
in detecting compact well-separated clusters,” Journal of Cybernetics,
vol. 3, no. 3, pp. 32–57, 1973.

[6] T. Banerjee, J. M. Keller, M. Skubic, and E. Stone, “Day or night
activity recognition from video using fuzzy clustering techniques,” IEEE
Transactions on Fuzzy Systems, vol. 22, no. 3, pp. 483–493, 2014.

[7] F. Valafar, “Pattern recognition techniques in microarray data analysis:
A survey,” Annals of the New York Academy of Sciences, vol. 980, no. 1,
pp. 41–64, 2002.

[8] D. Li, J. Deogun, W. Spaulding, and B. Shuart, “Towards missing data
imputation: A study of fuzzy k-means clustering method,” in Rough
Sets and Current Trends in Computing, S. Tsumoto, R. Słowiński,
J. Komorowski, and J. W. Grzymała-Busse, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 573–579, 2004.

[9] Z. Liao, X. Lu, T. Yang, and H. Wang, “Missing data imputation:
a fuzzy k-means clustering algorithm over sliding window,” in Fuzzy
Systems and Knowledge Discovery, 2009. FSKD’09. Sixth International
Conference on, vol. 3. IEEE, pp. 133–137, 2008.

[10] J. Tang, G. Zhang, Y. Wang, H. Wang, and F. Liu, “A hybrid approach to
integrate fuzzy c-means based imputation method with genetic algorithm
for missing traffic volume data estimation,” Transportation Research
Part C: Emerging Technologies, vol. 51, pp. 29 – 40, Feb 2015.

[11] S. Azim and S. Aggarwal, “Hybrid model for data imputation: Using
fuzzy c means and multi layer perceptron,” in 2014 IEEE International
Advance Computing Conference (IACC), pp. 1281–1285, Feb 2014.

[12] S. A. A. Shalom, M. Dash, and M. Tue, “Efficient k-means clustering
using accelerated graphics processors,” in Data Warehousing and Knowl-
edge Discovery, I.-Y. Song, J. Eder, and T. M. Nguyen, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 166–175, 2008.

[13] ——, “Graphics hardware based efficient and scalable fuzzy c-means
clustering,” in Proceedings of the 7th Australasian Data Mining Confer-
ence - Volume 87, ser. AusDM ’08. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc., pp. 179–186, 2008.

[14] M. Al-Ayyoub, A. M. Abu-Dalo, Y. Jararweh, M. Jarrah, and M. A.
Sa’d, “A gpu-based implementations of the fuzzy c-means algorithms for
medical image segmentation,” The Journal of Supercomputing, vol. 71,
no. 8, pp. 3149–3162, Aug 2015.

[15] J. Xu, J. Han, K. Xiong, and F. Nie, “Robust and sparse fuzzy k-
means clustering,” in Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, ser. IJCAI’16. AAAI Press, pp.
2224–2230, 2016.

[16] J. Huang, F. Nie, and H. Huang, “A new simplex sparse learning
model to measure data similarity for clustering,” in Proceedings of the
24th International Conference on Artificial Intelligence, ser. IJCAI’15.
AAAI Press, pp. 3569–3575, 2015.

[17] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for
embedded systems,” in European Control Conference (ECC), pp. 3071–
3076, 2013.

[18] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[19] J. Mattingley and S. Boyd, “Cvxgen: a code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1, pp.
1–27, Mar 2012.


