
Image Processing Using Multiple GPUs
on Webcam Image Streams

Hannah Munoz†, Sergiu M. Dascalu†, Rui Wu§, Lee Barford†‡, Frederick C Harris, Jr.†

†Dept. of Computer Science and Engineering §Dept. of Computer Science ‡Keysight Laboratories
University of Nevada, Reno East Carolina University Keysight Technologies

Reno, NV Greenville, NC Reno, NV

hannahmunoz@nevada.unr.edu, {dascalus,fred.harris}@cse.unr.edu, wur18@ecu.edu, lee.barford@ieee.org

Abstract—Image analysis is an important area in many fields of
research, such as sensor networks, where webcams have become
an increasingly popular addition. Sensor network webcams
gather images frequently and, as such, a need for processing large
image streams has occurred. In this paper, we test a variety of
OpenCV functions on image streams from sensor networks on
CPU, GPU and multiple GPU to find the most efficient way of
processing image series. OpenCV is a popular computer vision
and image processing library. Although OpenCV supports GPU
functionality, the library’s multiple GPUs functions are lacking.
Two image processing algorithm for snow and cloud detection
were developed using OpenCV and applied to an image series.
The execution times, speedup, and throughput of the different
implementations are compared and discussed. From this, The
best execution method for various situations is determined.

Index Terms—GPU programming, Remote sensing, Digital
images, Image analysis

I. INTRODUCTION

Analysis of image series is used in various research areas,
from vehicle speed monitoring to land coverage recognition
via satellites [1], [2]. Remote sensing is a vastly expanding
field that has begun to welcome webcams as a cheap solution
to collecting a different type of data from their research
sites [3]. Webcams utilized in remote sensor networks can
acquire large amounts of images by taking pictures minute or
hourly, making it hard for a person to analyze image streams in
a timely manner. This project aims to find the best method of
performing image processing using OpenCV on high volumes
of low resolution images. By varying the number of images in
the stream, and the size of the images, we can determine the
best method of processing image streams in minimal time.

The Nevada Research Data Center (NRDC) manages
the data from several remote sensor network projects in
Nevada [4]. Most of the supported projects deploy web cam-
eras in their research sites. The Walker Basin Hydroclimate
was chosen as our data set due to the southern camera’s clear
view of the sky and vast portion of land without sagebrush
or forest [4]. The Walker Basin Hydroclimate project began
in 2012 and collects images hourly. The project has collected
over 17,000 landscape images in the Western Great Basin.
We developed snow and cloud estimation algorithms. Each

algorithm was applied to a small section within an image,
called a regions of interest (ROI).

The Nevada Research Data Center (NRDC) manages
the data from several remote sensor network projects in
Nevada [4]. Six of the research sites deploy web cams as a type
of sensor. The Walker Basin Hydroclimate Project’s Rockland
Summit research site was chosen as our data set due to the
southern camera’s clear view of the sky and vast portion of
land without large sagebrush or forest obscuring the view [4].
Rockland Summit has 20 different camera angles, using pan-
tilt-zoom presets in a Canon VB-H41 on site. The camera is
set up to take HD pictures in 60-minute intervals from 10 AM
PST to 5 PM PST. Images are taken in JPEG format with a
resolution of 960 x 540. The southwest camera angle that was
chosen has the best field of view for our use and does not have
any sun interference. By using image analysis to track snow
and cloud coverage in an area, time spent analyzing collected
data can be reduced. The project has collected over 17,000
landscape images in the Western Great Basin.

Image processing is a method of analyzing and changing
images [5]. Commonly, it is used for improving an image’s
quality. OpenCV is a computer vision/image processing li-
brary for various language and operating systems [6]. With
over 2,500 available algorithms and 2.5 million downloads,
OpenCV is widely used in many types of computer vision
projects [7]. OpenCV uses matrices as a way of storing images,
where each element of the matrix is a pixel in an image.
Most computer vision algorithms work by analyzing pixel
intensity values in a image. A pixel’s intensity it’s color value.
Usually, a digital image has three color channels, red, blue, and
green, each of which has its own intensity value. Since images
can have thousands of pixels, computation on large images
can become costly. However, OpenCV’s algorithms have been
highly optimized and as such have significantly outperformed
other popular computer vision libraries [8].

