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Abstract—Internet service providers are offering shared data
plans where multiple users may purchase and share a single
pool of data. In the Chinese economy, users have the ability to
sell unused data on the Hong Kong Exchange Market, called
“2cm”, currently maintained by AT&T internet services. We
propose a software-defined network for modeling this wireless
data exchange market; a fully connected, pure “point of sale”
market. A game-theoretical analysis identifies and defines rules
for a progressive second price (PSP) auction, which adheres to
the underlying market structure. We allow for a single degree
of statistical freedom – the reserve price – and show that data
exchange markets allow for greater flexibility in acquisition
decision-making and mechanism design with an emphasis on
optimization of software-defined networks.

We have designed a framework to optimize this strategy space
using the inherent elasticity of supply and demand. Using a
game theoretic analysis, we derive a buyer-response strategy for
wireless users based on second price market dynamics and prove
the existence of a balanced pricing scheme. We examine shifts in
the market price function and prove that the desired properties
for optimization to a Nash equilibrium hold.

keywords: software-defined networks, mobile share, game
theory, second-price auction

I. INTRODUCTION

Mobile data usage is quickly outpacing voice and SMS
in wireless networks. Multi-device ownership has led to the
introduction of the shared data plan [1]. Using an account
service, users are able to keep track of data usage in real time
across all their devices. The shared data service plan requires
that users hold an a priori knowledge of demand and supply
with respect to their data plan in order to form a strategy,
meaning that a user must plan to either buy or sell thier
overage data. In our formulation, we address several topics:
data as a product in the real-monetary market, and data as
network resource in a wireless topology.

Many new services are found exclusively on mobile devices.
Companies are moving their software from (wired) grid-based
to node-based communication. For example, the move from
a standard website to a mobile phone app. Software-defined
networking (SDN) addresses the new environment of wireless
communication devices, allowing for a programmable network
architecture. The account services that manage wireless shared
data plans decentralize network management, and mobility
becomes a factor in SDN design. Individual mobile devices
provide flexibility, and may make decisions regarding local
network infrastructure. There is a clear need for algorithms de-
signed for optimization in this space. In many cases, the direct

communication between mobile devices allows for a simple
mutation of classic optimization models. Auctions are key in
SDN for the fair allocation of resources. For this work, we
focus on mobile data, an infinitely divisible and distributable
quantity. Mobile data represents online data accessed using
a wireless network. In [2], Lazar and Semret introduced the
Distributed Progressive Second Price Mechanism (PSP) for
bandwidth allocation. Such an auction is (1) easily distributed,
and (2) allocates an infinitely divisible resource. A PSP auction
is defined as distributed when the allocations at any element
depend only on local state; no single entity holds a global
market knowledge. We consider the multi-auction: where each
auctioneer is a user selling data to their peers.

The model for data exchange was recently adopted by
China Mobile Hong Kong (CMHK), who released a platform,
called 2cm (secondary exchange market), creating a secondary
market where users can buy and sell data from each other.
CMHK owns and moderates 2cm, where CMHK the only
auctioneer, and computes allocations of mobile data based on
bids submitted to the platform. We focus on providing users
with an incentive framework so rational users will choose
a collaborative exchange. This collaborative exchange is the
(built-in) transformation from the direct-revelation mechanism
(truthful bidding) to the desired message space (actual bids).

We describe our auction mechanism as a pure-strategy
progressive game with incomplete, but perfect information.
The market strategy is determined by the impact of user
behavior on market dynamics. The optimal objective is defined
as a rational user’s valuation of digital property. In classic
mechanism design, with multiple user types, there is no single
way to design the transformation from the direct revelation
mechanism to its corresponding computational design. As
in [2], our incentive for a user to truthfully reveal its type is
built into the user strategies. We determine (at least one) local
equilibrium is a result of incentive compatibility (truthfulness)
in strategic bidding, and so our formulation holds the desired
PSP qualities. Our derivation of strategies depend on the ratio
of supply and demand, and consequently, on the ratio of buyers
to sellers.

This is the first work to provide a comprehensive derivation
of an auction mechanism with respect to the CMHK platform.
The rest of of this paper is structured as follows: Section II
presents the related work on auction theory and resulting
policy software. Section III details the mathematical structure



of the data-exchange market, which we present as an extension
of the market in [2]. The analysis of user behavior and the
resulting algorithms are presented in Section IV along with
a simple example. Conclusions and Future Work follow in
Section V.

