
Randomized Benchmarking

of Quantum Gates on a GPU

Syed Zawad
†
, Feng Yan

†
, Rui Wu

§
, Lee Barford

†‡
, Frederick C Harris, Jr.

 †

†
Dept of Computer Science and Engineering

University of Nevada

Reno, USA

§
Department of Computer Science

East Carolina University

Greenville, NC

‡
Keysight Laboratories

Keysight Technologies

Reno, NV

szawad@nevada.unr.edu fyan@unr.edu wur18@ecu.edu lee.barford@ieee.org fred.harris@cse.unr.edu

Abstract—While quantum computing has shown great

promise in the field of computer science, a lack of actual

practical quantum hardware means that mainstream research

must rely on simulations. As such, a wide number of quantum

computing simulation libraries have been developed, each with

their own strengths and weaknesses. A good simulator must not

just be accurate, but fast as well. This is especially relevant for

quantum systems since the problem size growth for quantum

systems is super-exponential. For this paper, we introduce a

quantum computing simulation system that takes advantage of

multiple gpus to achieve up to 400 times faster simulation time.

We discuss the implementation details and provide analysis of

its performance. We also demonstrate how the real-world

phenomenon of quantum gate incoherence can be accurately

simulated by varying the floating point precision and

demonstrate it by using a precision of 9 bits, which we evaluate

using Randomized Benchmarking.

Keywords—quantum computing, randomized benchmarking,

GPU, performance analysis

I. INTRODUCTION

The field of quantum information explores the possibilities
of exploiting the laws of quantum mechanics to gain benefits
in computational complexities that are otherwise largely
problematic for classical computers to solve. Quantum
computing involves using the superposition principle to carry
out computational tasks in a more efficient way than is
possible with devices governed by classical physics. There is
a broad range of longstanding problems in strongly correlated
systems, and quantum computing has shown great prospect in
solving them. This has encouraged a significant increase in
research, especially over the last decade. The tools required to
design, build, and implement these quantum systems [1, 2]
have seen rapid development and are still being developed,
currently reaching some very sophisticated levels [3].
Research breakthroughs in ultra-cold atoms and photons have
become more commonplace.

However, building quantum computers represents an
immense technological challenge and, at present, the quantum
hardware is only available in research labs. Under these
circumstances quantum simulators have become valuable
instruments in developing and testing quantum algorithms and
in the simulation of physical models used in the
implementation of a quantum processor. Simulating a
quantum computer on a classical computer is a
computationally hard problem. According to Feynman’s paper
[1] classic computers will never be able to perform simulations
of full behavior of a quantum system in a polynomial time.
Because of the exponential behavior of quantum systems,
simulating them on conventional computers requires an

exponential amount of operations and storage. Parallelization
alleviates this problem, allowing the simulation of more qubits
at the same time or the same number of qubits to be simulated
in less time.

This parallelism can be achieved through the use of
Graphics Processing Units. Modern graphics processing units
(GPUs) have been at the leading edge of increasing chip-level
parallelism for some time. While originally designed to
perform calculations for graphics in video editing and video
games, they are now being widely used for general purpose
programming in many fields which require intense parallel
computations. For this paper, we demonstrate that GPUs are a
viable candidate for simulating quantum computers in terms
of both accuracy and speed of execution. We also show how
the GPU accuracy changes with changes in its floating point
precision, and how that can be used to simulate accurate
models of decaying quantum gates. This paper makes three
contributions -

 Develop a GPU-based Quantum Simulation
framework to accurately simulate the application of
Quantum Gates – The simulation uses the Clifford
gates [5] model, and is implement in C and CUDA. It
provides the linear algebra calculations required to
model the fundamentals of the Clifford gates system.
The framework has support for multiple GPUs.

 Optimize quantum simulator calculations - Certain
linear algebra functions such as transpositions and
matrix inner products can be considered redundant for
some parts of the quantum computing model. This
paper discusses how they can be removed or optimized
to speed up the execution for quantum bit calculations
as well as how and where to reduce the problem size.

