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Abstract—Many complex real world systems can be repre-
sented as correlated high dimensional vectors (up to 20,501 in
this paper). While univariate analysis is simpler, it does not
account for correlations between variables. This omission often
misleads researchers by producing results based on unrealistic
assumptions. As the generation of large correlated data sets is
time consuming and resource heavy, we propose a graphical
processing unit (GPU) accelerated version of the established
NORmal To Anything (NORTA) algorithm. NORTA involves
many independent and parallelizeable operations — sparking
our interest to deploy a Compute Unified Device Architecture
(CUDA) implementation for use on Nvidia GPUs. NORTA
begins by simulating independent standard normal vectors and
transforms them into correlated vectors with arbitrary marginal
distributions (heterogenous random variables). In our benchmark
studies using a Tesla Nvidia card, the speedup obtained over a
sequential NORTA coded in R (R-NORTA) peaks at 19.6x for
2000 simulated random vectors with dimension 5000. Moreover,
the speedup obtained for GPU-NORTA over a commonly used
R package for multivariate simulation (the COPULA package)
was 2093x for 2000 simulated random vectors with dimension
20,501. Our study serves as a preliminary proof of concept
with opportunities for further optimization, implementation, and
additional features.

Index Terms—GPU, parallel computing, CUDA, multivariate
statistics, multivariate analysis, Bioinformatics, Monte Carlo,
NORTA, simulation

I. INTRODUCTION

Many stochastic simulations cannot be accurately repre-
sented by independent and identically distributed samples.
Realistic simulations must include correlations and allow for
heterogeneous marginal distributions, modeled using a correla-
tion matrix. For example, Biological processes are often highly
correlated, involving many complex interactions. Applications
in integrative analysis of multiple data sets has been recently
researched [1]. One of the pitfalls of not accounting for
correlations was researched by Gatti et al. [2]. They found
significantly higher rates of false positives in gene set testing

when independent genes were inappropriately assumed. In or-
der to accurately represent this data, a multivariate (correlated)
structure must be used. The expression of genes is also het-
erogeneous, that is not all genes follow the same distribution.
Using the NORTA method described in this paper, we are able
to simulate random vectors whose components follow arbitrary
distributions marginally while jointly reflecting a specified
correlation matrix.

The ability to simulate high dimensional correlated data
has applications in machine learning as well. For example,
Wilkins, Morris, and Boddy researched methods of using back-
propogation neural networks to identify marine phytoplankton
using multivariate flow cytometry data [3]. In identification
problems, lower dimensionality leads to increased overlap
between classes. For higher accuracy, it becomes necessary
to use the full multivariate nature of the data to distinguish
between classes. Another common simulation method is the
Monte Carlo Method which was used recently by Russkova
to model weather phenomena [4].

There are numerous uses of multivariate statistical analysis,
ranging from RNA sequence analysis to health records [5].
More recently Often complex real world system are composed
of dependent variables that cannot be treated as independent.
The use cases are extremely broad and as computing power
continues to increase, use of high performance algorithms for
preforming these statistical analyses will become more and
more commonplace.

In general, methods for generating correlated random vec-
tors can be classified into three categories [6]:

1) Analytic methods using conditional distributions.
2) Numerical approaches including accept/reject methods.
3) Transformation of univariate vectors.

Numerous approaches researched in the first two categories
are limited to bivariate distributions and can only be used for
generation of variables that share a common distribution [6].



NORTA falls into category 3. The advantage of employing
this method is in its simplicity, propensity for parallelization,
and broad applications. Algorithms in this category are able
to use the appropriate set of marginal probability distributions
and a correlation matrix at the cost of partially specifying
the joint distributions [6]. This technique offers the benefit of
being general, while avoiding solving complex equations [7].
The NORTA method transforms elements from a multivariate
standard normal distribution to the desired marginal distribu-
tions [6]. A more detailed description of the algorithm is given
in Section III.

For large and dense matrices, the number of operations
scale with the number of elements, potentially leading to
compute time bottlenecks. Analysis of the bottlenecks of a
sequential implementation is discussed in Section IV. There-
fore, implementation through parallel computing algorithms
on the GPU becomes attractive. Due to the Single Instruction
Multiple Data (SIMD) architecture of GPUs, operations can
be performed in parallel thus providing a speedup over a
sequential implementation.

