
A Memory Layout for Dynamically Routed Capsule Layers

Daniel A. Lopez†, Rui Wu§, Lee Barford†‡, Frederick C Harris, Jr.†

†Dept. of Computer Science and Engineering §Dept. of Computer Science ‡Keysight Laboratories
University of Nevada, Reno East Carolina University Keysight Technologies

Reno, NV Greenville, NC Reno, NV

daniellopez@nevada.unr.edu, wur18@ecu.edu, lee.barford@ieee.org, fred.harris@cse.unr.edu

Abstract—Capsule Networks exploit a new, vector-based per-
ceptron model, providing feature instantiation parameters on
top of feature existence probabilities. With these vectors, simple
scalar operations are elaborated to vector-matrix multiplication
and multi-vector weighted reduction. Capsule Networks include
convolutional layers which take the initial input and help it
become a tensor. A novel data abstraction maps the individual
values of this tensor to one-dimensional arrays but is conceptual-
ized as a 2D grids of multi-dimensional elements. Moreover, loss
function thresholds and architectural dimensions were arbitrarily
set during the introduction of Capsule Networks. While current
machine learning libraries provide abstractions for convolutional
layers, a TensorFlow optimization requires structural overhead
for a full Capsule Network implementation. They lack simple
optimizations specifically for Capsule Network data allocation.
This paper presents a scalable GPU optimization for the training
and evaluation of Capsule Networks.

I. INTRODUCTION

Capsule Networks are a novel interpretation of neural
networks where the perceptron model has been expanded to
groups of artificial neurons which return vectors rather than
scalars [8]. In this model, the values of the output vector
correspond to specific instantiation parameters of the object
being recognized in an image, whereas the length of the vector
corresponds to the probability of the feature being detected
existing in the image. Analogously to a conventional neural
network, the capsule outputs from one layer (after undergoing
some dimensionality transformation via transformation matri-
ces) to the next are compiled via some weighted sum-reduction
algorithm. The weights for this algorithm are computing by a
routing-by-agreement algorithm which, similarly to K-means
[5], grants a higher weight to vectors whose outputs tend to
cluster together, thus exploiting the rareness of “agreeing”
vectors in higher dimensions found in discriminatory learning
[4]. Although the authors of [8] present this straightforward
method, they also stress that there are many different ways to
produce a similar output.

The presented CapsNet architecture in [8] features a con-
volutional layer, followed by a capsule layer, the latter of
which contains a capsule for each feature class defined. The
dynamic routing algorithm occurs between the two layers in a
network, where the initial “output” vectors of the first capsule
layer are composed of the same pixel value from many filter
outputs from the previous convolutional layer. In machine
learning libraries, individual tasks are distributively organized
to accommodate many different devices and easy scaling

from a single machine to a distributed system [1]. However,
when implementing Capsule Networks, memory resources are
wasted when the tensor representing the cube output from the
convolutional layer is transformed via these tasks to a set of
8D vectors. Moreover, during reconstruction error generation,
although tasks are modeled alongside their dependencies in a
graph-based representation in an effort hide latency, redundant
or unnecessary tasks may accidentally execute. This GPU
acceleration method does not compute the reconstruction error.

The number of vector channels in the reshaping of the
convolutional is varied, and thus, the number of filters in the
PrimaryCaps layer is dl times multiplied by the number of
vector channels. This paper proposes a set of CUDA kernels
which aim to optimize the operations of a capsule network.

The rest of this paper is structured as follows: Background
and related work is covered in Section II. Section III presents
the methodology from data allocation through algorthmic
definitions all the way to loss and activation functions. Results
are presented in Section IV including timings, speedup and
throughput calculations. Conclusions and future work follow
in Section V.

II. BACKGROUND AND RELATED WORK

Given the embarrassingly parallel nature of some of the
filter operations, operations on the convolutional layer may
be facilitated with previous abstractions of multidimensional
data. Such abstractions allow input and output to be distributed
in nature for multiple GPUs [2], [3], [6]. Moreover, although
other linear algebra optimizations exist, they rarely include
optimizations for the bigger picture for which they will be
used.