 Apply Randomized Benchmarking – Randomized
Benchmarking is currently one of the more popular
tests which are used to analyze the fidelity of hardware
quantum gates. It measures how accurate a certain
hardware is in terms of performing quantum
calculations. We apply this to our GPU
implementation and show that GPUs can be an
accurate simulator. We also vary the precision of the
calculations manually and show how a varying
precision can accurately model the gate incoherence
present in real systems.

The rest of this paper is organized as follows: In Section 2
we talk about the background of our quantum model. We
provide a short explanation of the randomized benchmarking
algorithm and give a brief description of the NVidia CUDA
architecture. In Section 3 we review the current state of

mailto:szawad@nevada.unr.edu
mailto:fyan@unr.edu
mailto:wur18@ecu.edu
mailto:lee.barford@ieee.org
mailto:fred.harris@cse.unr.edu

research in the application of quantum computing simulations
for GPUs and explain how our research fits there. In Section 4
we discuss our implementations details, our optimizations and
parallel strategies. For Section 5, we provide the results of our
optimizations and parallel implementations. We then compare
and discuss our observations, and draw our conclusions and
present some future work in Section 6.

II. BACKGROUND

A. Quantum Computing Model

The concept of using Quantum Computer simulations in a
classical computer were an extension of Feynman [1]. The
application of the principles of quantum physics in the
computer area led to the concept of quantum computer, in
which the data isn't stored in bits like in the conventional
memory, but as a combined state of several systems with 2
qubit states. Nowadays, the most common model involves
using Pauli matrices and Clifford groups to perform
computations for quantum processes, consistent with the
Gottesman – Knill theorem [6, 7].

The fundamental concept, or representation of a quantum
system revolves around the qubit. The qubit can be considered
as the equivalent bit representation of a quantum system.
While a classical computer uses 0’s or 1’s to represent data, a
quantum system uses the qubit. The qubit is represented as a
square matrix of the dimensions 2n-by-2n, where n is the
number of bits in the qubit. Fig. 1. Shows the density matrix
of a 2-bit qubit.

Fig 1. A 2-bit qubit density matrix representation

Here, the rows and columns represent the possible bit
combinations, and the corresponding diagonal values
represent the probability with which the bit combination will
be returned when the qubit state is read. The density matrix
contains real and imaginary values. The density matrices must
be have sum of diagonal elements to 1, must be a Hermetian
and a positive semi-definite matrix.

Similarly, as with classical computers, quantum computers
also have gates which transform the probabilities of the bit
combinations in a qubit. They are also represented by 2-by-2
density matrices, and are complex and unitary. Fig. 2 shows
the qubit representation of an X gate (also called the qubit NOT
gate).

Fig 2. X (qubit NOT) gate. It switches the probabilities between the bit
combinations.

A 2-by-2 gate, however, can only be applied to a single
qubit density matrix. In order to be applied to higher order
matrices, the gate must be expanded to equal the dimensions
of the qubit itself. This is done via creating the appropriate
Kronecker product of the gate. The formula for creating an n-
qubit gate is as follows –

where i is the ith qubit that the gate will apply to, n is the
number of qubits, I is a 2-by-2 identity matrix, G is the 2-by-2
gate matrix, and represents the kronecker product function.
The above equation results in a 2n-by-2n matrix which can be
applied to the 2n-by-2n qubit density matrix. Application of
qubit gates to qubits is done by –

Here, Qnew is the newly transformed qubit resulting from
the application of gate G to the original qubit Q. G† is the
Hermetian of the gate G.

B. Randomized Benchmarking

The purpose of the Randomized Benchmarking method is
to find how accurate the computations are after applying the
gates to a certain initial starting qubit. What it measures is the
“proximity” of the result after the application of gates. This
“proximity” can be considered as how erroneous the gates are
and is known as the infidelity. Algorithm 1 shows the code for
Randomized Benchmarking.