The rest of the paper is organized as follows. Section II
provides a brief summary of statistical background relevant to
the main algorithm used, as well as an introduction to the GPU
architecture, followed finally by a discussion of unified mem-
ory. Section III discusses the NORTA algorithm implemented
in this paper. Section IV reviews the sequential implementation
written in R. Section V reviews the GPU implementation.
Section VI includes the testing methodology and experimental
results followed by a discussion in Section VII. Section VIII
presents the conclusion and future work.

II. BACKGROUND

A. Statistical Background

The first topic to discuss is the correlation matrix. This ma-
trix is positive semi-definite symmetric matrix with dimensions
d × d, where d corresponds to the number of variables in a
multivariate vector whose correlations are represented by the
matrix. Each entry in the matrix, with indices (i, j), represents
the Pearson correlation coefficient ρ(Xi, Xj) between random
variables Xi, Xj given by the equation [8]:

ρXi,Xj
=
E[(Xi − µXi)(Xj − µXj )]

σXi
σXj

(1)

E is the expected value. µXi , µXj are the means and σXi , σXj

are the standard deviations of Xi, Xj respectively.
The matrix is symmetric because correlation between Xi

and Xj is the same as the correlation between Xj and Xi.
Also the main diagonal is composed of d 1s, reflecting the
fact that a random variable is perfectly correlated with itself.
Essentially, a correlation matrix represents the relationship
between variables in a multivariate vector.

The Cholesky decomposition is used because it is an effi-
cient method for decomposition of an input correlation matrix
(and, in general any semi-positive definite matrix) [9]. The
Cholesky decomposition provides two factors: one lower and
one upper triangular n×n matrix. Multiplication using one of

these factors onto a matrix of independent random variables
will induce a specified correlation [10].

For convenience and ease of simulation, the NORTA al-
gorithm begins with independent and identically distributed
normal vectors. Most pseudo-random number generation soft-
ware include the ability to simulate random normal variables.
Further, we choose to start with normal vectors to begin
our stochastic simulation to align with the original NORTA
algorithm. One could start from other distributions, such as
marginally uniform random variables. The important part is
that we begin with any suitable random variable that can be
easily transformed into a copula by applying the distribution’s
inverse cumulative distribution function (CDF). A copula is
a multivariate distribution with uniform marginals and an
arbitrary correlation matrix [11]. Importantly, Sklar’s theorem
[12] shows that any joint distribution has copula representation
— providing a guarantee for the success of the NORTA
algorithm.

The inverse (probability) transform is a general method of
transforming one random variable into another. The transfor-
mation begins with values (usually a vector) obtained from
one distribution with known CDF. Then the known CDFs are
applied to these values to obtain values that have a uniform (on
the interval 0 to 1) distribution. These values can be thought of
as probabilities that a value from the original distribution was
less than or equal to the original, observed value. Then these
probabilities can be transformed into another target distribution
by applying the inverse CDF of the target distribution. See
Rizzo 2007 for details [10].

B. GPU architecture

GPUs feature single instruction stream multiple data stream
architecture that is optimized for data-parallel computations.
This architecture works well for applications running a single
instruction set over many different data elements. Compared
to traditional central processing unit (CPU) architectures, the
GPU is throughput focused. A GPU accomplishes this by
having many compute cores that are able to process thousands
of calculations simultaneously. While a GPU is conventionally
used for graphics displays, in the past decade or so, there
has been a large growth in general purpose GPU computing
(GPGPU) [13]. Nvidia has created their own API for GPGPU
programming using their chips. This language/API is an ex-
tension of the ANSI C language and is called CUDA which
stands for the Compute Unified Device Architecture. Functions
that are to be ran on the device (GPU) are called kernels. Each
thread launches an instance of the kernel to run.

Kernels on the graphics processor is organized into grids of
blocks of threads. Figure 1 visualizes this structure. Threads in
the same block are run on the same streaming multiprocessor,
which is the Nvidia compute unit. The advantage of using a
GPU in parallel computing and high performance computing
lies in the fact that Nvidia GPU’s are commodity hardware and
readily available for purchase. They are also fairly inexpensive
and easy to setup compared to the more traditional computer
cluster that are often used in high performance computing



Fig. 1. Nvidia thread block structure: Each kernel corresponds to a grid. Each
parallel invocation of the kernel corresponds to a block, and each block can
be further divided into threads. [13], [14].

