Multi-User VR Cooperative Puzzle Game

Lucas Calabrese, Andrew Flangas, Frederick C. Harris, Jr.
Department of Computer Science and Engineering
University of Nevada, Reno
{Icalabrese, andrewflangas} @nevada.unr.edu, fred.harris@cse.unr.edu

Abstract—Multi-user virtual reality (VR) games are at the
cutting edge of interpersonal interactions, and are therefore
uniquely geared towards real-time interactive games between
human players. This paper describes the process of designing a
cooperative game where the obstacles are designed to encourage
collaboration between players in a dynamic VR environment.
This is done using the Unity game engine and the Blender
graphics modeling tool. We demonstrate the progress of our
scheme in a multi-player cooperative game, as well as the
importance of the VR interface for encouraging cooperation.
The VR experience provides a realistic human-human interaction
improving on generic game-play, as our system utilizes the real-
time interface to create an entertaining VR experience.

Keywords: Multi-player, virtual reality, Real-time, interactive,
Unity

I. INTRODUCTION

The advancement of VR technology has opened the door
to many different possibilities considering the numerous ap-
plications for it, one of which being gaming. To explore how
VR technology can be used in multiplayer games involving a
virtual environment (VE), this paper will discuss the process
of designing a two-player cooperative VR game. This game
was customized for the HTC Vive headset and the Steam
VR software. The game was designed for two players to
work together to overcome obstacles. Teamwork is not only
encouraged, it is required if the players wish to successfully
advance through the levels.

Games such as this will encourage multi-user VR scenar-
ios [1] and create a more social atmosphere for players to
enjoy. In this game, the players utilize different powers that
come in the form of crystal balls that can be picked up, and that
are placed strategically throughout the game world in a way
that the players will have to make use of their problem-solving
abilities to reach them. Once the powers have been obtained,
the players will have to use them in a specific way to solve
the current obstacle in front of them. Multiple improvements
can be made to make the game better as a whole that is
described later in Section II-B, but due to time constraints,
these improvements are not present in the prototype version
of the game.

The rest of this paper is structured as follows: The Creation
Process is described in Section II. Gameplay is presented in
Section III, and Conclusions and Future Work are covered in
Section IV.

II. THE CREATION PROCESS
A. Blender Modeling

The initial stages of the creative process involved developing
the models for the game using the open-sourced 3D computer
graphics software toolset Blender [2]. The witches were con-
structed by molding two mirrored cubes together to create
the torso and then the rest of the body. Other objects were
attached to the body to create the arms and shoes. Blender’s
bezier curves were used to create the hair of the witches and
were set as children of one of the bones after being imported
to Unity [3].

The next step was to create the animations for the witches.
One of the better animation papers was written by Narang,
Best, and Manocha [4]. A basic algorithm has been imple-
mented into Blender using the Rigify add-on to use a human
rig. Our model, the Rigify, and animation controls can be seen
in Fig. 1.

5
-
£3
3
S

oo
S
5
-

.

Ge s s elessesesss s s 0000000000000

-
-
.
-
-
-
-
-
-
-
.
-
-
-
-
-
°
-
-
-
o
-
-
-
-
-
-
-
-
-
-

© se e 000000 0000000000000 00000 000000

Fig. 1: A Screenshot in Blender which shows how to setup
animations using the human rig for the witch model.

Automatic weights were used for the animations, but some
adjustments were made with weight painting. The animations
for the witches included walking forward and backward,
sidestepping, and jumping. The arms were intentionally not
animated for walking so that they could be controlled with
Inverse Kinematics. Once the two witches were created, they
could then be used for the initial stages of the development of
the game in Unity. A scroll to act as the selection menu for the



powers was also created by molding a single cube. The next
models to be designed were the crystal balls that the witches
collect and use in the game. The crystal balls were comprised
of transparent sphere objects with an animated object in the
middle that represents the power that it grants. To go along
with the crystal balls were the crystal ball stands to keep them
in place and to spawn them. The crystal balls and their stands
can be seen in Figure 2

Fig. 2: Crystal Balls representing powers on their Stands

Later in the developmental stages of the game, Blender was
used once again to design an octopus-like creature with four
tentacles and a water projectile for it to shoot at the players.
The octopus started as a single-cylinder that was molded into
the shape of the head, and then four mirrored cubes were
used for the tentacles. Blender’s Inverse Kinematics was used
to make tentacle animations. It was given idle, walking, and
attacking animations. The head was given a bone so it could
look up and down, while the entire model rotates to face the
player. The water projectile was also given a rig to create the
animation of it swelling and bubbling like a ball of water.
Later in the development process, the levels were designed in
Blender and then imported into Unity. The final model can be
seen in Fig. 3.