A. Existing Tensor Flow Implementations

TensorFlow provides an API to a model-loss centric frame-
work; a model is defined as a directed acyclic graph of tasks
that eventually lead to a loss function which is minimized
through a solver [1]. This generalization allows it to attempt
to complete tasks that are independent of one another in
parallel, as well as distributing a task across many nodes and
potential multi-core devices. Generalized as it may be, this
has serious pitfalls, as resources may be wasted on needless
tasks, simply because a later dependent task decides not to
used based on other input. The framework seizes the control
flow and may waste computational power on values that are



thrown away. However, the solvers in this framework still
enable a Tensorflow implementation to reach around 90%
accuracy within hours sequentially, and within minutes with
GPU computation.

Moreover, TensorFlow back-end computation is accelerated
by cuDNN, a deep neural network library.

GPU-accelerated primitives specific for convolutional neural
networks (as well as other deep neural network formats) are
provided in cuDNN, a library released by NVIDIA [2]. These
primitive include layer definitions forward and backward prop-
agation for convolutional layers which are accelerated through
very specific indexing filter values allocated to these layer.
As with normal batching techniques, the first most dimension
of their tensor primitive is allocated for the batch size in all
tensors used in computation [4].

The host-only API provided enables the initialization and
utilization of the filter kernel with no human interaction,
enabling speedup for their back-end processing. Although it
is generally not required to manually update or check the
individual values in these tensor, the authors found it easier to
implement a simple, straightforward convolutional pass. In this
implementation, the input (image), filter, and output tensors are
allocated sequentially.

An admittedly performance-hindering method; back propa-
gation is done with the use of built in “atomicAdd” functions,
since the same filter value has an effect on multiple output
values during forward propagation and thus, gets the same
influence in back propagation. In Section V, using these
primitives is considered.

B. Computational Walk through

The CapsNet Architecture is defined as a convolutional layer
(PrimaryCaps), followed by a capsule layer, which reinterprets
the output of the convolutional layer as its own output,
followed by a smaller capsule layer (DigitCaps). The principle
novel computation in capsule networks lies in the operations
between capsule layers during the forward propagation stage.
Here, lower-level, lower-dimensional capsules undergo dimen-
sional transformation and a dynamically weighted reduction to
become the output of a higher-level, higher-dimensional cap-
sule network. This transformation is analogous to multiplying
individual scalars by weights in feed-forward, fully-connected
layers.

The lower-dimensional capsules has “outputs” by the feature
map output of a convolutional layer with ReLU activation. In
PrimaryCaps, the number of filters must be divisible by the
lower dimension to reshape the feature map outputs as vector
maps. For referential integrity, the lower dimension, dl, will
be 8, and the higher dimension, dl+1 will be 16. Therefore,
depth wise, dl sized increments may be considered a vector
map, and the number of lower level capsules is dl times the
number of vector channels. The number of vector maps (and
consequently, the number of lower-level capsules) are varied
in this paper to study the speed up effectiveness. Furthermore,
these methods will use the MNIST data set of hand written
digits of 28× 28 pixels.

1) Forward Propagation: First, the lower level capsules, j,
produce an output vector, ûj|i, for each higher level capsule, i,
once for each possible output class, estimating the parameters
of their output vector, vi, which is transformed to the dimen-
sional space of the higher layer by an evolved transformation
matrix, W, such that ûj|i = Wijui. Each higher level capsule
then computes a dynamic weighted sum of these vectors as
their output, vj .

For a vector to calculate its output, the weighted sum
result, sj , undergoes a vector squishing activation function,
vj =

‖sj‖2
1+‖sj‖2

sj
‖sj‖ . This is analogous to the sigmoid activation

functions usually applied onto the weighted sums in traditional
capsule networks.

The dynamic weights, ci, are updated by computing the
log prior probabilities, bi, which are iteratively updated.
During each iteration, the probabilities, bi are incremented
by the scalar product of the activated weighted sum, vj =
squash(sj), sj =

∑
i cijûj‖i, and the vector in question, ûj‖i.