(HPC). With a GPU, high performance computing becomes
more accessible, being able to speedup scientific computation
by a significant amount without having the cost of setting up
a CPU cluster. The GPUs used in this work were a Tesla
P100 and an Nvidia GTX 1080 which are part of the Pascal
architecture family.

C. Unified Memory

CUDA tool kit 6 introduced unified memory to the CUDA
ecosystem [15]. CUDA programming up until this point
required manual memory manipulation between the device
and the host (CPU). With unified memory, the programmer
no longer has to explicitly move data between memories.
Memory management is handled by the CUDA backend and is
abstracted from the programmer. This is illustrated in Figure 2.

The Pascal architecture, which is the architecture of GPUs
used for this paper, leverages a built-in hardware Page Mi-
gration Engine to handle page faults and data migration [16].
Unified memory is especially useful when the data set is too
large to fit on the device. Without unified memory, the devel-
oper would have to manually chunk their data and transfer it
between CPU and GPU. In the case of this project, the largest
input matrices are about 3.4 GB for double precision numbers.
This is quite large and can pose memory issues when used
with common GPUs with 4 GB and less memory, especially
with larger values of simulation replicates, n. Although unified

Fig. 2. Nvidia’s Unified Memory combines physically distinct CPU and
GPU memory into a single memory address space and handles data migration
between the two automatically [15].

memory reduces the complexity of CUDA code, it is relatively
new and not optimized yet. Therefore, it is reasonable to
speculate that the algorithm could run faster if using manual
data migration.

III. NORTA ALGORITHM

Algorithm 1 describes the NORTA algorithm for the genera-
tion of a d×1 random vector X . This algorithm is extended to
an d×n matrix, where n is the desired number of simulation
replicates obtained by repeating the procedure. For a more in-
depth explanation of the NORTA algorithm, refer to Cario [7].

The NORTA algorithm is divided into four steps (lines 2-
5). The first step (line 2) is the Cholesky decomposition of
the input correlation matrix, Σz , into a product of an upper
triangular and it’s conjugate, M and M

′
respectively. The

input symmetric matrix has dimension d× d. This step is the
precursor to inducing the specified correlation matrix. The next
step (line 3) is to generate a d×1 independent and identically
distributed normal vector W . Then (line 4), W is applied the
proper correlations using a matrix multiplication between M
and W to return Z, a multivariate normal vector. In the last
step (line 5), each element of Z is applied Φ(x), which is
the standard normal CDF. Then, the inverse CDF of desired
marginal distribution, also known as the quantile function,
F−1Xi

(x) is applied. This will return, X , the final transformed
vector, which is repeated n times to get the simulation matrix.

Algorithm 1 NORTA algorithm
1: procedure NORTA
2: Produce M of Σz so that MM ′ = Σz .
3: Generate W = (W1,W2, ...,Wd)

′ ← d× 1 vector.
4: Set Z by Z ←MW .
5: Return X where Xi ← F−1Xi

[Φ(Zi)], i = 1, 2, ..., d.

Importantly, we deviate from the original NORTA algorithm
in that we do not adjust the input correlation matrix to get a
(near) exact target correlation matrix from our final simulation
data set. Instead, we use the target correlation as input and
forgo the massive, brute force search for an adjusted input



correlation matrix suggested by Cairo and Nelson [7]. Later,
we assess the loss of accuracy associated with using the
target correlation matrix by comparing to the publicly available
COPULA R package [17].

IV. SEQUENTIAL IMPLEMENTATION

The sequential version of this simulation program was im-
plemented using the R programming language. R is commonly
used by statisticians and has many built-in statistical functions.
This made the implementation of the inverse transformation
much easier as R has support and optimization for all of the
distributions used for this project are available. The random
number generator, quantile, and distribution functions of each
type of distribution were used for the sequential implemen-
tation. In addition to statistical functions, R also features
support for working with dense and sparse matrix math. The
Cholesky decomposition, matrix multiplication and random
matrix generation were also handled through built-in functions.
A text file containing the correlation matrix and a text file
specifying marginal distributions with parameters were the
inputs to the program. The output is a text file containing
the final transformed simulation matrix.

The Cholesky decomposition, random number generation,
matrix multiplication, and inverse transformation steps of
the algorithm were expected to benefit the most from GPU
parallelization because, due to the number of independent
operations, the computation time scales with size of matrix for
sequential implementations. Results from bottleneck analysis
in Table I confirms this. Analysis of the inverse transformation
step was not included because it was not able to be parallelized
in this study due to difficulties explained in Section V.

