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Abstract—While quantum computing has shown great 

promise in the field of computer science, a lack of actual 

practical quantum hardware means that mainstream research 

must rely on simulations. As such, a wide number of quantum 

computing simulation libraries have been developed, each with 

their own strengths and weaknesses. A good simulator must not 

just be accurate, but fast as well. This is especially relevant for 

quantum systems since the problem size growth for quantum 

systems is super-exponential. For this paper, we introduce a 

quantum computing simulation system that takes advantage of 

multiple gpus to achieve up to 400 times faster simulation time. 

We discuss the implementation details and provide analysis of 

its performance. We also demonstrate how the real-world 

phenomenon of quantum gate incoherence can be accurately 

simulated by varying the floating point precision and 

demonstrate it by using a precision of 9 bits, which we evaluate 

using Randomized Benchmarking. 

Keywords—quantum computing, randomized benchmarking, 

GPU, performance analysis 

I. INTRODUCTION 

The field of quantum information explores the possibilities 
of exploiting the laws of quantum mechanics to gain benefits 
in computational complexities that are otherwise largely 
problematic for classical computers to solve. Quantum 
computing involves using the superposition principle to carry 
out computational tasks in a more efficient way than is 
possible with devices governed by classical physics. There is 
a broad range of longstanding problems in strongly correlated 
systems, and quantum computing has shown great prospect in 
solving them. This has encouraged a significant increase in 
research, especially over the last decade. The tools required to 
design, build, and implement these quantum systems [1, 2] 
have seen rapid development and are still being developed, 
currently reaching some very sophisticated levels [3]. 
Research breakthroughs in ultra-cold atoms and photons have 
become more commonplace. 

However, building quantum computers represents an 
immense technological challenge and, at present, the quantum 
hardware is only available in research labs. Under these 
circumstances quantum simulators have become valuable 
instruments in developing and testing quantum algorithms and 
in the simulation of physical models used in the 
implementation of a quantum processor. Simulating a 
quantum computer on a classical computer is a 
computationally hard problem. According to Feynman’s paper 
[1] classic computers will never be able to perform simulations 
of full behavior of a quantum system in a polynomial time. 
Because of the exponential behavior of quantum systems, 
simulating them on conventional computers requires an 

exponential amount of operations and storage. Parallelization 
alleviates this problem, allowing the simulation of more qubits 
at the same time or the same number of qubits to be simulated 
in less time.  

This parallelism can be achieved through the use of 
Graphics Processing Units. Modern graphics processing units 
(GPUs) have been at the leading edge of increasing chip-level 
parallelism for some time. While originally designed to 
perform calculations for graphics in video editing and video 
games, they are now being widely used for general purpose 
programming in many fields which require intense parallel 
computations. For this paper, we demonstrate that GPUs are a 
viable candidate for simulating quantum computers in terms 
of both accuracy and speed of execution. We also show how 
the GPU accuracy changes with changes in its floating point 
precision, and how that can be used to simulate accurate 
models of decaying quantum gates. This paper makes three 
contributions -  

 Develop a GPU-based Quantum Simulation 
framework to accurately simulate the application of 
Quantum Gates – The simulation uses the Clifford 
gates [5] model, and is implement in C and CUDA. It 
provides the linear algebra calculations required to 
model the fundamentals of the Clifford gates system. 
The framework has support for multiple GPUs. 

 Optimize quantum simulator calculations - Certain 
linear algebra functions such as transpositions and 
matrix inner products can be considered redundant for 
some parts of the quantum computing model. This 
paper discusses how they can be removed or optimized 
to speed up the execution for quantum bit calculations 
as well as how and where to reduce the problem size. 

 Apply Randomized Benchmarking – Randomized 
Benchmarking is currently one of the more popular 
tests which are used to analyze the fidelity of hardware 
quantum gates. It measures how accurate a certain 
hardware is in terms of performing quantum 
calculations. We apply this to our GPU 
implementation and show that GPUs can be an 
accurate simulator. We also vary the precision of the 
calculations manually and show how a varying 
precision can accurately model the gate incoherence 
present in real systems. 