In 2011, OpenCV introduced Graphical Processing Unit
(GPU) accelerated algorithms [9]. Current goals of OpenCV
GPU project is to provide a GPU computer vision frame-
work consistent with the CPU functionality, achieve high
performance with the GPU algorithms, and to complete as
many algorithms as possible so image analysis can be done



Fig. 1: The various region of interest on which the cloud and snow algorithms were applied.

completely on the GPU [9]. OpenCV’s GPU implementation
was written using CUDA, so developers could take advantage
of previously developed CUDA libraries.

Algorithms developed for GPU often differ than algorithms
implemented on CPU. GPUs can do hundreds of independent
calculations simultaneously, which lends to immense speedup
over CPU implementations. Because of the architecture dif-
ferences between CPU and GPU, there is no guarantee that
algorithms implemented on the GPU will necessarily be faster
than those done on the CPU [10]. There can be many factors,
such as image size or algorithm technique, that could increase
execution time on GPU compared to CPU. If there are
any dependencies between pixels in an algorithm, such as a
blurring mask, the time spent trying to sync pixel values could
attribute to low performance [11].

There is currently no multiple GPU (multi-GPU) support for
the GPU algorithms beyond a method to manually switch GPU
devices [12]. OpenCV does not recommend using multiple
GPUs on smaller images, as added overhead of data transfers
between GPUs could negate any speedup achieved from using
GPU. However, there is no mention on whether multiple GPUs
could attain speedup on streams of images

In this paper, we compare execution times, speedup factors,
and throughput between various implementations of low-level
image processing algorithms on image series. This paper is
structured as follows: Section II review work previously done
on the subject; Section III discusses the detection algorithms
applied to the image series; Section IV discusses differences
between CPU, GPU, and multiple GPU implementations;
Section V discusses results; and Section VI contains our
conclusions and goals for future development.

II. RELATED WORKS

Hwang et. al’s work in real-time image processing on high-
resolution images shows that by offloading image computation
to the GPU, images can be analyzed for simple operations in
real time [13]. By simply thresholding pixel differences against
a given value, items in the foreground of an image can be
detected. Image pre-processing is done on the CPU before the
image is sent to the GPU for further analysis using OpenCV.
No run time comparison on the proposed algorithm were done.
In contrast, our project compares and discusses execution time
between CPU and GPU implementations of image processing
techniques on image streams.

Agrawal et. al’s paper implements a GPU version of a
saliency model performing in real time [14]. Saliency is a
pre-processing technique which must be done quickly. On
CPU, the processes is slow, however, by exploiting explicitly
paralleled parts of the method onto the GPU, a speedup
by a factor of almost 600 was achieved. Agrawal’s et. al’s
implementation outperformed OpenCV by a speedup factor of
almost 300. This was only done for a single image, however,
not a stream of images as our results show.

Wang et. al’s work proposes a multi-GPU accelerated ver-
sion of two popular algorithms for satellite image process-
ing [15]. They discuss the difference between two popular
methods of doing multi-GPU image processing. Namely, mul-
tiple image at once or division of a single image among
GPU. They compared CPU implementation to GPU and multi-
GPU. Speedups of over 100 were achievable on both proposed
algorithms. Our project tries to develop similar, but with much
lower resolution images.



Fig. 2: A comparison of the cloud coverage algorithm’s output.

III. ALGORITHMS

Two low-level detection algorithms for snow and cloud
coverage were developed for testing. Figure 1 shows an
example image from our data set that the cloud and snow
algorithms were developed on, as well as the regions of interest
chosen for testing.

A. Cloud Coverage

Algorithm 1 Cloud Coverage Algorithm

1: Split Image into BGR Color Streams
2: for Pixel i in Image do
3: if Bluei - Redi > Thresholdc then
4: i is Cloud
5: else
6: i is Sky
7: end if
8: end for

The cloud coverage algorithm was used as our low computa-
tion test using only one color channel: blue, green, red (BGR).
As such, it does very little calculations to determine cloud
coverage. A comparison between a ROI from the data set and
the results of the algorithm are in Figure 2. Algorithm 1 was
based off a hybrid threshold algorithm previously developed
by Li [16]. Little computational work is done in determining
cloud coverage, however it was determined to be is very
accurate with a threshold value of 32. Lines 3 and 4 of
Algorithm 1 are completely independent and can be run
simultaneously on GPU causing speedup.