II. RELATED WORK

Progressive second price auctions are used for optimal
allocation in a variety of scenarios, and for different rea-
sons. Different definitions of social welfare define different
strategies. Typical goals of optimization are the maximiza-
tion of revenue, and optimal allocation. Other papers focus,
taken from auction theory, optimize seller’s reserve prices,
or market price. Results derived from game theory focus on
player strategy, as in this work. In [3], user strategy gives a
“quantized” version of PSP, improving the rate of convergence
of the game. Modifications to the mechanism that result in
improved convergence also appear in [4], which relies on an
approximation of market demand. Another mechanism derived
from game theory [5], derives optimal strategies for buyers and
brokers (sellers), and further shows the existence of network-
wide market equilibria by representing the market dynamics
as a system of equations.

Allowing a user preference to, loosely, represent a policy,
we may interpret a the rules of the data exchange market as a
policy scheme, where the ISP is assumed to enforce the rules
and the market dynamics play out as a game among “users”
of the game. So in a distributed system, users are allowed to
set their own policies, and the ISP is responsible for imple-
menting the framework to support their preferences. Trusted
management systems are based on the Common Information
Model (CIM), and focus on policy-based management, for
example the “Policy-Maker” toolkit. In general, the translation
of policy-based management systems to SDN focuses on
combining the simplicity of policy-based implementation with
the flexibility of SDN, as in the meta-policy system, CIM-
SDN [6].

Game-theoretical analysis of mobile data has been presented
in [7] as a framework for mobile-data offloading. In our
analysis, the stability of the game is expressed as the set of
equilibria, or fixed points, of the system. When considering
the distributed and decentralized allocation of resources, a
variety of equilibria exist for heterogeneous and homogeneous
services once a certain set of conditions is met, one of which
is truthfulness.

III. THE MARKET MECHANISM

In a distributed PSP auction, the design must must meet a
certain set of known criteria: (1) truthfulness (incentive com-
patibility), (2) individual rationality/selfishness, and (3) social
welfare maximization (exclusion-compensation). We examine
the PSP auction as the constraints are able to attain the desir-
able property of truthfulness through incentive compatibility,
meaning that an user has more of an incentive to tell the
truth. This is because in second-price markets, the winning bid
does not pay the winning bid price, but the price from next

lowest bid. The pricing mechanism also upholds the exclusion-
compensation principle, or Pareto criterion, where any change
to the system would make at least one user worse-off. We
construct the model for a PSP data auction for mobile users
participating in secondary mobile data exchange market.

Let the set of all wireless users to be labeled by the index
set I = {1, · · · , I}. In our current formulation, we do not
allow a seller to host multiple auctions, thus we may identify
each local auction with the index of the seller j ∈ I. The bid
profiles of the users are given as, s ≡ [sji ] where (i, j) ∈ I×I.
Now, this is a single bid, where we fill the space by submitting
zero bids to all non-active users, meaning that if there is no
interaction between two players i and j, then (i, j) = 0.
One may think of it as an I × I matrix, with each element
of the matrix representing a pair-interaction. However this
matrix is just one projective representation of the space. A
single snapshot of a static system, all quantities and prices
are fixed may be represented by this matrix. Once users begin
to bid, then we must consider all possible interactions, which
is done by fixing one index in I at a time, allowing all other
quantities to vary. So the strategy space in fact includes all the
possibilities for an user in I; another dimension to the problem
is added with each possible variation. We call this space S,
the (full) strategy space for buyer i as all possible bids at all
auctions (where i’s bid changes with respect to the variation of
all other bids): Si = Πj∈IS

j
i , and S−i = Πj∈I

(
Πk 6=i∈IS

j
k

)
as

the associated opponent profiles, as in standard game-theoretic
notation.

The grid(s) of bid profiles, s, represents the uncertain state
of the distributed PSP auction mechanism in the secondary
market, where we take uncertain to mean the statistical
distribution of player types and corresponding actions. In
general, we will not reference the full grid s. We will also
use the context of the bid to indicate the user type. To
further clarify our analysis, we adopt the following notational
conventions: a seller’s profile is denoted by sj = [sji ]i∈I ,
and si = [sji ]j∈I denotes a buyer’s profile, where s−i ≡
[sj1, · · · , s

j
i−1, s

j
i+1, · · · , s

j
I ]j∈I as the profile of user i’s op-

ponents. Furthermore, noting that this is a simplification for
ease of notation, we let Dj =

∑
i∈I d

j
i be the total amount

of data j has to sell, and Di =
∑
j∈I d

j
i represent the total

amount of data desired by buyer i.
We assume a public platform, published by the ISP, that

allows sellers to advertise their auctions. Buyers may submit
bids directly to sellers over the wireless network. We also
assume that a buyer’s budget is sufficient, as the alternative
would be to pay a higher price to the ISP. We describe the
rules as follows:

• The bid is represented by sji = (dji , p
j
i ), meaning i would

like to buy from j a quantity dji and is willing to pay a
unit price pji .