The final capsule vectors outputted encode the probability
of the existence of that feature in the length of the vector,
while encoding the instantiation parameters of the pose of
that feature in the orientation of the vector. The orientation
parameters are heavily determined by the transformation ma-
trix, which are optimized using µ momentum, instead of the
Adam optimizer. The network will classify an image as being
part of class i from k classes with the maximum length, ‖vi‖.

2) Back Propagation: In back propagation, a corresponding
error value is computed as a factor of the length of the vectors.
This error value is the combination of the gradient of the loss
function, multiplied by the derivative of the vector squashing
activation function, effectively representing the error gradient
towards which the free W values scattered throughout the
network collectively inch towards. These are weighted by their
respective c values to produce the error gradients, δuj|i, for
all i output capsule vectors.

The error gradients are then transformed into the dimen-
sion of the lower level capsules, by being multiplied by the
transpose of the original transformation matrix, WT

ij . Before
then, however, a matrix product of these error gradients, and
the original inputs to the network become part of the ∆Wij .
The output of the lower level capsules, however, are in truth,
the rearranging of the output of the earlier convolutional layer.
Back propagation occurs in this layer as normal.

3) Sequential Batch Updating: Given the time it takes to
train a network, and the potential bias the ordering of the
training examples gives to the network, different techniques
were created in order to speed up processing and reduce
potential bias and equalize the change all training examples
provide. The latter is important to greatly increase the chances
the network will converge to a more global optima. Mini-
batching is one such technique.

In mini-batching, a batch of input images are provided to the
network, where forward, and subsequently, back propagation
are computed in parallel to one another. Afterwards, the result-
ing ∆W’s are reduced from all these “layers” to provide one
main error, by which the network is updated. This paradigm



is used in machine learning frameworks such as TensorFlow.
All matrices and vectors used in these computations are

allocated as 1D arrays and indexed very precariously in the
proposed method. Traditional mini-batching compilations of
images would include higher complexities in these indexing.
Moreover, the reduction of these ∆W’s from multiple devices
would increase the communication needed between the host
and all potential devices, thereby reducing potential scaling
benefits. Therefore, this method does not use this technique,
but rather computes forward and back propagation for each
image sequentially, accumulating the error in W and then
applying it to W at the end.

III. METHODOLOGY

The network is trained with several forward and back
propagation passes for images from a training data set with
periodic weight updates. To go through all data points is
an epoch, and several epochs are performed in an effort to
minimize the overall network loss, and conversely, maximize
accuracy. Network accuracy evaluation is done after training,
where a different testing data set is used to eliminate biased
estimations.

A. Data Allocation
All data structures are allocated using Unified memory,

where data movement is optimized by the device scheduler.
Since everything is allocated with 1D arrays, memory man-
agement and organizing is highly significant, and this method
presents one way to arrange the data.

Data may be thought of as a k × t grid of potentially
multi-dimensional elements in row-major ordering, where an
element i, j corresponds to class i and lower level capsule
j. An example of the data layout may be found in Fig. 1,
where û is being created for each higher-level capsule column-
wise, from each lower-level capsule row-wise. The lower level
capsule outputs, ui,j , are represented in the middle tensor, and
are duplicated along each column. Although this is potential
memory storage waste during forward propagation, the extra
storage will be used to save appropriate δui,j during back
propagation.

For the capsule layer interface operations, there are a total
of two 1D element grids, b and c, three vector-element grids,
u, û, and v, (v has a height of 1, and shares the dimensionality
of û) and three matrix-element grids, W, ∆W, and Wvelocity,
the latter two of which are used for updating.

The preceding convolutional layer, however, requires sim-
pler, sequentially indexed (channel, then depth if applicable,
then height, then width) of 3 and 4 dimensional arrays. These
are required for the input, x, the output, x̂, and the filters of
the arrays. Much like the W in the capsule layer, the filters
have two other equally sized companion arrays, to hold the
errors, and the velocities required in momentum updating.