The algorithm takes in the number of test runs N, the
number of gates to apply per run M and the initial qubit Qubit
as inputs. For every run, M gates are chosen at random and
applied one after the other. These gates are then stored in a
LIFO queue. The initial Qubit undergoes a series of
probability transformations due to the application of these
gates that results in a completely different set of probabilities.
After the first inner loop, the initial Qubit has been destroyed.
The next inner loop pops the queues from the LIFO Queue and
applies the Hermetian transformation to the gate. One of the
gate properties is that the conjugate transpose of the gates is
equal to itself, and that they are unitary gates. This means that
by applying a gate to a Qubit and applying the Hermetian of
the gate to the resulting qubit will result in the Qubit reverting
back to its original state. As such, the application of a sequence
of gates and then the Hermetians of those gates should ideally
result in the initial Qubit. Practically, however, quantum
hardware does not give the exact initial state. Due to noise in
gate hardware, the exact calculations are rarely accurate, and
this becomes apparent after the application of the gates and

their Hermetians. It is expected that as more gates are applied,
the “further” the final state is from the initial state.

C. NVidia CUDA and GPUs

The Compute Unified Device Architecture (CUDA)
library, developed by NVIDIA, is a software and hardware
architecture that enables the users to harness the high counts
of parallel processing power of the recent NVIDIA graphics
cards. From the hardware perspective, the GPU consists of
several multiprocessors working in a SIMT (Single Instruction
Multiple Thread) fashion, each of them containing a certain
number of streaming processors. In order to develop GPU-
enabled applications, programmers can make use of various
programming languages: C/C++ for CUDA, OpenCL, Fortran
or DirectCompute. However, CUDA is the proprietary library
provided by the hardware developers themselves, and thus
provides many functionalities that allow users to fully utilize
the hardware. The primary difference between a GPU and a
CPU is that GPUs contain a high number of less powerful
cores while CPUs contain a few number of highly powerful
cores. Other than that, the other properties are similar. GPUs
contain its own memory spaces; (1) Global memory - Data
stored in global memory is visible to all threads within the
application (including the host), and lasts for the duration of
the host allocation. (2) Shared Memory – Data stored here is
visible to all threads within the block that allocates it. This type
of memory allows for inter-thread communication to occur
and permits the sharing of data between threads. This is also
faster than the global memory. (3) Local memory – Local
memory has the same properties as normal registers, but has a
larger available memory size but it is much slower. Apart
from these, there are also Texture and Constant memory
available, but it is not relevant in this context. CUDA provides
a hierarchical execution model for execution of its threads.
The abstraction is done at 4 levels. These abstractions are (in
order of highest abstraction to the lowest) - grids, blocks,
warps and threads

III. RELATED WORK

The concept of Quantum Systems was first put forth by
Feynmen [1]. The paper emphasized the complexity of
simulating quantum systems using classical computers. A
well-controlled system can be built from the bottom up, and
by doing so, one could create a computer whose constituent
parts are governed by quantum dynamics generated by a
desired Hamiltonian. However, at that time period, the
computational power required to even describe the quantum
system which scales exponentially with the number of its
qubits was practically infeasible. Additionally, delving this
deeply into the properties of this system led to the discovery
of difficult to compute properties of a quantum many-body
model, such as the nature of quantum-phase diagrams. This
initial proposed model is known as the “quantum simulator”.

Since then, there have been great strides towards feasible
quantum computers, even though much work is yet to be done
to make quantum computers mainstream. As such, quantum
computing simulation libraries are still what drives the
majority of research. These simulators come in different
variations and levels of complexity [8], each catering to a
specific need. Sequential quantum simulators are many, and
have a good variety of representations and contains different
types of simulators [9]: quantum programming languages
(QCL, Q language, Quantum Superpositions, QuBit),