B. Snow Coverage

The snow coverage algorithm requires converting color
streams, blurring, and several elemental operations making
its execution a bit more intensive than the cloud algorithm.
Because some of these operations rely on pixels related to
them, the actions cannot always be done in parallel. The snow
detection algorithm was based off work previously done by
Salvatori [17]. In the version implemented Thresoldl is set
to 20 and Thresoldb is set to 127. Figure 3 shows how the
output of Algorithm 2 compares to the original image.

Salvatori’s algorithm did not have high accuracy results
when tested on our dataset. This may be because the image

Fig. 3: A comparison of the snow coverage algorithm’s output.

Algorithm 2 Snow Coverage Algorithm

1: Split Image into RGB Color Channels
2: Convert Image to HLS Color Space
3: Split Image into HLS Color Channels
4: Gaussian Blur (5x5) Hue Channel
5: for Pixel i in Image do
6: if Huei > Thresholdh then
7: if Bluei > Thresholdb then
8: i is Snow
9: end if

10: else
11: i is Ground
12: end if
13: end for

set tested in Salvatori’s project was from mountainous regions,
where as our image set is from a desert. Salvatori’s algorithm
had problems distinguishing snow from sand.

We were able to fix this problem by adding a test of another
color channel. The difference in pixel intensity in the hue,
saturation, and luminance (HSL) color space for snow and
sand pixel was significant enough to distinguish between the
two. This helped improved the accuracy of our snow coverage
algorithm.

Although some functions must have algorithm changes to
increase performance of the GPU, our implemented CPU
algorithms did not need to be changed. The only difference
between implementations is that the GPU algorithms have an
added overhead of transferring the image to and from the
graphics card. All developed algorithms were made to be as
similar to the CPU implementation as possible. This allowed
for more accuracy between comparisons of the algorithms.
OpenCV’s design allows for an almost direct correlation
between its CPU and GPU code. Figure 1 shows regions of
interest chosen for testing.

IV. IMPLEMENTATIONS

A. Hardware

The algorithms were applied on a Ubuntu 16.04 machine
with eight GeForce GTX 1080 (Pascal Architecture v6.1)
graphics cards, two Intel Xeon Processors E5-2650 CPU
and 64GB of RAM. Each card has 8114 MiB of memory,



Fig. 4: The execution time in milliseconds of both the cloud
and snow algorithm run on the CPU.

Fig. 5: The execution time in milliseconds of both the cloud
and snow algorithm run on the GPU.

65536 bytes of constant memory, and 49152 bytes of shared.
Concurrent copying and execution is enabled with 2 copy
engines running.

B. CPU

The CPU implementation for Algorithm 1 and Algorithm 2
are applied during separate runs to each image in the series.
Image sizes and number of images in a series were varied
over five runs and an average execution time was calculated
in Figure 4.

Both algorithms run in linear time; as the number of images
in a series increases so does the execution time. The image
size does affect execution time, as seen from the increase in
execution times in Cloud 736x128 and Snow 928x288, but not
until a significant amount of images are added to the series.
Algorithm 2 has higher execution times than Algorithm 1
because there are more steps that need to be done during it.

C. GPU

Similarly, the GPU algorithm was implemented using
OpenCV’s GPU algorithm. In this implementation, after the
image is read in from the file, it must be “uploaded” to

the GPU. This take a significant amount of time initially to
set up. To try to alleviate the initial overhead, a 1x1, single
channel GPU matrix is created before processing the image
series. This reduced the execution time of a single image using
Algorithm 2 from an average of 755.822 ms to 23.356 ms; 32
times speedup. Once either algorithm has been applied to the
image series, the resulting image is “downloaded” from the
GPU to the CPU and the coverage percentage is pushed to a
vector. The average execution time over 5 runs can be seen in
Figure 5.

When moved to the GPU, OpenCV’s matrices are divided
up into (c+15)/15 by (r+15)/15 grids where c and r are the
columns and rows in the image. Each block in the grid has 16
threads in both the x and y direction, resulting in 256 threads
per block. Since 256 is divisible by 32, it takes advantage of
the GPU’s warp scheduling to increase speedup.