B. Algorithmic Definitions
In Procedure 1, forward propagation is given the image

as a vector, x, and requires the use of the dynamic routing
procedure defined in [8].

The Rearrange method interprets the output tensor from
the convolutional layer as a list of vectors as captured down
the output depths. These vectors are then undergo the vec-
tor squash activation function, the non-linear function which
facilitates discriminatory learning by scaling vector lengths
close to zero and long vectors closer to one. Afterwards, as is
illustrated the middle tensor shown in Fig. 1, these vectors
are duplicated along the “columns”, representing each of the
DigitCaps classes. The Hadamard product, represented by ⊗,
then produces distinct ûi, j used in dynamic routing.

Algorithm 1 Forward Propagation
1: procedure FP(x)
2: x̂← PrimaryCaps.FP (x)
3: u← Duplicate(Activate(Rearrange(x̂)))
4: û←W ⊗ u
5: return Routing(û, 3, 2) . This is defined in [8]

On the other hand, during back propagation, the corre-
sponding label to the vector, yx, is provided to calculate
the error functions. This is performed by the DerivativeAc-
tivationAndLoss kernel. With the remaining c values which
were set during dynamic routing, a δu, corresponding to
lower level capsules are generated by multiplying v with
the corresponding transpose transformation matrix, WT , and
scaled with c. Before continuing, however, ∆W needs to
be incremented by the matrix product of the previous input
uT and the error gradient for the output, δv. After δu
has been calculated for all j along the columns, they are
reduced to the left, to compile all the error gradients proposed
by each higher level capsule, before having each undergo
another “unsquashing”. This inverse activation is performed
to match the initial activated squashing done during forward
propagation. Finally, these vectors are rearranged and handed
back to the convolutional layer for tradition convolutional back
propagation.

Algorithm 2 Back Propagation
1: procedure BP(yx)
2: δv← DerivativeActivationAndLoss(v, y)
3: δuij ← δcijW

T
ijδvj

4: ∆Wij ← ∆Wij + δvju
T
ij

5: δx̂ ← DerivativeActivation(ColReduction(δu))
return PrimaryCaps.BP (δx̂)

C. Loss and Activation Functions

The error function applied to the back vectors include
the derivative of two functions, the loss function aforemen-
tioned and the partial derivative of the vector activating-
squash function. The loss function and its derivative include
Tk which is set if an instance of class k is present in the
image. The original vector activation squash-function and its
corresponding derivative may be seen in Eq. 1 and Eq. 2.

The activation function multiplies a non-linear squashing
scalar with a normalized vector. The partial derivative function



Fig. 1. The dl+1 × dl transformation matrices, shown in the left most tensor, are multiplied element wise with the dl dimensional outputs from the lower
level capsules. These outputs are stored column-wise in the middle tensor, but are duplicated by column-wise for each higher-level capsule. The Hadamard
product of these tensor produces dl+1 sized vector inputs to the higher level capsules in the right most tensor.

squash(sj) =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(1)

∂

∂‖sj‖
[squash] =

2‖sj‖
(‖sj‖2 + 1)2

sj
‖sj‖

(2)

Lk = Tk max(0,m+ − ‖vk‖)2 + λ(1− Tk) max(0, ‖vk‖ −m−)2 (3)

d

d‖vk‖
[Lk] =


−2Tk(m+ − ‖vk‖) ‖vk‖ < m+, ‖vk‖ ≤ m−

2λ(Tk − 1)(m− − ‖vk‖) ‖vk‖ ≥ m+, ‖vk‖ > m−

2(λ(Tk − 1)(m− − ‖vk‖) + Tk(‖vk‖ −m+)) ‖vk‖ < m+, ‖vk‖ > m−
(4)

Eq. 1 shows the original activation algorithm proposed, whereas its derivative is shown in Eq. 2. Eq. 3 is the loss function
proposed by [8] as a function of the length of output vector. Eq. 4 is the derivative of the loss function with respect to the length
of the instantiation vector. Note the normalization factor, sj

‖sj‖ remains present in both equations. Constant hyper-parameters:
m+ = 0.9, m− = 0.1, λ = 0.5

is determined by the scalar portion of the activation function,
and effectively scales the error from the loss function to the
length of the output instantiation vector. The original vector
loss function may be seen in Eq. 3 and its appropriate loss
function is Eq. 4.