quantum compilers (Qubiter, GQC), quantum circuits
simulators (QCAD, QuaSi, Libquantum), quantum hardware
emulators (QCE, QSS) and purely pedagogical software
(quantum Turing machine simulator, Quantum Search
Simulator, Shor’s algorithm simulator). The need for parallel
simulators emerges due to the super-exponential nature of
quantum computation. It is extremely time consuming for
classical computing devices simulate it. The first parallel
simulator was developed by Obenland and Despain [10], but
was based on the physical model of a very specific model and
so did not see mainstream use. Since then, there have been
many parallel CPU implementations, [10, 11]. However, they
all fall short due to lack of scalability. The latest approach that
researchers are taking to further optimize the simulators are
through the GPUs. Much work has already been done on
simulating specifics applications [12, 13]. Similarly, several
generic single GPU and distributed GPU systems for quantum
simulators have been developed and see widespread use [14,
15].

One of the key problems with quantum systems are that
they have degrading accuracy [16, 17]. While many
companies are racing to become the first to develop the first
real quantum computer, one of the major hurdles of noisy
systems still exist. To facilitate the work in this field,
researchers have come up with standards to measure and
standardize the testing process [18, 19, 20, 21, 22]. The
industry standard so far has been QST and GST, but [23]
argues that they are both too slow and bad at scaling. To
counter this, they propose a new type of testing called
Randomized Benchmarking. Since then, there have been quite
a few experiments where RB has been used to good effect [23,
24]. The scalability, simplicity and ease of implementation
have made RB one of the currently favored testing methods
for quantum hardware. While much work regarding quantum
simulators have been done, there has been no research into
how RB will perform on GPUs. Since GPUs are now the go-
to implementations for quantum simulators, we need to find a
means of simulating the deteriorating effect of applying gates
to qubits.

IV. IMPLEMENTATION

One of our key motivations is to be able to generate the
decaying effect shown by real quantum gates on the GPU. We
do this by manipulating the floating point precision of the
calculations of the operations. We do this via the formula–

𝑅𝑓𝑎𝑐𝑡𝑜𝑟 = 1 ≪ 𝑀

𝑉𝑎𝑙𝑢𝑒 =
𝑟𝑜𝑢𝑛𝑑(𝑉𝑎𝑙𝑢𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ 𝑅𝑓𝑎𝑐𝑡𝑜𝑟)

𝑅𝑓𝑎𝑐𝑡𝑜𝑟

Here, M is the precision in bits, and Valueoriginal is the actual
value with full 64-bit precision. This function is applied to all
mathematical calculations done in every thread. For our
implementation, we start by setting the probability of all qubits
being 0 to 1.0. In other words, our Qold [0][0] is set to 1.0. With
full precision, we expect that the value for Qold [0][0] will be
1.0 after going through Randomized Benchmarking. With less
precision, we will find that the value will deviate from 1.0.
Fidelity is the measure of how much the final value deviates.
This is given by –

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 = 1 − 𝑐𝑜𝑛𝑗(𝑄[0][0]) ∗ 𝑄[0][0]

Q is the final qubit after applying Randomized
Benchmarking. The closer Fidelity is to 1.0, the less the noise
is in the system. For our experiments, we vary the precision
and measure the corresponding Fidelity with a range of gates.
Next, we talk about the two facets to the implementation of
our framework. First we focus on reducing the number of
computations for the operations while maintaining the
accuracy of the results. Then we focus on how to implement a
parallelized version of the algorithm for deployment on the
GPU.

A. Optimizations

For the linear algebra operations involved in applying the
gates to the quantum bit and for calculating the Hermetians,
the number of calculations were reduced by taking advantage
of the matrix properties of the gates and the qubits. These
properties enable the reduction of the problem size due to
rendering most of the computations necessary redundant.
Specifically, three major algorithmic changes were done.