The rest of this paper is organized as follows: In Section 2 
we talk about the background of our quantum model. We 
provide a short explanation of the randomized benchmarking 
algorithm and give a brief description of the NVidia CUDA 
architecture. In Section 3 we review the current state of 
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research in the application of quantum computing simulations 
for GPUs and explain how our research fits there. In Section 4 
we discuss our implementations details, our optimizations and 
parallel strategies. For Section 5, we provide the results of our 
optimizations and parallel implementations. We then compare 
and discuss our observations, and draw our conclusions and 
present some future work in Section 6. 

II. BACKGROUND 

A. Quantum Computing Model 

The concept of using Quantum Computer simulations in a 
classical computer were an extension of Feynman [1]. The 
application of the principles of quantum physics in the 
computer area led to the concept of quantum computer, in 
which the data isn't stored in bits like in the conventional 
memory, but as a combined state of several systems with 2 
qubit states. Nowadays, the most common model involves 
using Pauli matrices and Clifford groups to perform 
computations for quantum processes, consistent with the 
Gottesman – Knill theorem [6, 7]. 

The fundamental concept, or representation of a quantum 
system revolves around the qubit. The qubit can be considered 
as the equivalent bit representation of a quantum system. 
While a classical computer uses 0’s or 1’s to represent data, a 
quantum system uses the qubit. The qubit is represented as a 
square matrix of the dimensions 2n-by-2n, where n is the 
number of bits in the qubit. Fig. 1. Shows the density matrix 
of a 2-bit qubit. 

 

Fig 1. A 2-bit qubit density matrix representation 

Here, the rows and columns represent the possible bit 
combinations, and the corresponding diagonal values 
represent the probability with which the bit combination will 
be returned when the qubit state is read. The density matrix 
contains real and imaginary values. The density matrices must 
be have sum of diagonal elements to 1, must be a Hermetian 
and a positive semi-definite matrix. 

Similarly, as with classical computers, quantum computers 
also have gates which transform the probabilities of the bit 
combinations in a qubit. They are also represented by 2-by-2 
density matrices, and are complex and unitary. Fig. 2 shows 
the qubit representation of an X gate (also called the qubit NOT 
gate). 

 

Fig 2. X (qubit NOT) gate. It switches the probabilities between the bit 
combinations. 

A 2-by-2 gate, however, can only be applied to a single 
qubit density matrix. In order to be applied to higher order 
matrices, the gate must be expanded to equal the dimensions 
of the qubit itself. This is done via creating the appropriate 
Kronecker product of the gate. The formula for creating an n-
qubit gate is as follows –  

 

where i is the ith qubit that the gate will apply to, n is the 
number of qubits, I is a 2-by-2 identity matrix, G is the 2-by-2 
gate matrix, and  represents the kronecker product function. 
The above equation results in a 2n-by-2n matrix which can be 
applied to the 2n-by-2n qubit density matrix. Application of 
qubit gates to qubits is done by –  

 

Here, Qnew is the newly transformed qubit resulting from 
the application of gate G to the original qubit Q. G† is the 
Hermetian of the gate G. 

B. Randomized Benchmarking 

The purpose of the Randomized Benchmarking method is 
to find how accurate the computations are after applying the 
gates to a certain initial starting qubit. What it measures is the 
“proximity” of the result after the application of gates. This 
“proximity” can be considered as how erroneous the gates are 
and is known as the infidelity. Algorithm 1 shows the code for 
Randomized Benchmarking.  