One the GPU, all the execution times begin to converge to-
gether. The snow coverage algorithm has a significant amount
of speedup. However, the cloud coverage algorithm actually
takes longer on the GPU than it did on the CPU. This is
because the added overhead of sending the images to the GPU
and back takes more time than execution on the GPU could
decrease. In other words, there is not enough computations
done to justify sending it to the GPU.

D. Multiple GPU

The multiple GPU implementation utilizes threads to control
multiple GPUs at once. Each thread is given all the file names
of the images in the series and the ROI’s height and width.
The number of images in the series is divided among available
GPUs. Each thread then runs the previously implemented
single GPU algorithms on their own GPU stream. This allows
for all image analysis to happen concurrently and images are
uploaded and downloaded from the GPU asynchronously. The
average execution time over 5 runs can be seen in Figure 6. For
simplicity’s sake, Figure 6 shows the largest of the ROI run for
both algorithms. The full data set, however, is available [18].

As the number of GPUs increases, the execution time
decreases. Even in the cloud detection algorithm, which did
not achieve speedup when run on a single GPU, decreases its
run time when more GPUs are added. Once 8 GPUs are added,
however, execution time begins to increase again. Once again,
the issue is the overhead resulting from sending the images
to the GPUs. The amount of work being done on each GPU
is not efficient and the images are going to so many different
GPUs that they are bogging down the PCIe bus that connects
the GPUs together.

V. RESULTS

While Algorithm 1 does not increase speedup on a single
GPU, speedup is gained during multi-GPU computing. Fig-
ure 7a shows the speedup factor of the 736x192 ROI over
1 to 8 GPUs. For GPUs 2 through 7 a steady increase of
speedup occurs. At 8 GPUs, speedup begins to decrease. A
discussed previously, this is because there is too much data
transfer happening between GPUs.



(a) The cloud algorithm with 736x192 ROI. (b) The snow algorithm with 928x288 ROI.

Fig. 6: The execution time in milliseconds of both the cloud and snow algorithm run on the GPU.

(a) The cloud algorithm with 736x192 ROI. (b) The snow algorithm with 928x288 ROI.

Fig. 7: The speedup factor of the largest ROI run on CPU, GPU, and multiple GPUs.

(a) The cloud algorithm with 736x192 ROI. (b) The snow algorithm with 928x288 ROI.

Fig. 8: The throughput of the largest ROI run on CPU, GPU, and multiple GPUs.



Algorithm 1’s throughput in Figure 8a is quite clear. As
the number of GPUs increases, up to 7 GPUs, the throughput
increases as well.

Algorithm 2’s speedup graph in Figure 7b is a little different.
A steady increase in speedup factor occurs from the use of 1
to 5 GPUs, not 7 GPUs. This is because of the extra work load
that needs to be done to calculate snow coverage in the region.
At a smaller number of images, anything less than 4,000, it
becomes confusing to determine the most efficient number of
GPU to use. The speedup for such a small amount of images
does not increase with more GPUs. This could be because the
machines the algorithms were run on were either closer or
farther from each other, thus affecting execution time.

Algorithm 2’s throughput in Figure 8b is similar, in that
it reflects trends previously discussed in its speedup graph.
The throughput also increases as more images are added to
the series, because large amounts of images can be more
efficiently handled on more GPUs.

Figure 7b displays a superlinear speedup characteristic of
Algorithm 2. This is an expected characteristic, as OpenCV
algorithms can have up to 100x speedup over their original
implementation [9].

VI. CONCLUSION AND FUTURE WORK

OpenCV is a popular image processing and computer vision
library. Although they have a expansive GPU-based algorithms
library, they have yet to implement algorithms that utilize
multiple GPUs. In this paper, we have implemented low
and high work intensity image processing algorithms on a
large image series to determine when it’s appropriate to do
image processing on CPU, single GPU, or multiple GPUs. It
was determined that high work intensity algorithms on image
series could achieve speedup on single GPU, however low
intensity algorithms could not. Both algorithm types could
achieve speedup using multiple GPUs with an increase in
throughput with larger image series. There is, however, a
maximum amount of GPUs that can be used before speedup
begins to decrease.

Further work could be done to determine if multiple GPUs
should be used to analysis images in real time from a video
stream. The algorithms developed in this paper could be tested
on live cameras to see if they can calculate coverage in real
time. This could be helpful for use in citizen science projects,
where citizens can use their own webcams to help scientists
in their research.