The first change was to only calculate the Hermetian of
gates (line 8 of Algorithm 1) for specific gates. The traditional
way of applying gates in quantum simulators use the
transposed conjugate of the gate matrix and the gate matrix
itself. The original qubit is then right multiplied by the
transpose-conjugate and left multiplied by the original gate.
These inner products are done in sequence to each other. It
should also be noted that for multi-qubit systems the multi-
qubit gate is first generated by the Kronecker product and then
the conjugate transpose is applied. However, this conjugate
transpose step can be completely ignored due to the fact that
gate matrices must be Hermetian matrices. In other words, one
of the properties that a matrix must fulfill to be a gate is that it
must be a conjugate transpose of itself. Therefore, the Clifford
group of gates (X, Y, H, Z) used are all Hermetians, meaning
that they do are not required to undergo the Hermetian
transformation. This change effectively removes one full
computational step of the O(22n+1), where n is the number of
qubits. The second optimization done involves using the Eigen
property of the gates that reduces the computations to only
using the upper half of the square matrices. Algorithm 1 can
be unwound in the form of the equation –

𝐺𝑟𝑖𝑔ℎ𝑡 = 𝐺1𝐺2 … 𝐺𝑁−1𝐺𝑁𝐺𝑁
𝐻𝐺𝑁−1

𝐻 … 𝐺2
𝐻𝐺1

𝐻

𝐺𝑙𝑒𝑓𝑡 = 𝐺1𝐺2 … 𝐺𝑁−1𝐺𝑁𝐺𝑁
𝐻𝐺𝑁−1

𝐻 … 𝐺2
𝐻𝐺1

𝐻

𝑄𝑛𝑒𝑤 = 𝐺𝑟𝑖𝑔ℎ𝑡𝑄𝑜𝑙𝑑𝐺𝑙𝑒𝑓𝑡

where N is the total number of gates. However, we know
that the Qubit Qold can be decomposed as –

𝑄𝑜𝑙𝑑 = 𝐿𝐿𝑇

where L is the Eigen decomposition of Qold. So now we can
reduce the original equations to

𝐺𝑟𝑖𝑔ℎ𝑡 = 𝐺1𝐺2 … 𝐺𝑁−1𝐺𝑁𝐺𝑁
𝐻𝐺𝑁−1

𝐻 … 𝐺2
𝐻𝐺1

𝐻𝐿

𝐺𝑙𝑒𝑓𝑡 = 𝐺1𝐺2 … 𝐺𝑁−1𝐺𝑁𝐺𝑁
𝐻𝐺𝑁−1

𝐻 … 𝐺2
𝐻𝐺1

𝐻𝐿𝑇

𝑄𝑛𝑒𝑤 = 𝐺𝑟𝑖𝑔ℎ𝑡𝐺𝑙𝑒𝑓𝑡

 When calculating the infidelity, we are only interested in
the first diagonal value of the resulting matrix, i.e. Qnew[0][0].
Therefore, instead of calculating the full matrix, we may
simply get the inner product of the first column of Gright and
the first row of Gleft. Thus, the total number of calculations of

the full algorithm sequence can effectively be reduce to half,
which contributes greatly to the reduction of the execution
time of the complete run.

 The last and most impactful of the optimizations is the
complete removal of the calculation of the Kronecker product.
The calculation of the Kronecker product takes place in line 3
of Algorithm 1. While getting the random gate, a random qubit
is chosen from the N qubits. Then a random gate from among
the Clifford groups is chosen and then the appropriate number
of Kronecker multiplications are done to get the full N-qubit
gate. Generating this gate for every step of the algorithm is
time consuming, and any reduction here will reduce the total
execution time greatly. The eventual product of the Kronecker
multiplications is a full n-qubit gate, which is then multiplied
against the qubit matrix. However, the n-qubit gate is very
sparse, meaning that most of the values need not be generated
via Kronecker at all. Additionally, given the index, the exact
value of the Kronecker product can be deduced due to the
structured expansion that Kronecker multiplications result in.

B. CUDA Implementation

As shown in Algorithm 1, there is one outer loop and two
inner loops. The inner loops are involved in the actual
calculations while the outer loop is based on the number of
runs. The two inner loops contain the inner product of the
matrices. However, in order for the calculations to be accurate,
these operations must be applied in sequence. Therefore, the
scope for parallelization is within the operation calculation
itself. The operations to be parallelized here are the Hermetian,
the optimized Kronecker products (n-qubit gate generation)
and the inner product of the qubits and the gate matrices. The
memory was allocated using CUDA’s unified memory.