 

The algorithm takes in the number of test runs N, the 
number of gates to apply per run M and the initial qubit Qubit 
as inputs. For every run, M gates are chosen at random and 
applied one after the other. These gates are then stored in a 
LIFO queue. The initial Qubit undergoes a series of 
probability transformations due to the application of these 
gates that results in a completely different set of probabilities. 
After the first inner loop, the initial Qubit has been destroyed. 
The next inner loop pops the queues from the LIFO Queue and 
applies the Hermetian transformation to the gate. One of the 
gate properties is that the conjugate transpose of the gates is 
equal to itself, and that they are unitary gates. This means that 
by applying a gate to a Qubit and applying the Hermetian of 
the gate to the resulting qubit will result in the Qubit reverting 
back to its original state. As such, the application of a sequence 
of gates and then the Hermetians of those gates should ideally 
result in the initial Qubit. Practically, however, quantum 
hardware does not give the exact initial state. Due to noise in 
gate hardware, the exact calculations are rarely accurate, and 
this becomes apparent after the application of the gates and 



their Hermetians. It is expected that as more gates are applied, 
the “further” the final state is from the initial state. 

C. NVidia CUDA and GPUs  

The Compute Unified Device Architecture (CUDA) 
library, developed by NVIDIA, is a software and hardware 
architecture that enables the users to harness the high counts 
of parallel processing power of the recent NVIDIA graphics 
cards. From the hardware perspective, the GPU consists of 
several multiprocessors working in a SIMT (Single Instruction 
Multiple Thread) fashion, each of them containing a certain 
number of streaming processors. In order to develop GPU-
enabled applications, programmers can make use of various 
programming languages: C/C++ for CUDA, OpenCL, Fortran 
or DirectCompute. However, CUDA is the proprietary library 
provided by the hardware developers themselves, and thus 
provides many functionalities that allow users to fully utilize 
the hardware. The primary difference between a GPU and a 
CPU is that GPUs contain a high number of less powerful 
cores while CPUs contain a few number of highly powerful 
cores. Other than that, the other properties are similar. GPUs 
contain its own memory spaces; (1) Global memory - Data 
stored in global memory is visible to all threads within the 
application (including the host), and lasts for the duration of 
the host allocation. (2) Shared Memory – Data stored here is 
visible to all threads within the block that allocates it. This type 
of memory allows for inter-thread communication to occur 
and permits the sharing of data between threads. This is also 
faster than the global memory. (3) Local memory – Local 
memory has the same properties as normal registers, but has a 
larger available memory size but it is much slower.  Apart 
from these, there are also Texture and Constant memory 
available, but it is not relevant in this context. CUDA provides 
a hierarchical execution model for execution of its threads. 
The abstraction is done at 4 levels. These abstractions are (in 
order of highest abstraction to the lowest) - grids, blocks, 
warps and threads  

III. RELATED WORK 

The concept of Quantum Systems was first put forth by 
Feynmen [1]. The paper emphasized the complexity of 
simulating quantum systems using classical computers. A 
well-controlled system can be built from the bottom up, and 
by doing so, one could create a computer whose constituent 
parts are governed by quantum dynamics generated by a 
desired Hamiltonian. However, at that time period, the 
computational power required to even describe the quantum 
system which scales exponentially with the number of its 
qubits was practically infeasible. Additionally, delving this 
deeply into the properties of this system led to the discovery 
of difficult to compute properties of a quantum many-body 
model, such as the nature of quantum-phase diagrams. This 
initial proposed model is known as the “quantum simulator”. 

Since then, there have been great strides towards feasible 
quantum computers, even though much work is yet to be done 
to make quantum computers mainstream. As such, quantum 
computing simulation libraries are still what drives the 
majority of research. These simulators come in different 
variations and levels of complexity [8], each catering to a 
specific need. Sequential quantum simulators are many, and 
have a good variety of representations and contains different 
types of simulators [9]: quantum programming languages 
(QCL, Q language, Quantum Superpositions, QuBit), 