Fig. 3: The Octopus model

B. Development in Unity

To test the powers that the witches use, as well as other
gameplay features, a sandbox was created with a single plane
as the floor of the scene with four walls surrounding it. The
first object created in the scene aside from the planes and
walls was the player prefab. The player prefab consists of a
VR camera along with a right and left-hand object.

Then it was time to attach the scroll to the transform of the
right-hand controller. The transform of the controller was used
so that it can be rotated more freely than if it was attached
to the model’s hands. The purpose of the scroll is to act as
a selection menu for whichever power the player wishes to
use, as well as keep track of the number of powers the player
has picked up. For buttons that activate powers, the scroll used
models of the crystal balls that were scaled to look like buttons.
A box collider was used for each of the witch’s hands to
register when the hands were touching a button. Text Mesh
Pro was used to display the amount of each of the crystal
balls collected by the user. Two more buttons were added to
the scroll, a stop button to cancel any power currently being
used, and a swap-hands button for the scroll so right or left-
handed people can choose the setting that is most comfortable
for them.

A script was used to fix the model’s position slightly behind
the camera. The character controller that is used for detecting
collisions adjusts its central location to keep all players at the
same height regardless of their height, or whether or not they
are sitting down. Cloth was used for the witches’ dresses, in
which capsule colliders attached to the model’s bones were
selected to allow them to collide with the dress. Because the
cloth would get stuck on the colliders, a script was added to
reset the cloth under certain circumstances such as when the
model jumps.

C. Developing the Powers

After the Inverse Kinematics and scroll were set up, it was
then time to focus on the coding of the powers. It was decided
that there would be five powers: swap, shrink, freeze, bomb,
and a fire power for this prototype. In order to obtain a power,
the user must find and have their player touch a crystal ball
representing that power.

All five powers and their associated effects are illustrated
in Fig. 4-8.

Swap Power: The swap power (Fig. 4) is used to in-
stantaneously switch the position of the players with other
GameObjects in the scene.

Fig. 4: A first person view showing the object that the swap
power applies to has its material changed to red. After the
swap power is applied, the player will switch places with the
cube.



Shrink Power: The shrink power (Fig. 5) is designed for the
players to fit through small tunnels or other similar obstacles
by making the player significantly smaller.

Fig. 5: The shrink power scales the player to a considerably
smaller size. Notice the crystal ball stands next to the player.

Freeze Power: The freeze power (Fig. 6) is used to turn the
water projectile the octopus shoots at the player into a cube
of ice, and then to use the cubes of ice as a jumping platform.
This was meant to encourage teamwork as the octopus would
follow one player around and shoot a bubble of water at that
player and when it is turned to ice the other player who can
use it as a platform. An additional purpose that was added to
the ice power was causing a balloon object to descend when
activated due to the change in the balloon’s volume due to its
cold temperature.

Fig. 6: A split screen (two images from different player’s
screens). When the ice power is selected and activated it
changes the material of your witch’s skin into a light blue
color. The ice power is bringing down the balloon seen in the
right window.

Bomb Power: The bomb power (seen in Fig. 7) appears
in the hand of the player when selected. The player can then
grab and throw the power at something else in the game. This
bomb power then explodes on contact.

Fig. 7: The fireball is used for the bomb explosion power.

Fire Power: Lastly, the fire power (Fig. 8) is designed to
melt the already frozen cubes that are created using the ice
power and cause balloons to ascend. Some functionality could
still be added to the ice and fire power to give them more use.

Fig. 8: A split screen (two images from different player’s
screens). When the fire power is selected by both players,
it activates the fire particle system.

To make these powers accessible to the players via the
scroll, a powers script was created and attached to the witch
GameObject, which was a child of the player object. In this
script, each of the powers are stored in a queue, and only
accessed when the player presses one of the buttons. The
queue stores crystal balls. These objects are returned to their
stands either 7 seconds after use, or if they are away from their
stands for 7 seconds. GameObjects were stored to make the
transforms of the crystal balls and the setActive function easily
accessible. It was essential to create a Ul in a meaningful and
useful way [5] for the user. When the swap power button is
pressed, a function gets called within the powers script which



then accesses a function that is located in a separate swap
script. A similar method is used when selecting the bomb
power, in which there is a separate script for the bomb power
that is attached to the explosion prefab that is accessed in
the powers script. The remaining powers are accessed and
implemented in the powers script while having other scripts
attached to the parent GameObject for networking purposes.

