vFireVI: 3D Virtual Interface for vFire

Christopher Lewis
Computer Science and Engineering
University of Nevada, Reno
Reno, United States
christopher_lel @nevada.unr.edu

Abstract—Wildfires cause severe amounts of damage to wildlife
habitats and property. The most successful way of escaping
safely or quelling a fire is to do so with communication, and
as a group. While there are several other wildfire simulators,
visualization and multi-user components are lacking or non-
existent in most of them. vFireVI aims to provide a safe and
accurate virtual environment for simulation and interaction with
wildfires through multi-user collaboration, accurate terrain, and
realistic fire spread. In order to do this, an interface was built
between vFireVI and an earlier project, vFireLib, to allow
transmission of simulation data back and forth. Combining these
two allows for an intuitive user interface, responsive multiplayer,
quick server communication, and rapid simulations. All of this
is done in virtual reality to provide a meaningful and immersive
experience, where users can collaborate and test each other.

Index Terms—fire, simulation, virtual reality, multiplayer

I. INTRODUCTION

Occupations that operate in dangerous conditions on a daily
basis, such as military and emergency settings, face the issue of
training employees for these dangerous conditions. Subjecting
them to equally dangerous training exercises increases risk
of injury, so other methods of training that provide a similar
experience to on-site work are preferred, due to the minimal
risk involved. In recent times, the growing popularity of
consumer head mounted displays (HMD) has made Virtual
Reality an increasingly viable option to provide minimal risk
training.

In the case of forest fires, their immense scale and unpre-
dictable nature make physical analogs costly and dangerous,
thus having a virtual analog that has a minimal and flat cost
is very efficient and useful. Using the virtual 3D environment
provided by Unity, paired with an immersive HMD we created
a safe and viable option for providing minimal risk fire safety
training in optionally cooperative situations.

Virtual reality (VR) is fantastic at conveying a sense of
immersion and user enjoyment; however, VR can also cause
some users discomfort and detachment from reality. Through
the use of Unity, VR is carefully implemented to provide a
realistic 3D environment, and visualizer for the simulation.
With minimal real world movement by the user, moving
throughout the 3D environment reduces VR discomfort and
motion sickness, which makes teleportation a good mode of
locomotion for the 3D landscape, while still maintaining the
user’s autonomy while moving around.

Ronn Siedrik Quijada
Computer Science and Engineering
University of Nevada, Reno
Reno, United States
ronn.quijada@nevada.unr.edu

Frederick C Harris, Jr.
Computer Science and Engineering
University of Nevada, Reno
Reno, United States
fred.harris@cse.unr.edu

The rest of this paper is structured as follows: Section II
talks about the background behind this project, more
specifically vFire and it’s successors, and then related works,
which are mostly fire simulators. Section III is where the
design and implementation of vFireVI gets explained in
detail, from the implementation of Unity to the Burning
Simulation itself. Section V is Conclusion and Future work,
which is where the paper shows its findings and explains
future work that could come from this project.

II. BACKGROUND & RELATED WORKS

A. Fire Simulators

Another fire simulation was used for wildland two dimen-
sional fire spread and was made by Finney at et al [1].
This simulation approaches fire simulation through a unique
perspective. All of it’s data is based off of historical U.S. data.
This includes weather patterns, wind speed, and moisture. It
uses this data and then compares it against data from 91 fires
occurring from 2007 to 2009. Their results consistently had
fire sizes higher than the real fire, and consistently smaller
farthest burn distance than the real fire.

H. Xue ef al. [2] made a fire simulator that compares
different combustion models in enclosed simulations. These
combustion models are the volumetric heat source model, the
eddy break-up model, and the presumed probability density
function model in 3 situations; a room fire, a shopping mall
fire, and a tunnel fire. Comparing each set of data, H. Xue
et al. found that none of the models are consistent over
each situation. They suggest that there is a need for adequate
turbulent combustion models.

H. S. He et al. [3] created a fire simulator that discusses
the effects of fire on wildlife. The fire simulator incorporates
fire, wind-throw, and harvest disturbance in terms of species-
level fauna to determine patterns over large spatial and time
domains. This simulator; however, does not predict individual
events, it predicts the future of the species-level ecosystem.