quantum compilers (Qubiter, GQC), quantum circuits 
simulators (QCAD, QuaSi, Libquantum), quantum hardware 
emulators (QCE, QSS) and purely pedagogical software 
(quantum Turing machine simulator, Quantum Search 
Simulator, Shor’s algorithm simulator). The need for parallel  
simulators emerges due to the super-exponential nature of 
quantum computation. It is extremely time consuming for 
classical computing devices simulate it. The first parallel 
simulator was developed by Obenland and Despain [10], but 
was based on the physical model of a very specific model and 
so did not see mainstream use. Since then, there have been 
many parallel CPU implementations, [10, 11]. However, they 
all fall short due to lack of scalability. The latest approach that 
researchers are taking to further optimize the simulators are 
through the GPUs. Much work has already been done on 
simulating specifics applications [12, 13]. Similarly, several 
generic single GPU and distributed GPU systems for quantum 
simulators have been developed and see widespread use [14, 
15].  

One of the key problems with quantum systems are that 
they have degrading accuracy [16, 17]. While many 
companies are racing to become the first to develop the first 
real quantum computer, one of the major hurdles of noisy 
systems still exist. To facilitate the work in this field, 
researchers have come up with standards to measure and 
standardize the testing process [18, 19, 20, 21, 22]. The 
industry standard so far has been QST and GST, but [23] 
argues that they are both too slow and bad at scaling. To 
counter this, they propose a new type of testing called 
Randomized Benchmarking. Since then, there have been quite 
a few experiments where RB has been used to good effect [23, 
24]. The scalability, simplicity and ease of implementation 
have made RB one of the currently favored testing methods 
for quantum hardware. While much work regarding quantum 
simulators have been done, there has been no research into 
how RB will perform on GPUs. Since GPUs are now the go-
to implementations for quantum simulators, we need to find a 
means of simulating the deteriorating effect of applying gates 
to qubits.  

IV. IMPLEMENTATION 

One of our key motivations is to be able to generate the 
decaying effect shown by real quantum gates on the GPU. We 
do this by manipulating the floating point precision of the 
calculations of the operations. We do this via the formula–  

𝑅𝑓𝑎𝑐𝑡𝑜𝑟 = 1 ≪ 𝑀 

𝑉𝑎𝑙𝑢𝑒 =
𝑟𝑜𝑢𝑛𝑑(𝑉𝑎𝑙𝑢𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗  𝑅𝑓𝑎𝑐𝑡𝑜𝑟)

𝑅𝑓𝑎𝑐𝑡𝑜𝑟

 

Here, M is the precision in bits, and Valueoriginal is the actual 
value with full 64-bit precision. This function is applied to all 
mathematical calculations done in every thread. For our 
implementation, we start by setting the probability of all qubits 
being 0 to 1.0. In other words, our Qold [0][0] is set to 1.0. With 
full precision, we expect that the value for Qold [0][0] will be 
1.0 after going through Randomized Benchmarking. With less 
precision, we will find that the value will deviate from 1.0. 
Fidelity is the measure of how much the final value deviates. 
This is given by –  

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 = 1 − 𝑐𝑜𝑛𝑗(𝑄[0][0]) ∗ 𝑄[0][0] 



Q is the final qubit after applying Randomized 
Benchmarking. The closer Fidelity is to 1.0, the less the noise 
is in the system. For our experiments, we vary the precision 
and measure the corresponding Fidelity with a range of gates. 
Next, we talk about the two facets to the implementation of 
our framework. First we focus on reducing the number of 
computations for the operations while maintaining the 
accuracy of the results. Then we focus on how to implement a 
parallelized version of the algorithm for deployment on the 
GPU. 

A. Optimizations 

For the linear algebra operations involved in applying the 
gates to the quantum bit and for calculating the Hermetians, 
the number of calculations were reduced by taking advantage 
of the matrix properties of the gates and the qubits. These 
properties enable the reduction of the problem size due to 
rendering most of the computations necessary redundant. 
Specifically, three major algorithmic changes were done. 