V. GPU PARALLEL IMPLEMENTATION

The parallel GPU version of the NORTA algorithm was
implemented using the CUDA programming language. Input
and output data were the same as in the sequential imple-
mentation described above. The matrix_read_in func-
tion and distribution_list_read_in functions were
implemented sequentially in the GPU version of the code.
Memory management was handled automatically by CUDA
unified memory.

Several official CUDA APIs from Nvidia were used. They
were: CuBLAS, CuRAND, and CuSOLVER [18]–[20]. Library
functions abstracted out the notion of kernels. The Cholesky
decomposition was implemented using the potrf function
from CuSOLVER. This function performs the Cholesky factor-
ization and returns an upper or lower triangle in column major
order depending on arguments specified and uses double preci-
sion. Matrix multiplication was implemented using the gemm
function from CuBLAS. gemm performs matrix multiplication
given two input matrices and stores them in an output matrix
specified in the arguments. The output matrix used was one
of the original input matrices for better memory efficiency.
Double precision was used for this function as well. CuRAND
was used for the generation of the random normal matrix. The
pseudo random number generator was used out of this library

using the default generator to generate random numbers in
double precision sampled from a standard normal distribution.

For the inverse transformation function, the C++ stats li-
brary StatsLib made by Keith O’Hara was used [21]. Dis-
tributions supported are: Beta, Cauchy, Exponential, F, Nor-
mal, Log Normal, Logistic, Poisson, t, Uniform, and Weibull.
This library was chosen because it was one of few C++ sta-
tistical libraries found that imitated the R distributions library.
Implementing distribution functions is a complex process so
due to time and technical ability constraints, distributions were
not written directly in CUDA. For testing purposes, only the
Poisson distribution was used. The reasoning was that the
input data came from RNA sequence data may be modeled by
Poisson. Due to difficulties stemming from incompatibilities
between C++ and CUDA, the inverse transformation function
was also implemented on the CPU.

VI. EXPERIMENTS AND RESULTS

The CUDA libraries and functions used in this study treat
matrices as column major instead of the C style row major.
This causes most functions such as the Cholesky decomposi-
tion and the matrix multiplication routine to return the trans-
pose of the expected result. This implicit transpose is caused
by the conversion from row major to column major. Care must
be taken to get the correct results out of these routines. Unified
memory was used to store all arrays. This allows arrays to be
larger than the memory of the GPU. Timings were captured for
various n and d values. Speedup was calculated between GPU
version and sequential version. Speedup vs another popular R
library for multivariate statistical simulation called COPULA
was also captured. Refer to Yan for details of the COPULA R
package [17].

Once the implementations discussed in Section IV and
Section V were finished, timings for the various modules of
each implementation were done in order to see how the R and
CUDA computations compared. Timings for the sequential R
column shown in Table I were done on a Macbook Air with
an Intel Core i5 processor at 1.3 Ghz and 4 gb of memory.
The CUDA column in Table I was performed on a CUBIX
box with dual 12 core Intel Xeon CPUs running at 2.00 GHz.
This machine has 8 Nvidia GeForce GTX 1080 GPUs but only
one was used in the computation of this project. A different
machine was used than the timing data collected for sequential
R column due to the fact that the Macbook Air used did not
have a CUDA compatible graphics card.

TABLE I
TIMINGS COMPARING SEQUENTIAL R AND PARALLEL CUDA
IMPLEMENTATIONS FOR d = 20501, n = 1094 (IN SECONDS)

Functions R (s) CUDA (s) Speedup
Cholesky Decomposition 1,058.27 11.440 92.5
Random Normal Gen. 1.64 0.071 23.1
Matrix Multiplication 316.16 3.730 84.8

Speedup and timing data comparing sequential, GPU, and
COPULA methods in Figure 3, Figure 4, and Figure 5 were
collected on a machine with an Intel Xeon Gold 6126 CPU
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Fig. 4. Sequential NORTA timings (R version) with increasing n and d.

running at 2.60 GHz. The GPU was a Nvidia Tesla P100.
Using this machine, and CUDA Unified Memory, we were
able to overcome memory limitations on the Macbook Air for
larger values of n.