B. vFire

vFire was a simulation developed by Hoang et al. [4], [5]
in 2010. The simulation utilized a four-sided and six-sided
CAVE™ virtual interface was used to display a reconstruction
of the terrain near Kyle Canyon, Nevada. The simulation also

used a Ul to simulate and modify various forest fire situations
and terrain data. The height map and vegetation data, used in
the simulation, can be seen visualized in Figure 1 and Figure 2,
respectively. One of the largest issues with the application
was that both the underlying simulation system and virtual
interface were highly coupled, meaning that in order to update
the fire model used, the entire application would need to be
updated in order to use the new model. Another large issue
with the application was that the virtual interface was created
in OpenGL before OpenGL implemented pre-shaders, which
caused huge calculations in any simulation, and made the
project time consuming and difficult to upgrade or work with.
In addition, if stakeholders would want to update the visuals,
it would require a rebuild of the entire system. This would be
true even if the underlying simulation had not changed.

L o

-

Fig. 1. A height map generated using data retrieved from vFireLib

+

Fig. 2. Vegetation map generated from the vFireLib fuel load index map;
each color representing variable attributes.

C. vFireLib

Due to the restrictions of the vFire simulation, a new system
called vFireLib was created, in part by J. E. Smith [6], R. Wui
etal. [7], and R. Wui et al. [8], to decouple the fire simulation
simulation from the visual interface. vFireLib reinvents the
original functionality of vFire as a RESTful interface, allowing
the direct upload of fuel load, wind, and initial fire data to
initialize the simulation. The simulation finishes by creating
the resulting time of arrival map. This map provides data about
what time each cell will set on fire and is returned from a
REST call. This data can be used in any application. The
project Harris et al. [9] developed a useful web interface,
providing tools to modify and simulate various wildfires using
modern browsers An example of the interface can be seen in
Figure 3, which is a pixel map of the land the simulation is
ran on. Two of the larger issues with vFireLib was that the
simulation and web interface did not allow for fire spotting and
the simulation was also rather slowed down by the addition
of the interface.

I

TTTT
T
T

Fig. 3. The visual interface, in VFireLib, corresponding to the area the
simulation was ran

In order to rectify the issues of vFireLib, and provide
the user using the web service or Unity application, the
ability to modify and run fire simulations, vFireLib.v2 was
created by Garcia [10] and influenced by [11]. vFireLib.v2 was
rewritten to increase the speed of the sequential algorithm by
implementing a parallel algorithm that was processed by the
GPU. The simulation also included fire spotting computation.
Implementing spotting required computing where an ember
would emerge once a fire had reached a hot enough intensity,
and where that ember might land considering wind, gravity,
moisture, and fuel data to determine if a new flame would
ignite.

D. VR Simulators

VR Simulators can be found in many different forms. Much
of the research in this area is in surgical applications. A
unique example of this is by J. M. Albani et al. [12], which
details the work of VR assisted robotic surgery simulations
throughout the years. It also incorporates one of the current
commercial surgical system, the da Vinci™robot. The article
also describes possible future applications of the simulations
and the remaining challenges that need to be fixed.

Another VR simulator that fits into the field of surgery
can be found in an article by A. G. Gallagher et al. [13],
which describes the times in which a VR simulation is
actually helpful in teaching and the reasoning on what makes
it useful. It describes the use of simulations for minimally
invasive surgery only, but it could be used as a training tool
for other types of surgeries as well. Their conclusion and
results specifically make the case that VR simulators are only
impactful when integrated into an already good education or
training program that involves actual technical skills.

A fire simulator in virtual reality also exists, it was created
by M. Cha et al. [14]. This simulator uses computational
fluid dynamics to calculate certain quantities: toxic gases, heat,
smoke, and flames. The paper’s focus is on creating a training
simulation, so that civilians, members of the military, and new
firefighters can experience wildfires second-hand. Overall, the
study provides a clean framework for accurately calculating
quantities of fires, and inputs into a simulation. There isn’t
any spreading of the flames and the paper discusses using this
framework for building sized situations, like evacuating, so
that the fire not accurately spreading, isn’t a large deal.