For parallelizing the inner product for this simulation
scheme, the qubit state matrix is partitioned in sets of fixed
dimensions and assigned to CUDA blocks, where the sub-
vectors are processed in parallel on a SIMT (single Instruction
Multiple Thread) fashion. The index multiplications are done
in parallel threads. The final sum is done by reduction, where
every summation between two values are done in parallel. The
major bottleneck here is during the synchronization of the
threads; every sum step needs a blocking call for the previous
summing step so that the values required for the sum have
been correctly calculated. For a matrix inner product of two
square matrices of the dimensions 2n-by-2n, we will end up
with a new matrix of dimensions 2n-by-2n. For maximum
parallelism, every index is calculated in a separate
independent thread. The multiplication and reduction are also
done in independent threads. During deployment of the
threads, the number of threads per CUDA block was kept at
the maximum possible number of threads (i.e. 1024) for the
GPU experimented on. This is not enough for large qubit sizes,
so the number of blocks used were set such that –

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 =
22𝑛

1024

This ensures that there are always enough parallel threads
to get the maximum parallelism possible. There were also
checks in place to ensure that the number of threads were
multiples of 32 in order to keep the number of threads
consistent with the warp sizes.

For the Hermetian calculations, the conjugate and the
transpose functions on a single matrix index were merged to
form a single operation where given an index, the transpose of

the index is calculated by getting the value of the “mirror”
index and then the conjugate of that value calculated and
stored. Each index is run in a separate thread, with the threads
distributed in the same manner as for the inner product. The
dynamic qubit gate generation without the use of Kronecker
products is also done on the GPU. The gate is generated and
stored in the GPU’s global memory, so there is no need to
transfer the large gates from the host to the device and vice

versa. The function applyGate() from Algorithm 1
deploys a single thread for the each of the 22n values in the
matrix. This is run once when a random gate is generated (line
3 Algorithm 1). The execution time for the dynamically
generated gate instead of doing the Kronecker products is
further beneficial since the Kronecker product calculations,
had they been done on the GPU, would have required thread
synchronization for every loop iteration. However, the
dynamic generation requires no such bottleneck and the gates
require much less time to be generated. The multi-GPU
implementation is done for the outer loops. Note that the final
value for fidelity is calculated for every run of the outer loop,
and is independent of the rest of the other calculations.
Therefore, the outer loop can also be deployed in parallel
threads. We take advantage of this fact by deploying the
different outer loops in different GPUs. The devices never
need to be synchronized.

V. EXPERIMENT AND RESULTS

The test bed used for the experiments contain 4 NVidia GTX
1080s. The CPU is Intel(R) Xeon(R) CPU E3-1225 v3,
3.20GHz with 4 Cores and has 64GB of RAM. The operating
system used was Linux’s Ubuntu 16.06. The timings were
taken using CUDA’s event synchronization library functions.
The values used are means from 20 runs. Profiling was done
using NVidia’s profiler. Fig. 3 shows the pure execution time
for the single GPU implementations, including the
computation reduction optimizations. The log-scaled graph
shows the clear benefits in performance of the GPU’s
parallelized version. We can see that for smaller number of
qubits, the sequential version is better since the overhead of
moving the qubit from the CPU to the GPU is too large to
make up for the execution time reduction. However, at around
the 5th qubit, the execution time of the sequential version starts
taking more time than the parallel version. By the 13th qubit,
the total speedup is around 400 times.

Figure 3. – Sequential versus Parallel execution times

The throughput graph (Fig. 4) shows that up to the 7th qubit
there is a clear benefit from parallelism but plateaus out after
that. The bulk of the computations among all the steps are
taken up by the matrix multiplications. The synchronization
required for the sum reduction becomes a significant

bottleneck at that stage, resulting in a flat throughput. Fig. 5
presents the execution time of the multi-GPU implementation
of the Randomized Benchmarking algorithm. As expected, the
2-GPU implementation is clearly almost twice as better as the
single GPU case.