IV. RESULTS

To measure the given speed up of these methods, capsule
networks were generated with varying numbers of vector
channels. This effectively changes the number of lower level
capsules by multiples of the convolutional layer’s height and
width, which were set to 6 for referential integrity’s sake.
The time taken to perform forward propagation, backward
propagation and epoch timings are reported, along with the
equivalent speed up and throughput calculations.

Varying the number of channels in the tensor also helps bet-
ter profile the program better through its throughput measure-
ments. Reported below are the time taken to perform forward
propagation, backward propagation and epoch timings, along
with the equivalent speed up and throughput calculations. All
timings seen in Figure 2 and Figure 3 are an average 30
statistical runs, after removing the highest and lowest outliers.
To ensure sequential optimization, the sequential version uses
the Armadillo library for linear algebra operations (matrix-
vector multiplication) [9].

In Figure 2, back propagation is shown to have a higher

Fig. 2. Forward propagation takes less time than back propagation in the
sequential version of these methods since there is no data movement (despite
the inner loop found in Dynamic Routing [8]. This indicates back propagation
is more computationally intensive. These methods are not multi-threaded.

percentage of data computation rather than data movement,
since data movement is not a hindering factor on CPU-
based operations. Parallel timings in Figure 3 further illustrate
the GPU bottleneck since back propagation is faster than
forward propagation. The single image trend lines show the
computation time of processing an entire image, combining
forward and back propagation.



Fig. 3. Back propagation is clearly faster than forward propagation due to
lack of communication overhead in data movement. However, the steadily
increasing gap between the two also indicates computation overhead in back
propagation scales better with these methods than forward propagation.

The sequential version of these methods are completed with
the help of the Armadillo library for linear algebra operations
(matrix-vector multiplication) [9]. Fig. 2 shows, however,
back propagation is shown to be more computationally inten-
sive, since data movement is not a hindering factor on CPU-
based operations. Parallel timings in Fig. 3 further illustrate
this point, as near linear trends are also shown, similar to the
sequential version, but back propagation is clearly faster than
forward propagation, although not by much. However, the gap
between forward propagation and back propagation steadily
increases over larger capsule layer sizes, despite the amount
of data being transferred being the same. This indicates the
back propagation problem scales better to GPUs as opposed to
forward propagation. This comparison is made more apparent
since forward propagation adds initial data transfer overhead.

A. Speedup

To measure the speedup, capsule networks were generated
with varying numbers of vector channels. This changes the
lower level capsule layer size, dependent on the convolutional
layer height and width, both set to 6 for the sake of referential
integrity. Thus, the number of rows in the u grid (and other
grids) is based off the height (6), the width (6), and the
tensor channel size. For the equal tensor channel values found
in [8], forward propagation obtained 32x speedup and back
propagation obtained 116x speedup. These methods were able
to obtain up to 33x speed up for forward propagation and 130x
speed up for back propagation procedures alone.

B. Throughput

Traditionally, efficiency is calculated in multi-CPU ap-
plication to measure resource and memory exploitation in
distributed algorithms. However, GPU speedup is accompanied
with throughput; how many floating point operations (FLOPS)
are computed in a given amount of time. For GPUs, throughput
focuses on the bandwidth of the data flow rather than hard-
ware architecture; an more appropriate, important distributed
algorithm metric. For the graph seen in Figure 5, throughput

Fig. 4. Speedup of these methods start to slow down between 10-15 tensor
channels (360-540 lower level capsules) as these methods increase due to
Amdahl’s law. Note that back propagation, which only communicates resulting
vj errors back to the host, a constant k × dl+1 = 160 values, has higher
speedup than forward propagation, which requires the movement of a 28×28
sized image from the MNIST dataset. [7].