III. IMPLEMENTATION

As seen in Figure 4 there are many components to the
overarching simulation of the modern vFire. vFireLib is the
starting point, where the actual simulation gets done. The
next step, Web Service, is the REST interface that exists
to communicate and run vFireLib. From the Web Service,
two clients are split off that communicate with the REST
interface found within the Web Service. The first being the
Web-based Client. This client exists online to communicate
with the server. The other being the Unity Client. This client is
vFireVI. The reason this client exists is to create a visualization
of the simulation that is user friendly and can act as a realistic
environment to help bolster the avoidance and preparedness
against wildfires.

Due to how vFireLib fire simulation discretizes its simula-
tion data to a grid, the REST interface provides a 2D array of
several components of the fire simulation, ranging from wind
data to vegetation type and density. vFireVI takes advantage
of the highly parallel nature of this forest fire simulation data
by offloading most of the work to the GPU through Unity’s
ShaderLab language and OpenCL Compute Shaders.

A. Unity

Unity is then used to show that data in a 3D environment
by stepping through the burn chart, obtained through the
Rest Interface, which is obtained by the server running the
simulation with new data. Next, the simulation must spawns
the players and ticks through time, incrementing through the
burn chart until nothing is left. Once the burn chart is empty,
the simulation ends. Unity is also used to implement the 3D
environment in virtual reality.

Mirror, a plugin for Unity, is use to implement a multiplayer
aspect to the simulation. The multiplayer aspect of the simula-
tion was implemented through the use of a client-host model.

Web-based Client Unity Client

Web Service (Wrapper)

vFireLib

Fig. 4. The connection between projects developed for vFireLib

This is where the first one connected to a multiplayer session
acts as a server or host for the rest of the players/clients and
is a client themselves. If the simulation has to be changed at
all, the host receives the information from the REST interface
and updates the host’s terrain. Once the terrain has finished
updating for the host, that terrain is sent to all of the clients
the host is connected to. Once this is done, the simulation
continues. All stepping through the burn map is done from
the side of the client, so the terrain wouldn’t have to be sent
every tick. The movement of clients gets sent to the host, the
host then updates its models, and sends the updated locations
back to all of the clients this creates some latency, but not
enough to hinder the simulation. All of this project can be
visualized as the Unity Client side of Figure 4 from R. Wui e?
al. [7] which references the connection between this project,
vFireLib [6]-[8], and vFireLib2 [10].

B. In Game

vFireVI utilizes 2 different user roles. The first being the
user role, "Runner”. A Runner, as the name implies, runs
around the environment and can jump as their only movement
and interactive options. The second user role is the "Overseer”.
An Overseer can move more quickly than a Runner, and can
fly as their modes of transportation. Another feature of the
Overseer is that any Runner can’t see the Overseer. This is to
allow for an environment where someone can watch a user,
from another room, without the user knowing about it. The
locomotion and UI for the players were carefully decided
through examination and review of multiple research papers,
such as M. Nabiyouni et al. [15] and M.M. Davis et al. [16].
It was settled to use a radial menu and for locomotion, the
motion of pulling yourself along the terrain for the Overseer

and Teleportation for the runner as they provide, generally, the
best mix between possibility of motion sickness and usability.

As for the situation deployment, the program starts with a
low opacity 3D interface and basic terrain in the background.
This user interface has options that allow the user to join
multiplayer, change aspects of the fire simulator, and change
the terrain through various tabs, windows, and input fields.
After the user completes setup and starts the simulation, the
custom data selected by the user gets sent to the REST server
to be processed by the server and then the burn map is returned
back. Then, Unity runs scripts to load the terrain and the burn
line from the available data. Both types of players, Overseers
and Runners, spawn in after they load into the simulation and
the 3D environment has been built.