Figure 4. – Sequential versus Parallel throughput

Figure 5. – Multi-GPU execution time

 However, the addition of more GPUs do not clearly benefit
at the same scale, as can be see for the 3 and 4 GPU cases. As
the number of GPUs increase, the benefits of adding more
GPUs tend to decrease. The overall execution time does
decrease with increasing number of runs, and it scales linearly.
Ideally, with 4 GPUs we should expect a speedup of 4 times if
the scale was perfectly linear. The graphs show that this is not
the case, and we have a speed up of around 3.6 times with 4
GPUs. This phenomenon can be explained by the fact that
while pure execution time may speed up four-fold, the overall
execution time given here also includes the data transfer time
from host to device and vice versa, which does not scale
linearly. Thus a sub-linear effect is introduced and the benefits
of using multiple GPUs are somewhat diminished.
Nonetheless, the speed up achieved is 90% of the maximum
expected.

 The final set of experiments performed focuses on the
evaluation of the GPU’s calculated fidelity based on the
varying bit precision. The full implementation of the system
was done using double precision. We have observed that the
fidelity largely stays the same throughout the bit values
between 64 and 10 bits, no matter how many gates are applied
after each other. Once we started seeing decreasing fidelity,
we varied the number of gates and the qubit size to understand

how the fidelity changes against them. Fig. 6 shows how the
fidelity is affected by an increasing number of gates. The data
shown is the calculated mean and is using a precision of 9 bits.
The trend here shows a strong inverse correlation between the
increasing number of gates applied and the fidelity. This is
consistent with the findings in [17, 19], where real quantum
systems show a tendency to deteriorate with higher number of
gates.

 Another observation here is that for higher qubits, the
fidelity deteriorates faster than for smaller qubit sizes. This is
due to the fact that larger qubits undergo more computations
and are thus more affected by round off errors occurring due
to coarser precisions.

Figure 6. – Fidelity vs. Number of Gates Applied with varying qubits

VI. CONCLUSION

 We introduce a set of new linear algebra optimizations that
reduce the problem sizes of quantum computing calculations
that drastically reduce execution time as well as make it easy
to parallelize. These should be generic enough to be applicable
for all quantum computing systems since these reductions
were done at the most basic levels which are required by
virtually all quantum simulators. We have conducted
experiments based on which we can conclude that Quantum
simulators benefit greatly from their usage of the parallelism
afforded by multi-GPU systems in addition to the reduction in
problems size, achieving a speedup of more than 400 times.
Additionally, simply by changing the precision we were able
to simulate the decaying effect of real quantum systems,
making it a lightweight solution to a complicated simulation
problem. While this is a sufficient solution currently, future
work can involve usage of Gaussian noise to make gate decay
simulation more faithful to how actual Quantum systems
perform.

ACKNOWLEDGMENTS

This material is based in part upon work supported by the
National Science Foundation under grant number IIA-
1301726. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] R. Feynman, R.P., Simulating physics with computers. International
journal of theoretical physics, 21, no 6-7 (1982), pp.467-488.

[2] Buluta, Iulia, and Franco Nori. Quantum simulators. Science, 326, no.
5949 (2009): 108-111.

[3] Lin, Y-J., R. L. Compton, K. Jimenez-Garcia, J. V. Porto, and I. B.
Spielman. Synthetic magnetic fields for ultracold neutral atoms.
Nature, 462, no. 7273 (2009): 628-632.

[4] Cirac, J. Ignacio, and Peter Zoller. Goals and opportunities in quantum
simulation. Nature Physics, 8, no. 4 (2012): 264.

[5] Bravyi, S., and A. Kitaev., Universal quantum computation with ideal
Clifford gates and noisy ancillas. Physical Review A, 71, no. 2 (2005):
022316.