To get the fire and ice powers to work properly, the
OverlapSphere physics function is used to detect when the
hands of the witch are touching the ice cube or the water
projectile. While a player has the ice power activated, they
can freeze the water projectile. When the player has the fire
power activated, they can melt ice cubes and cause them to
disappear. For the fire power, it was also necessary to add an
OverlapBox to melt the ice cubes when a collision is detected
between the ice and the rest of the body. When the fire power
is selected, a fire particle system is activated that engulfs the
witch object in flames. When the ice power is selected, it
changes the materials used for the witch’s skin color into
a transparent light blue material. The shrink power changes
the local scale transform of the player prefab to a smaller
size. The swap power moves the player prefab in a way that
allows the witch model and camera to move to the position of
the GameObject it is switching with. That GameObject then
moves to the position of the witch model. The bomb power
creates a custom prefab fireball object and when the fireball
object detects a collision, it instantiates an explosion prefab.

Sounds had to be added to each of the powers. Royalty-free
sounds or sounds we recorded were used for the powers. They
are essentially open-source and can be used by anyone. The
sound used for the swap power sounds like a slab of concrete
being shifted across another hard surface. The sound for the
shrink power sounds like rubber being stretched. The bomb
power makes a loud bang when the fire ball collides with
another object, using a royalty-free sound. The ice power is a
custom sound made by crumpling a piece of paper and then
editing the effects in an online music tool called Audacity [6].
The fire power uses a built-in sound in Unity that comes
attached to the fire particle system. To attach each of the sound
effects to the powers, a sound source component was attached
to the witch and then specified in the powers script when the
sound was supposed to be heard. The only sound that had to
be specified differently was the bomb power, in which the fire
ball spawns an explosion and the sound source is attached to
the explosion.

D. Level Design

Demo Level: The first level was initially modeled in
Blender, additions and edits were added afterward. The levels
had to be designed according to the powers that would be
used in that scene. There would have to be small constrained
passages for the shrink power, platforms placed at higher
locations that can only be reached by creating ice platforms
from the octopus’s bubbles, and empty spaces to place objects
to either swap or blow out of the way with the explosion
power. All these factors had to be taken into consideration

when designing levels that would complement the usage of
the powers.

The demo level features a puzzle that involves using the ice
and fire powers to manipulate the position of a balloon. The
objective is to use the ice power to make the balloon drop in
height and the fire power to make it rise. The players repeat
these actions until the balloon makes it out of a winding tunnel.
Once that happens, the balloon rises above a platform. This
is so a player can then use the swap power on the balloon to
get to a higher location. The ice power was used to create a
platform out of a water projectile to reach a swap power. After
using the swap power to swap positions with the balloon to
reach a high platform, a bomb power is then collected. The
player on the high platform uses the bomb power to knock
over crystal balls that contain the shrink power so that the
other player can grab them. One of those balls is then passed
to the other player so that both players can shrink and to reach
the end of the level. The level can only be concluded once both
players touch the square block at the end of the level. Upon
doing so, a congratulatory message appears.

New Puzzle Level: As the demo level was made to illustrate
how the powers could currently be used, another level was
made to test the puzzle aspects of the game. The designing
of this level involved the creation of several new models in
Blender, which are purple barriers and buttons that are used
to open them. The objective of this level is to figure out how
to knock down crystal balls with the shrink power that are
guarded by three barriers. A picture of the level can be seen
in Fig. 9.

Fig. 9: The puzzle level with the barriers, as well as the buttons
the players use to open them.

There are three buttons that correspond to the three barriers
that are placed in separate ends of the map, while a lone
cube sits in the middle of the level. While the buttons are
pressed, their corresponding barriers are disabled. Two of the
platforms require one player to use the other as a platform
so that they can reach it. One player provides a hand for the
other player to jump on to allow that player to reach these
high platforms. There are also three swap powers and one
bomb power available. The solution involves some set up. One
player will need to bring the cube up to one of the platforms,



while the other player will need to collect all swap powers
that are within the level. One player will be called Player1 and
the other Player2. Player2 will use Playerl’s help to reach a
platform that is in front of a long highway filled with three
barriers that ends with crystal balls that each contain shrink
power. Playerl will go to the platform that does not have a
cube. Player2 will slowly release a bomb spell towards the
shrink powers. Since the bomb power is still active, Player2
cannot use other powers. Playerl will swap with Player2 so
that Player2 can press the button located at the position Playerl
is at. This opens up the first barrier. Playerl then swaps
with the cube to press the button that is at that location. As
the button is pressed, the next barrier is released. Once the
bomb spell has passed that barrier, Player1 will swap with the
cube again and then reach the final button as Player2 goes to
collect the shrink powers as they fall down. The level is then
completed.