Fig. 5. The throughput is measured by a factor the number of floating points
required to compute (not the operations) at the variable layer divided by the
amount of time taken to complete the meta-operation. These floating points
are the ones for the interim layer only.

was computed solely on the amount of computation used
during the variable layer, the convolutional output to tensor,
for easy comparison. In forward and back propagation, this
equates to a 6 ∗ 6 grid, multiplied by the appropriate number
of depth channels, divided by the processing time in seconds.
This is similar for single image processing, where throughput
is obviously slower due to the concatenation of these two
operations. The warp-based valleys found during the speed up
of the program also make an impact here; computation is less
efficient when hardware resource allocation is not optimized.
There is no surprise that back propagation can produce a
higher throughput than forward propagation, even when the
hidden layers are increased. Contributing to this advantage
are lack of required CPU-to-GPU data communications and
no iterative dynamic routing necessary.



V. CONCLUSION AND FUTURE WORK

This paper illustrates data layout methods, and shows
their effectiveness in CUDA based architectures for Capsule
Networks. Although cumbersome, these methods provide in-
creased manipulation of lower level arrays while maintain high
level grid abstraction intact; increasing flexibility than machine
learning libraries, such as TensorFlow.

Though other major batch-based techniques were not used,
single data point processing was increased almost 20x for 40
vector-tensor channels, equating to 1440 lower level capsule,
each having unique 8 × 16 (dl × dl+1) weight matrices.
Increasing another dimension of complexity may become a
single GPU issue, given the data limits and how the size of
these transformation W’s grows. However, in a future, hetero-
geneous distributed version of these methods, data points may
be partitioned per device, and ∆W’s may be reduced between
these devices, as a single point of communication during batch
updating.

A. Using cuDNN Primitives
The methods in this paper involves low-level organization of

the equivalent weight elements between capsule networks, and
the rearrangement of incoming convoluted vector data from
the convolution layer. Although cuDNN primitive use very
specific ways of arranging their tensors in memory without a
clear way of accessing the values in the convolutional layer
filters themselves, their use as a convolutional layer to this
method could aid in potential future speedup. However, the
tensor indexing for individual values must be either trans-
formed to reshape as the tensor shown here. To lower kernel
call overhead even further, some of the original computation
kernels may be rewritten to output into the required tensor
shape.

B. Parallel Mini-Batching
To achieve multiple image processing for each forward

and back propagation step, an extra dimension in the pro-
posed arrays could be used to hold the same information for
varying inputs. After a backward pass, all values for ∆W
would have to be reduced along this new axis, however,
before being applied to W. The complexity of this reduction
problem increases depending on both the solver and potential
distributed systems, for memory restrictions, and bottleneck
data movement overhead, respectively.

C. Multiple Parameter Varying
In efforts to remain truthful to source material, dl was

set to 8 and dl+1 was set to 16. These values seem to be
arbitrary, as no real explanation as to the dimensionality is
mentioned. However, as the orientations of the vectors in these
space represent the instantiation of the perceived feature in
each capsule, it could be argued that the limited space helps
the vector “point” in the most likely direction. Therefore,
increasing these values will most likely give more space and
wiggle room for these outputs. Nevertheless, the W matrices
contain dl×dl+1 degrees of freedom; increasing this may add
too much volatility to the space of transformations.

REFERENCES

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Józefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. CoRR, abs/1603.04467, 2016.

[2] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. CoRR, abs/1410.0759, 2014.

[3] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Y. Ng, and
Bryan Catanzaro. Deep learning with cots hpc systems. In Proceedings
of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, pages III–1337–III–1345.
JMLR.org, 2013.

[4] Wei Di, Anurag Bhardwaj, and Jianing Wei. Deep learning essentials:
your hands-on guide to the fundamentals of deep learning and neural
network modeling. Packt Publishing, Birmingham, UK, 1 edition, 2018.

[5] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu. An efficient k-means clustering algorithm: analysis and
implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7):881–892, 2002.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[7] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010.

[8] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing
between capsules. CoRR, abs/1710.09829, 2017.

[9] Conrad Sanderson. Armadillo c++ linear algebra library, June 2016.