ACKNOWLEDGMENTS

This material is based in part upon work supported by
the National Science Foundation under grant number IIA-
1301726. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] J. Gerát, D. Sopiak, M. Oravec, and J. Pavlovicová, “Vehicle speed
detection from camera stream using image processing methods,” in
Proceedings of ELMAR-2017 - 59th International Symposium ELMAR-
2017, Sept 2017, pp. 201–204.

[2] Z. N. Absardi and R. Javidan, “Classification of big satellite images
using hadoop clusters for land cover recognition,” in 2017 IEEE 4th
International Conference on Knowledge-Based Engineering and Inno-
vation (KBEI), Dec 2017, pp. 0600–0603.

[3] N. Jacobs, W. Burgin, N. Fridrich, A. Abrams, K. Miskell,
B. H. Braswell, A. D. Richardson, and R. Pless, “The global
network of outdoor webcams: Properties and applications,” in
Proceedings of the 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, ser. GIS ’09. New
York, NY, USA: ACM, 2009, pp. 111–120. [Online]. Available:
http://doi.acm.org/10.1145/1653771.1653789

[4] “Nevada research data center.” [Online]. Available: https://sensor.
nevada.edu/NRDC/

[5] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis,
and Machine Vision. Cengage Learning, 2014. [Online]. Available:
https://books.google.com/books?id=QePKAgAAQBAJ

[6] “Opencv library.” [Online]. Available: https://opencv.org/
[7] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A

brief introduction to opencv,” in Proceedings of the 35th International
Convention MIPRO, May 2012, pp. 1725–1730.

[8] S. Matuska, R. Hudec, and M. Benco, “The comparison of cpu time
consumption for image processing algorithm in matlab and opencv,” in
Proceedings on 9th International Conference - 2012 ELEKTRO, May
2012, pp. 75–78.

[9] “Cuda.” [Online]. Available: https://opencv.org/platforms/cuda.html
[10] V. Saahithyan and S. Suthakar, “Performance analysis of basic image

processing algorithms on gpu,” in 2017 International Conference on
Inventive Systems and Control (ICISC), Jan 2017, pp. 1–6.

[11] J. Ke, T. Bednarz, and A. Sowmya, “Optimized gpu implementation for
dynamic programming in image data processing,” in 2016 IEEE 35th
International Performance Computing and Communications Conference
(IPCCC), Dec 2016, pp. 1–7.

[12] “Gpu module introduction.” [Online]. Available: https://docs.opencv.
org/2.4/modules/gpu/doc/introduction.html

[13] S. Hwang, Y. Uh, M. Ki, K. Lim, D. Park, and H. Byun, “Real-time
background subtraction based on gpgpu for high-resolution video
surveillance,” in Proceedings of the 11th International Conference on
Ubiquitous Information Management and Communication, ser. IMCOM
’17. New York, NY, USA: ACM, 2017, pp. 109:1–109:6. [Online].
Available: http://doi.acm.org/10.1145/3022227.3022335

[14] R. Agrawal, S. Gupta, J. Mukherjee, and R. K. Layek, “A gpu
based real-time cuda implementation for obtaining visual saliency,”
in Proceedings of the 2014 Indian Conference on Computer
Vision Graphics and Image Processing, ser. ICVGIP ’14. New
York, NY, USA: ACM, 2014, pp. 1:1–1:8. [Online]. Available:
http://doi.acm.org/10.1145/2683483.2683484

[15] M. Wang, L. Fang, D. Li, and J. Pan, “Using multiple gpus to accelerate
mtf compensation and georectification of high-resolution optical satellite
images,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 8, no. 10, pp. 4952–4972, Oct 2015.

[16] Q. Li, W. Lu, and J. Yang, “A hybrid thresholding algorithm for cloud
detection on ground-based color images,” Journal of atmospheric and
oceanic technology, vol. 28, no. 10, pp. 1286–1296, 2011.

[17] R. Salvatori, P. Plini, M. Giusto, M. Valt, R. Salzano, M. Montagnoli,
A. Cagnati, G. Crepaz, and D. Sigismondi, “Snow cover monitoring
with images from digital camera systems,” Italian Journal of Remote
Sensing, vol. 43, 06 2011.

[18] “Project timings.” [Online]. Available: https://github.com/
hannahmunoz/\\MultiGPUOpenCV/blob/master/FinalRuntimes.xlsx