C. REST Data Parsing and Terrain Generation

The REST interface reinvented by vFireLib provides plain
text files containing data of the simulation via an array of
integers; however, a 2048 by 2048 cell simulation has over
4 million entries to parse. To speed the parsing stage up, a
compute shader is used to split the data into lines and parse
each row into the buffer that will contain the final array of
integers. From there, we can pass the final data back to the
CPU or transform the array into a texture that can be used in
rendering the 3D environment. This texture is then passed to
the Terrain Generator.

Terrain generation is primarily handled using Unity’s built-
in terrain system, which provides functionality for setting
height data, trees, and various other details. For the height of
the terrain, the parsed data is transformed into a 16 bit integer
array like in Figure 1, which is then passed to the terrain
system. While there isn’t a clear way to directly replace the
height map contained in the terrain system, Unity provides
functions to replace the height map with an array of integers
via C# scripts.

For the terrain material, Unity uses what is called a splat
map, which is a texture that defines what ground material is
used at which point in the terrain using the RGBA channels
to represent the strength of each ground material. A custom
shader was written to take advantage of this existing function-
ality by using the RGBA channels to describe generic variable
attributes of the terrain. An example of the splat map can be
seen in Figure 2, where blue controls unburnable areas, green
controls the fuel density of the area, and red controls the fuel
moisture.

D. Forest Generation

For forest generation, the project uses a 16 bit integer map
generated from the previously parsed data. The data holds
indexes that represent a terrain type. Terrain types are defined
by the data obtained from U.S. official land surveys. The
indexes in the data are compared to a user defined dictionary
that pulls the fuel load density and tree type, and then spawns
an instanced tree at the location on the terrain relative to where
it was sampled on the index map. This system allows for

variable forest types, allowing it to simulate a wider range
of flora.

Forest generation requires different types of vegetation e.g.
shrubs, trees, and grass. Thus, a great deal of importance
is placed on allowing for these different types, and having
example figures for each. vFireVI has a model for each type of
tree specified from U.S. official land surveys. This means that
any new vegetation type can’t be read into the simulation until
a new model is created and tied to the specific representation
of the vegetation data.

E. Burning Simulation

The Data for when the fire arrives is calculated by vFireLib
and is passed to our visualization through the REST APIL. A
sample of the burn map (which shows the time of fire arrival)
for Kyle Canyon can be seen in Figure 5

Fig. 5. The burn map generated from a successful run of vFireLib’s
simulation. float values are passed in and saved into an exr format to preserve
the 32bit floating point time of arrival information.

The visual burning of the forest is handled through a set of
custom shaders built on top of the existing Unity shaders that
effect the rendering for all visual elements in the scene. For
all the custom shaders, a map called time-of-arrival, which
contains data pertaining to the exact time each cell sets on
fire, is referenced in order to determine the visual state of the
fire simulation. A sigmoid function is used on the sampled
texture to convert the float value of an area into a value that
represents its current burning state given the current simulation
time. This function is then used to determine the visual aspects
of the area.

For trees, the burn state function is used to visually set the
tree on fire, and fade away small branches and leaves based
on its current burn state. To support varying burn times of
different forest types, a secondary map is used to store the
burn color and burn time for each tree, assuming trees don’t
migrate. The code for the rendering is split into two different
shaders handling the tree trunk and leaves respectively.

For terrain, the burn state function is used to visually show
the fire line at a given time, represented by a glowing line. The

thickness of the line is determined by the speed at which the
area sets on fire. The color of the fire line changes based on the
type of fuel being burned, as well as other user defined traits.
The terrain texture will change based on the burn progress as
well, where burned areas change from their original material
to a burned rubble material.

IV. EXAMPLE SIMULATION

An example data set was given from the aforementioned
vFireLib simulator so that this project could continue where
it left off. This data set is of Kyle Canyon, Nevada as seen in
Figure 6. Along with the location data we were given terrain
height data as seen in Figure 1, local vegetation data as seen
in Figure 2, and the vFireLib simulator itself had moisture and
wind data contained within it.