The first change was to only calculate the Hermetian of 
gates (line 8 of Algorithm 1) for specific gates. The traditional 
way of applying gates in quantum simulators use the 
transposed conjugate of the gate matrix and the gate matrix 
itself. The original qubit is then right multiplied by the 
transpose-conjugate and left multiplied by the original gate. 
These inner products are done in sequence to each other. It 
should also be noted that for multi-qubit systems the multi-
qubit gate is first generated by the Kronecker product and then 
the conjugate transpose is applied. However, this conjugate 
transpose step can be completely ignored due to the fact that 
gate matrices must be Hermetian matrices. In other words, one 
of the properties that a matrix must fulfill to be a gate is that it 
must be a conjugate transpose of itself. Therefore, the Clifford 
group of gates (X, Y, H, Z) used are all Hermetians, meaning 
that they do are not required to undergo the Hermetian 
transformation. This change effectively removes one full 
computational step of the O(22n+1), where n is the number of 
qubits. The second optimization done involves using the Eigen 
property of the gates that reduces the computations to only 
using the upper half of the square matrices.  Algorithm 1 can 
be unwound in the form of the equation – 

𝐺𝑟𝑖𝑔ℎ𝑡 =  𝐺1𝐺2 … 𝐺𝑁−1𝐺𝑁𝐺𝑁
𝐻𝐺𝑁−1

𝐻 … 𝐺2
𝐻𝐺1

𝐻  

𝐺𝑙𝑒𝑓𝑡 =  𝐺1𝐺2 … 𝐺𝑁−1𝐺𝑁𝐺𝑁
𝐻𝐺𝑁−1

𝐻 … 𝐺2
𝐻𝐺1

𝐻 

𝑄𝑛𝑒𝑤 =  𝐺𝑟𝑖𝑔ℎ𝑡𝑄𝑜𝑙𝑑𝐺𝑙𝑒𝑓𝑡  

where N is the total number of gates. However, we know 
that the Qubit Qold  can be decomposed as – 

𝑄𝑜𝑙𝑑 = 𝐿𝐿𝑇   
 

where L is the Eigen decomposition of Qold. So now we can 
reduce the original equations to 

𝐺𝑟𝑖𝑔ℎ𝑡 =  𝐺1𝐺2 … 𝐺𝑁−1𝐺𝑁𝐺𝑁
𝐻𝐺𝑁−1

𝐻 … 𝐺2
𝐻𝐺1

𝐻𝐿 

𝐺𝑙𝑒𝑓𝑡 =  𝐺1𝐺2 … 𝐺𝑁−1𝐺𝑁𝐺𝑁
𝐻𝐺𝑁−1

𝐻 … 𝐺2
𝐻𝐺1

𝐻𝐿𝑇  

𝑄𝑛𝑒𝑤 =  𝐺𝑟𝑖𝑔ℎ𝑡𝐺𝑙𝑒𝑓𝑡  

 
 When calculating the infidelity, we are only interested in 
the first diagonal value of the resulting matrix, i.e. Qnew[0][0]. 
Therefore, instead of calculating the full matrix, we may 
simply get the inner product of the first column of Gright and 
the first row of Gleft. Thus, the total number of calculations of 

the full algorithm sequence can effectively be reduce to half, 
which contributes greatly to the reduction of the execution 
time of the complete run. 

 The last and most impactful of the optimizations is the 
complete removal of the calculation of the Kronecker product. 
The calculation of the Kronecker product takes place in line 3 
of Algorithm 1. While getting the random gate, a random qubit 
is chosen from the N qubits. Then a random gate from among 
the Clifford groups is chosen and then the appropriate number 
of Kronecker multiplications are done to get the full N-qubit 
gate. Generating this gate for every step of the algorithm is 
time consuming, and any reduction here will reduce the total 
execution time greatly. The eventual product of the Kronecker 
multiplications is a full n-qubit gate, which is then multiplied 
against the qubit matrix. However, the n-qubit gate is very 
sparse, meaning that most of the values need not be generated 
via Kronecker at all. Additionally, given the index, the exact 
value of the Kronecker product can be deduced due to the 
structured expansion that Kronecker multiplications result in.  