E. Mirror Networking

Unfortunately, during the time this game was being de-
veloped the unity networking feature known as UNET was
deprecated. The alternative used was the Mirror networking
API found on the asset store or the Mirror public GitHub
repository. There is a sub-branch of the Mirror API known
as FizzySteamyMirror that allows the users to link a host
and client-server using their steam IDs [7]. Once FizzyS-
teamyMirror was downloaded and installed successfully into
Unity, the next hurdle to overcome was to sync up the player’s
movements between the server and client. To accomplish this,
a networking transform child was added to the appropriate
GameObjects of the player prefab, along with a script to
disable any action that does not belong to the player on
their side. After these tasks were accomplished, the player’s
arm movements and walking animations were visible on each
others’ screen.

After both of the character’s movements were visible on
both the server and client, it was time to make sure that the
powers worked online. To achieve this, a networking script
had to be added to the root GameObject of the player prefab
for each of the five powers. These scripts are there to ensure
that the game is synced over the network. After completing
all five scripts, the powers used from either player could be
seen by both users. Then Mirror’s scripts were added to the
appropriate power orbs so that the displacement of the power
orbs, whether they are picked up or knocked out of place, as
well as the position of the octopus, can be seen objectively on
the same server.

To allow the players to see each others’ arms move, the
inverse kinematics scripts were kept enabled. They used the
information about location of the hands and HMD sent from
the other player to use for the inverse kinematics scripts to
approximate the arm placement. For the bomb power, the local
player had control over the spawned spell prefab. For the ice,
the local player’s materials are swapped and information is
sent to the other player to change the materials of the non-
local player. Something similar is done for the fire and shrink

powers. When the client spawns a player prefab, the witch’s
materials for the clothes, hair, lips, and eyes, are changed
so that the characters are distinguishable from the player
spawned by the server. Networking eventually turned out to be
a success, Fig. 6 and Fig. 2 show the two players interacting
in different environments. There was other networking related
work involving correctly spawning objects like the octopus, the
balloon, and the spells and these are covered in detail in [7].

III. GAMEPLAY
A. Locomotion

The locomotion method used included both room-scale and
the controller to move. It was similar to glide locomotion [8].
Using the trigger by itself moves the player in the direction the
player is looking in. Touching left or right on the touchpad,
and then pressing the trigger would allow a side step. Touching
back on the touchpad and then pressing the trigger would allow
the player to move in the opposite direction that the player was
looking in. The trigger was used since the touchpads seemed to
jam easily. This locomotion method was chosen as it seemed
simple to implement. A method such as teleportation was not
used as it could look unusual to see a model repeatedly and
instantaneously moving to different positions. Jumping and
gliding were also added. When a player falls, they will fall
at a constant, slow rate and can use the touchpad to move
forward, left, right, or backward while gliding.

B. Positive Outcomes

The goals for the gameplay of this project included the
possibility for depth in gameplay, the feeling of being on
a team, variety in puzzles, and to make use of the motion
controls that VR provides. One way that the game tries to
encourage the feeling of being on a team is that players in
the game can stand on each other. One player can hold out
their hand to provide a platform for another player. This can
be used as a method to separate players, or to make areas
inaccessible without having to use powers. Another way the
game tries to encourage a feeling of teamwork is the ability to
pass collected powers to teammates. This is done by holding
the model’s hands to the button on the script and pressing the
side buttons on the Vive controllers.

As mentioned before, the ice power was meant to encourage
teamwork by allowing one player to freeze bubbles shot by
the octopus while the other player tricks the octopus into
sending them over. The fire and ice powers are not necessarily
complete, as the original idea involved players not being able
to enter certain areas unless those powers were activated. For
example, not allow a player not using the fire power to reach
hot surfaces.

The balloons are meant to encourage teamwork by using
the ice and fire power to cause the balloon to rise and fall.
This step is repeated until it is in a position where a player can
use the swap power on it. This idea was not explored greatly,
but we believe it is usable for interesting puzzles. The bomb
power takes advantage of the motion controls as it allows an
explosion spell to be thrown. The swap power utilizes VR



controls by using the HMD to aim. This power can use other
players as objects to swap with, which encourages teamwork
as it may be necessary to move a player to another location.
Also, when a player is using a power, another power cannot
be used. The other player would have to be in charge of using
other powers which encourages players to choose roles.