Fig. 6. A satellite view of the simulated area in Kyle Canyon, pulled from
Google Maps.

vFireVI ran the simulator and took in the data received
from the simulator to create the 3D representation of Figure 5.
This 3d representation is shown in Figure 7. The strong bright
yellow line represents the current burn line. On the left side of
this figure there are representations of already burnt out trees,
on the right there are representations of the not yet burned
trees. There are also places on the left side with non burnt
trees. This is due to there being terrain data that represents
areas that can’t be burnt overlapping with vegetation data that
shows vegetation in that area. This is due to poor data rather
than imperfections in the simulation.

V. CONCLUSIONS & FUTURE WORK

A. Conclusions

vFireVI is a virtual reality based visualization environment
of a fire simulation. The simulation can be communicated
through a REST interface server from vFireLib which allows
for quick changes to the environment and rapid simulations.
Virtual reality makes this simulation, and others like it, viable

Fig. 7. The fire line of the simulated area in Kyle Canyon, visualized by the
Unity simulation.

options for training of all sorts, at all levels. The physical ana-
log provides little safety, especially compared to the minimal
risk of the head mounted displays. vFireVI also allows for
responsive multi-user simulations. The virtual reality element
tied in to the multi-user simulation allows for collaborative
training which makes it even more effective.

B. Future Work

Dynamic Collection of Data: The way vFireVI gets data
currently is using presets that already have correct data stored
within it. These data sets could be scraped from a terrain
database website and then formatted to allow for vFireLib to
parse the data.

Fire Textures: vFireVI allows for dynamic texture swap-
ping; however, there are no accurate textures available for fire
or smoke representation within the simulation. The current
textures are just seen as glowing and then the terrain textures
are swapped from “not burnt” to “burnt”.

Role Functions: Currently, vFireVI has two roles, the
“Overseer” and the “Runner”, these roles only really change
the movement modes of the user. These roles could be
expanded upon to allow for meaningful differences between
the two. There could also be an increased game element to the
simulations which might cause the user to be more invested
in the simulation.

Better Multi-User: Unity recently removed support for
multiplayer games on their platform. vFireVI was made using
a Unity plugin called "Mirror”. This causes the multiplayer
to be a little slow and it is peer to peer. It would be better,
in some cases, to create a server to peer system to allow for
less lag and less issues with server or peer updates. It would
also be better to use a multiplayer system that is native to the
game engine environment.

Editing Data: vFireVI uses data given by vFireLib to
run. There are two ways this could be improved. The first is
letting a user edit the data directly in the Unity user interface.
Another is to allow the user to edit data live during the
simulation, perhaps as the “Overseer” role. Data that could
be edited includes, fire start point, additional fire points,

vegetation, rain fall, and wind. This would provide a good
way to allow friendly user editing of the simulation without
having to look at the raw ASCII files.

VI. ACKNOWLEDGMENT

We would like to thank Rui Wu, Connor Scully-Allison, and
Andy Garcia for their help in operating their past implemen-
tations of the web interface for vFire, and providing us with
their simulation and simulation data.

This material is based upon work supported in part by
the National Science Foundation under grant number ITA-
1301726. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] M. A. Finney, I. C. Grenfell, C. W. McHugh, R. C. Seli, D. Trethewey,
R. D. Stratton, and S. Brittain, “A method for ensemble wildland fire
simulation,” Environmental Modeling and Assessment, vol. 16, pp. 153—
167, October 2011. https://www.fs.usda.gov/treesearch/pubs/39311, Last
Accessed (1/2/2020).

[2] H. Xue, J. Ho, and Y. Cheng, “Comparison of different combustion
models in enclosure fire simulation,” Fire Safety Journal, vol. 36, no. 1,
pp- 37 — 54, 2001. https://doi.org/10.1016/S0379-7112(00)00043-6.

[3] H. S. He and D. Mladenoff, “Spatially explicit and stochastic simu-
lation of forest landscape fire disturbance and succession,” Ecology,
vol. 80, pp. 81-99, January 1999. https://www.fs.usda.gov/treesearch/
pubs/12251, Last Accessed (1/2/2020).

[4] R. V. Hoang, M. R. Sgambati, T. J. Brown, D. S. Coming, and F. C.
Harris Jr, “Vfire: Immersive wildfire simulation and visualization,”
Computers & Graphics, vol. 34, no. 6, pp. 655-664, 2010.