B. CUDA Implementation 

As shown in Algorithm 1, there is one outer loop and two 
inner loops. The inner loops are involved in the actual 
calculations while the outer loop is based on the number of 
runs. The two inner loops contain the inner product of the 
matrices. However, in order for the calculations to be accurate, 
these operations must be applied in sequence. Therefore, the 
scope for parallelization is within the operation calculation 
itself. The operations to be parallelized here are the Hermetian, 
the optimized Kronecker products (n-qubit gate generation) 
and the inner product of the qubits and the gate matrices. The 
memory was allocated using CUDA’s unified memory. 

For parallelizing the inner product for this simulation 
scheme, the qubit state matrix is partitioned in sets of fixed 
dimensions and assigned to CUDA blocks, where the sub-
vectors are processed in parallel on a SIMT (single Instruction 
Multiple Thread) fashion. The index multiplications are done 
in parallel threads. The final sum is done by reduction, where 
every summation between two values are done in parallel. The 
major bottleneck here is during the synchronization of the 
threads; every sum step needs a blocking call for the previous 
summing step so that the values required for the sum have 
been correctly calculated. For a matrix inner product of two 
square matrices of the dimensions 2n-by-2n, we will end up 
with a new matrix of dimensions 2n-by-2n. For maximum 
parallelism, every index is calculated in a separate 
independent thread. The multiplication and reduction are also 
done in independent threads. During deployment of the 
threads, the number of threads per CUDA block was kept at 
the maximum possible number of threads (i.e. 1024) for the 
GPU experimented on. This is not enough for large qubit sizes, 
so the number of blocks used were set such that –  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 =  
22𝑛

1024
 

This ensures that there are always enough parallel threads 
to get the maximum parallelism possible. There were also 
checks in place to ensure that the number of threads were 
multiples of 32 in order to keep the number of threads 
consistent with the warp sizes. 

For the Hermetian calculations, the conjugate and the 
transpose functions on a single matrix index were merged to 
form a single operation where given an index, the transpose of 



the index is calculated by getting the value of the “mirror” 
index and then the conjugate of that value calculated and 
stored. Each index is run in a separate thread, with the threads 
distributed in the same manner as for the inner product. The 
dynamic qubit gate generation without the use of Kronecker 
products is also done on the GPU. The gate is generated and 
stored in the GPU’s global memory, so there is no need to 
transfer the large gates from the host to the device and vice 

versa. The function applyGate() from Algorithm 1 
deploys a single thread for the each of the 22n values in the 
matrix. This is run once when a random gate is generated (line 
3 Algorithm 1). The execution time for the dynamically 
generated gate instead of doing the Kronecker products is 
further beneficial since the Kronecker product calculations, 
had they been done on the GPU, would have required thread 
synchronization for every loop iteration. However, the 
dynamic generation requires no such bottleneck and the gates 
require much less time to be generated. The multi-GPU 
implementation is done for the outer loops. Note that the final 
value for fidelity is calculated for every run of the outer loop, 
and is independent of the rest of the other calculations. 
Therefore, the outer loop can also be deployed in parallel 
threads. We take advantage of this fact by deploying the 
different outer loops in different GPUs. The devices never 
need to be synchronized.  

V. EXPERIMENT AND RESULTS 

The test bed used for the experiments contain 4 NVidia GTX 
1080s. The CPU is Intel(R) Xeon(R) CPU E3-1225 v3, 
3.20GHz with 4 Cores and has 64GB of RAM. The operating 
system used was Linux’s Ubuntu 16.06. The timings were 
taken using CUDA’s event synchronization library functions. 
The values used are means from 20 runs. Profiling was done 
using NVidia’s profiler. Fig. 3 shows the pure execution time 
for the single GPU implementations, including the 
computation reduction optimizations. The log-scaled graph 
shows the clear benefits in performance of the GPU’s 
parallelized version. We can see that for smaller number of 
qubits, the sequential version is better since the overhead of 
moving the qubit from the CPU to the GPU is too large to 
make up for the execution time reduction. However, at around 
the 5th qubit, the execution time of the sequential version starts 
taking more time than the parallel version. By the 13th qubit, 
the total speedup is around 400 times.  