[6] Gottesman, D., The Heisenberg Representation of Quantum
Computers, in Proceedings of the 22nd International Colloquium on
Group Theoretical Methods in Physics, pp 32-43, (International Press,
Cambridge, 1999), p. 23

[7] Aaronson, S., and D. Gottesman. Improved simulation of stabilizer
circuits. Physical Review A, 70, no. 5 (2004): 052328.

[8] Eason, G., B. Noble, and I. N. Sneddon, On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions, Phil.
Trans. R. Soc. Lond. A, (1955) 247, 529-551

[9] Quantiki. List of QC Simulators, 25 Apr. 2018,
www.quantiki.org/wiki/list-qc-simulators.

[10] Obenland, K. M., and A. M. Despain. A parallel quantum computer
simulator. arXiv preprint quant-ph/9804039 (1998).

[11] Brandl, M. F., A quantum von Neumann architecture for large-scale
quantum computing in systems with long coherence times, such as
trapped ions. arXiv preprint arXiv:1702.02583 (2017).

[12] Ufimtsev, I. S., and T. J. Martinez. Quantum chemistry on graphical
processing units - Strategies for two-electron integral evaluation.
Journal of Chemical Theory and Computation, 4, no. 2 (2008): 222-
231.

[13] Maia, J. D., G. A. Urquiza Carvalho, C. P. Mangueira Jr, S. R. Santana,
L. A. Cabral, and G. B. Rocha, GPU linear algebra libraries and
GPGPU programming for accelerating MOPAC semiempirical
quantum chemistry calculations. Journal of chemical theory and
computation, 8, no. 9 (2012): 3072-3081.

[14] Amariutei, A., and S. Caraiman, Parallel quantum computer simulation
on the GPU. In Proceedings of the 15th International Conference on
System Theory, Control, and Computing (ICSTCC), 2011, pp. 1-6.
IEEE.

[15] Gutierrez, E., S. Romero, M. A. Trenas, and E. L. Zapata. Parallel
quantum computer simulation on the CUDA architecture. In: Bubak
M., van Albada G.D., Dongarra J., Sloot P.M.A. (eds) Computational
Science – ICCS 2008. ICCS 2008. Lecture Notes in Computer Science,
vol 5101. pp. 700-709, Springer, Berlin, Heidelberg

[16] Deutsch, D., and R. Jozsa, Rapid solution of problems by quantum
computation. Proc. R. Soc. Lond. A, 439, no. 1907 (1992): 553-558.

[17] Shor, P. W., Scheme for reducing decoherence in quantum computer
memory. Physical review A, 52, no. 4 (1995): R2493.

[18] O'Brien, J. L., G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford,
T. C. Ralph, and A. G. White, Quantum process tomography of a
controlled-NOT gate, Physical review letters, 93, no. 8 (2004): 080502.

[19] Knill, E., Quantum computing with realistically noisy devices. Nature,
434, no. 7029 (2005): 39.

[20] Reichardt, B. W. Quantum universality by state distillation, arXiv
preprint quant-ph/0608085 (2006)

[21] Raussendorf, R., and J. Harrington, Fault-tolerant quantum
computation with high threshold in two dimensions. Physical review
letters, 98, no. 19 (2007): 190504.

[22] Mohseni, M., A. T. Rezakhani, and D. A. Lidar. Quantum-process
tomography: Resource analysis of different strategies. Physical Review
A, 77, no. 3 (2008): 032322.

[23] Knill, E, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost,
C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, Randomized
benchmarking of quantum gates. Physical Review A, 77, no. 1 (2008):
012307.

[24] Magesan, E., J. M. Gambetta, and J. Emerson. Scalable and robust
randomized benchmarking of quantum processes, Physical review
letters, 106, no. 18 (2011): 180504.

[25] Ryan, C. A., M. Laforest, and R. Laflamme. Randomized
benchmarking of single-and multiqubit control in liquid-state NMR
quantum information processing, New Journal of Physics, 11, no. 1
(2009): 013034.