VII. DISCUSSION

Table I summarizes the timings of the functions that were
parallelized from sequential R version to GPU CUDA version
and provides the speedups. Correlation matrix and distribution
file read in timings are not included since they were done
sequentially in both cases. There is potential to improve these
steps, for instance, by using binary files instead of text files for
input data. The inverse transformation step was not included
either for reasons discussed in Section V. The other steps:
Cholesky decomposition, matrix multiplication, and random
number generation were all responsive to parallelization, and
are optimized by Nvidia in their cuSOLVER, cuBLAS, and
cuRAND libraries. Speedup of the decomposition step resulted
in a 92.5x increase. The random normal generation increased
by a factor of 23.1 and matrix multiplication increased by a
factor of 84.8 over the sequential version.
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Fig. 5. GPU-NORTA timings with increasing n and d..

Figure 3 shows the speedup of GPU-NORTA compared to
both the sequential NORTA and sequential COPULA methods.
Speedup data was collected using n = 2, 000 and various
d. Speedups were calculated for the whole program running,
including data read in and inverse transformation. GPU-
NORTA performed faster than sequential NORTA at all d
sizes. The speedup peaks (19.6x) at d = 5, 000 for sequential R
comparison and a dramatic increase (2093x) at d = 20, 501 for
comparison against COPULA package. The spike in COPULA
is because computation time does not scale linearly.

Figure 4 shows the total run time of the sequential version
for various n and d dimensions and Figure 5 shows the total
run time for the GPU-NORTA implementation. The GPU-
NORTA version took less than 30 min to run for the largest set
tested, compared to over 200 minutes for the sequential ver-
sion. Even with non-optimized read in functions and sequential
inverse transformation, GPU-NORTA had notable speedup that
increases with increasing data size compared to optimized R
code and COPULA packages.

Table II displays the quadratic loss between the simulated
correlation matrix R̂ from the input (target) correlation, R
for n = 2, 000. Quadratic loss is given by the expression
||R̂R−1−I||2 and we compare our proposed GPU-NORTA to
the R-NORTA and COPULA implementation. Both our GPU-
NORTA and R-NORTA forgo the grid search for an adjusted
input matrix, whereas the COPULA approach does not require
such an adjustment a priori. In our limited studies, at high
dimension, we found no substantive loss in accuracy and can
safely avoid the search suggested by Cairo and Nelson [7].
Future studies, however, are needed to fully assess the effects.

TABLE II
QUADRATIC LOSSES OF SEQUENTIAL AND GPU IMPLEMENTATION AT

VARIOUS d AND USING n = 2000

d 1,000 2,000 5,000 10k 20,501
GPU-NORTA 1,275 5,060 7,554 10,225 9,704
R-NORTA 1,232 4,825 7,720 10,571 10,572
COPULA 1,131 4,853 7,524 10,272 10,426

The speedup of the decomposition and matrix multiplica-



tions led to a huge gain which helped to off balance the
slow run times of sequential read in function and inverse
transformation function. There is less significant speedup of
the random normal matrix generation, but it still provided a
23.1 times speed.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a GPU accelerated
version of simulating multivarate data with input correla-
tion matrix and arbitrary marginal distributions. This parallel
GPU-NORTA algorithm exhibited speedups over a sequential
NORTA version and a sequential COPULA version both written
in R. The analysis summarized in Table I revealed that
the Cholesky and matrix multiplication steps took signifi-
cant portions of computation time in the sequential version.
Fortunately, these functions have attractive parallelization po-
tential and thus had significant speedups over the sequential
counterpart. The inverse transformation also has parallelization
potiential, but was not implemented in this paper. Future work
needs to be done in implementing the statistical functions
required for the inverse transformation into CUDA device
code. This allows the last step to be parallelized, which should
result in more dramatic speedups than what was obtained in
this study.

The issue concerning the necessity of adjusting input corre-
lation matrix warrants further study at various dimensions and
for other marginal distributions. Our GPU-NORTA implemen-
tation could be improved with the ability to allow a user to
conduct the search resulting in greater simulation accuracy.

For larger data sets than what was used in this study,
this algorithm has the potential to be extended to utilize
multiple GPUs. The CUDA API has support for multi-GPU
applications [13].

Further speedup could be possible from manual memory
management with the trade off of added complexity. The ques-
tion of whether or not the speedups are worth the complexity
trade off needs further exploration. However, results show that
even with inefficiencies associated with Unified Memory, the
GPU implementation is still faster than both R-NORTA and
COPULA versions. With future releases of the CUDA toolkit,
Unified Memory management is expected to become more
optimized.
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