[5] R. V. Hoang, J. D. Mahsman, D. T. Brown, M. A. Penick, F. C. Harris,
and T. J. Brown, “Vfire: Virtual fire in realistic environments,” in 2008
IEEE Virtual Reality Conference, pp. 261-262, March 2008. doi:10.
1109/VR.2008.4480791, Last Accessed (1/2/2020).

[6] J. E. Smith, “vFireLib: A forest fire simulation library implemented
on the gpu,” Master’s thesis, University of Nevada, Reno, Reno, NV
89557, December 2016. https://www.cse.unr.edu/~fredh/papers/thesis/
064-smith/thesis.pdf (Last accessed: 5/2/2019).

[7]

[8]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Wui, C. Scully-Allison, C. Carthen, A. Garcia, C. Lewis, R. Siedrik
Quijada, J. Smith, S. M. Dascalu, and F. C. Harris, Jr, “vFirelib: A
GPU-based fire simulation library and fire data visualization,” Submitted,
2019.

Rui Wu, C. Chen, S. Ahmad, J. M. Volk, C. Luca, F. C. Harris, and S. M.
Dascalu, “A real-time web-based wildfire simulation system,” in [ECON
2016 - 42nd Annual Conference of the IEEE Industrial Electronics
Society, pp. 4964—4969, Oct 2016. doi:10.1109/IECON.2016.7793478,
Last Accessed (1/2/2020).

F. C. Harris Jr, M. A. Penick, G. M. Kelly, J. C. Quiroz, S. M. Dascalu,
and B. T. Westphal, “V-FIRE: Virtual fire in realistic environments,” The
4th International Workshop on System/Software Architectures, vol. 1,
pp- 73-79, 2019.

A. M. Garcia, “An advanced wildfire simulator: vFirelib.v2,” Mas-
ter’s thesis, University of Nevada, Reno, Reno, NV 89557, December
2018. https://www.cse.unr.edu/~fredh/papers/thesis/074-garcia/thesis.
pdf (Last accessed: 5/2/2019).

J. Smith, L. Barfed, S. M. Dasclu, and F. C. Harris, “Highly parallel
implementation of forest fire propagation models on the gpu,” in 2016
International Conference on High Performance Computing Simulation
(HPCS), pp. 917-924, July 2016. doi:10.1109/HPCSim.2016.7568432,
Last Accessed (1/2/2020).

J. M. Albani and D. I. Lee, “Virtual reality-assisted robotic surgery
simulation,” Journal of Endourology, vol. 21, pp. 285-287, April 2007.
https://doi.org/10.1089/end.2007.9978, PMID: 17444773, Last Accessed

(1/2/2020).
A. G. Gallagher, E. M. Ritter, H. Champion, G. Higgins, M. P. Fried,

G. Moses, C. D. Smith, and R. M. Satava, “Virtual reality simulation
for the operating room,” Annals of Surgery, vol. 241, pp. 364-372, Feb.
2005. doi:10.1097/01.s1a.0000151982.85062.80, PMID: 15650649, Last
Accessed (1/2/2020).

M. Cha, S. Han, J. Lee, and B. Choi, “A virtual reality based fire training
simulator integrated with fire dynamics data,” Fire Safety Journal,
vol. 50, pp. 12-24, May 2012. https://doi.org/10.1016/j.firesaf.2012.01.
004, Last Accessed (1/2/2020).

M. Nabiyouni, A. Saktheeswaran, D. A. Bowman, and A. Karanth,
“Comparing the performance of natural, semi-natural, and non-natural
locomotion techniques in virtual reality,” in 2015 IEEE Symposium on
3D User Interfaces (3DUI), pp. 3—-10, March 2015. doi:10.1109/3DUI.
2015.7131717, Last Accessed (1/2/2020).

M. M. Davis, J. L. Gabbard, D. A. Bowman, and D. Gracanin, “Depth-
based 3d gesture multi-level radial menu for virtual object manipulation,”
in 2016 IEEE Virtual Reality (VR), pp. 169-170, March 2016. doi:
10.1109/VR.2016.7504707, Last Accessed (1/2/2020).