 

 

Figure 3. – Sequential versus Parallel execution times 

The throughput graph (Fig. 4) shows that up to the 7th qubit 
there is a clear benefit from parallelism but plateaus out after 
that. The bulk of the computations among all the steps are 
taken up by the matrix multiplications. The synchronization 
required for the sum reduction becomes a significant 

bottleneck at that stage, resulting in a flat throughput. Fig. 5 
presents the execution time of the multi-GPU implementation 
of the Randomized Benchmarking algorithm. As expected, the 
2-GPU implementation is clearly almost twice as better as the 
single GPU case. 

 

  

Figure 4. – Sequential versus Parallel throughput 

 

  

Figure 5. – Multi-GPU execution time 

 However, the addition of more GPUs do not clearly benefit 
at the same scale, as can be see for the 3 and 4 GPU cases. As 
the number of GPUs increase, the benefits of adding more 
GPUs tend to decrease. The overall execution time does 
decrease with increasing number of runs, and it scales linearly. 
Ideally, with 4 GPUs we should expect a speedup of 4 times if 
the scale was perfectly linear. The graphs show that this is not 
the case, and we have a speed up of around 3.6 times with 4 
GPUs. This phenomenon can be explained by the fact that 
while pure execution time may speed up four-fold, the overall 
execution time given here also includes the data transfer time 
from host to device and vice versa, which does not scale 
linearly. Thus a sub-linear effect is introduced and the benefits 
of using multiple GPUs are somewhat diminished. 
Nonetheless, the speed up achieved is 90% of the maximum 
expected. 

 The final set of experiments performed focuses on the 
evaluation of the GPU’s calculated fidelity based on the 
varying bit precision. The full implementation of the system 
was done using double precision. We have observed that the 
fidelity largely stays the same throughout the bit values 
between 64 and 10 bits, no matter how many gates are applied 
after each other. Once we started seeing decreasing fidelity, 
we varied the number of gates and the qubit size to understand 



how the fidelity changes against them. Fig. 6 shows how the 
fidelity is affected by an increasing number of gates. The data 
shown is the calculated mean and is using a precision of 9 bits. 
The trend here shows a strong inverse correlation between the 
increasing number of gates applied and the fidelity. This is 
consistent with the findings in [17, 19], where real quantum 
systems show a tendency to deteriorate with higher number of 
gates.  

 Another observation here is that for higher qubits, the 
fidelity deteriorates faster than for smaller qubit sizes. This is 
due to the fact that larger qubits undergo more computations 
and are thus more affected by round off errors occurring due 
to coarser precisions.  

 

 

Figure 6. – Fidelity vs. Number of Gates Applied with varying qubits 

VI. CONCLUSION 

 We introduce a set of new linear algebra optimizations that 
reduce the problem sizes of quantum computing calculations 
that drastically reduce execution time as well as make it easy 
to parallelize. These should be generic enough to be applicable 
for all quantum computing systems since these reductions 
were done at the most basic levels which are required by 
virtually all quantum simulators. We have conducted 
experiments based on which we can conclude that Quantum 
simulators benefit greatly from their usage of the parallelism 
afforded by multi-GPU systems in addition to the reduction in 
problems size, achieving a speedup of more than 400 times. 
Additionally, simply by changing the precision we were able 
to simulate the decaying effect of real quantum systems, 
making it a lightweight solution to a complicated simulation 
problem. While this is a sufficient solution currently, future 
work can involve usage of Gaussian noise to make gate decay 
simulation more faithful to how actual Quantum systems 
perform. 
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