Another important component added later in the game’s
development was the voice chat feature. Voice chat allowed
the players to communicate with one another in the game
while pressing and holding one of the touchpad buttons on the
HTC Vive controller. This was done using mirror to send data
over a network and using audio sources to play them [7]. The
feature is a necessity since players will need to communicate
their ideas to solve puzzles.

IV. CONCLUSIONS AND FUTURE WORK
A. Conclusions

This project demonstrates only a few of the countless
exciting and innovative features programs like the Unity video
game engine and Blender have to offer. However, the game
was a successful project in the sense that it meets all the crite-
ria initially set for it. It is a co-op game that not only reinforces
teamwork but also requires it to make it through the demo.
The five powers all have interesting visual effects and sounds
attached to them, as well as situations where the players need
to implement them. There is room for improvement in many
areas of the game, but overall it is sufficient for what it is
intended. That being a great VR learning experience.

B. Future Work

While there are many items which could be added here,
we will point out a few that we feel are important. Comfort
mode [8], a method in which the user can turn their head
without changing direction in the game could have been added
for users who prefer it. Jumping, even with its potential
to cause VR sickness [9], and the possibility of affecting
immersion were kept in the game as it was deemed useful
for gameplay purposes. A user study should be done to see
how users feel about jumping and to gather feedback on the
prototype. Since this game is still a prototype, the powers
could be adjusted and more interact-able assets could be
added. Other multiplayer services or libraries could be added
such as Photon Unity Networking 2 [10], Dark Rift 2 [11],
and Forge Networking Remastered [12]. All of which are
available on the Unity Asset Store [13].

More levels could be added to test ways that the powers can
be used and how they need to be adjusted. There also should
be more GameObjects to interact with to help make puzzles
more difficult and interesting. The original design of the scroll
was intended to be dynamic and have buttons that represent
powers placed on it in the order it was collected. This way,
more than just five types of powers could be represented on
the scroll, and the maximum amount of powers allowed to
collected by an individual player could be how many buttons
could fit on the scroll. But to save time the scroll had all
powers displayed next to a number.

REFERENCES

[1] T. Weilker, A. Kunert, B. Frohlich, and A. Kulik. Spatial updating and
simulator sickness during steering and jumping in immersive virtual
environments. In 2018 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), pages 97-104, March 2018.

[2] Blender Online Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Blender Institute, Amsterdam, 2019. http:
/Iwww.blender.org Last Accessed 1/7/2020.

[3] D. Helgason, J. Ante, and N. Francis. Unity - Video Game Engine.
Unity Technologies, Unity Technologies, San Francisco, 2019. http:
//www.unity3d.com Last Accessed 1/7/2020.

[4] S. Narang, A. Best, and D. Manocha. Simulating movement interactions
between avatars agents in virtual worlds using human motion constraints.
In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), pages 9—16, March 2018.

[51 J. LaViola, JR., E. Kruijff, R. McMahan, D. Bowman, and I. Poupyrev.
General Principles of Human-Computer Interaction. Addison Wesley,
2nd edition, 2017.

[6] D. Mazzoni. Audacity(R): Free Audio Editor and Recorder [Computer
program]. Audacity, 2020. https://www.audacityteam.org/download/
Last Accessed 1/7/2020.

[7]1 Alexander Novotny, Rowan Gudmundsson, and Frederick C. Jr. Harris.
A unity framework for multi-user VR experiences. In Proceedings of
the 35th International Conference on Computers and Their Applications
(CATA 2020). ISCA, 2020.

[8] J. Linowes. Unity Virtual Reality Projects, chapter 7: Locomotion and
Comfort, pages 201-235. Packt Publishing, Birmingham, UK, 2018.

[9] C. Wienrich, K. Schindler, N. Déllinger, S. Kock, and O. Traupe. Social
presence and cooperation in large-scale multi-user virtual reality - the
relevance of social interdependence for location-based environments. In
2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR),
pages 207-214, March 2018.

[10] Photon Unity Networking 2. https://doc-api.photonengine.com/en/pun/
v2/index.html, Last Accessed 1/7/2020.

[11] DarkRift Networking. https://darkriftnetworking.com/DarkRift2/Docs/
2.3.1/html/944¢4100-5¢17-449f-8a8e-c9fbfdaedaee.htm, Last Accessed
12/30/2019.

[12] BeardedManStudios. Beardedmanstudios/forgenetworkingremastered.
https://github.com/BeardedManStudios/ForgeNetworkingRemastered,
Last Accessed 1/7/2020.

[13] Unity asset store - the best assets for game making. https://assetstore.
unity.com/, Last Accessed 12/30/2019.