• The seller takes responsibility for notifying i of opponent
bid profiles s−i, and updates the bid profile when buyer
i joins the auction.

• sji > 0 represents a buyer-seller pair in s, with bid, sji =



(dji , p
j
i ), where quantity dji ∈ dj is an element of [dji ]i∈I ,

with reserve unit price pji ∈ pj , an element of [pji ]i∈I .
• If a buyer does not submit a bid to a seller, then this

implies sji = 0. A buyer that does not submit a bid will
not receive opponent profiles from seller j.

• A user who does not submit a bid is holding to the
previous bid, either zero or nonzero.

We emphasize that buyers are consistently referenced using
the index i as a subscript, and sellers using the index j as a
superscript, as in [8].

A. Market incentive.

We examine the role of buyers, who are able to directly
influence global market dynamics, and assume that the sellers
take a reactionary role. Each buyer i will have information
from each seller j, as well as opponent profiles s−i, from
each auction in which it is participating. In the extreme case,
where i submits bids to all auctions j ∈ I, buyer i gains
access all buyer profiles, [s1, · · · , sI ]. However, sellers can
only gain information about the market by observing buyer
behavior in their local auction. Buyers, on the other hand, can
see all the sellers reserve prices, although they can only see
their opponent bid profiles.

Define the set of sellers chosen by buyer i ∈ I as,

Ii(n) = arg max
I′⊂I,|I′|=n

∑
j∈I′

Dj ,

and similarly, for a seller j ∈ I, we define the set of buyers
participating in auction j as,

Ij(m) = arg max
I′⊂I,|I′|=m

∑
i∈I′

pji ,

where m,n ∈ I.
The PSP auction given in [2] is a set of simple and

symmetric rules that closely follow market theory. We now
formally define a PSP auction, which determines the actions
buyers and sellers in the secondary market. We define an opt-
out function, σi, associated with a buyer i as part of its type.
Buyer i, when determining how to acquire a possible allocation
a, will determine its bid quantities by,

σi(a) = [σji (a)]j∈I . (1)

In a general sense, σi applies our user strategy to the PSP rules.
The rules presented here incorporate of the opt-out function
with the auction mechanism, and closely follows the work
presented in [2]. The market price function, Pi, for a buyer in
the secondary market can be described as follows:

Pi(z, s−i) =
∑
j∈I

σji ◦ p
j
i (z

j
i , s

j
−i)

=
∑
j∈I

(
inf

{
y ≥ 0 : dji (y, s

j
−i) ≥ σ

j
i (z)

})
,

(2)

and is interpreted as the aggregate of minimum prices that
buyer i bids in order to obtain data amount z given opponent
profile s−i. We note that in the following analysis the total

minimum price for the buyer cannot be an aggregation of the
individual prices of the buyers, as it is possible that the reserve
prices of the sellers may vary. The maximum available quantity
of data in auction j at unit price y given sj−i is:

dji (y, s
j
−i) = σji ◦ d

j
i (y, s

j
−i) =

[
Dj −

∑
pjk>y

σjk(a)

]+

. (3)

It follows from the upper-semicontinuity of Dj
i that for sj−i

fixed, ∀ y, z ≥ 0,

σji (z) ≤ σ
j
i ◦ d

j
i (y, s

j
−i)⇔ y ≥ σji ◦ p

j
i (z, s

j
−i). (4)

The resulting data allocation rule is a function of the local
market interactions between buyers and sellers over all local
auctions, as is composed with i’s opt-out value, so that for
each i ∈ I, the allocation from auction j is,

aji (s) = σji ◦ a
j
i (s)

= min

{
σji (a),

σji (a)∑
pjk=pji

σjk(a)
dji (p

j
i , s

j
−i)

}
, (5)

noting that for the full allocation from all auctions we may
simply aggregate over the seller pool.
Remark: The bid quantity σji (a) and the allocation aji are
complementary. In fact, the buyer strategy is the first term in
the minimum, the second term being owned by the seller.
Finally, we must have that the cost to the buyer adheres to
the second price rule for each local auction, with total cost to
buyer i,

ci(s) =
∑
j∈I

pji

(
aji (0; sj−i)− a

j
i (s

j
i ; s

j
−i)

)
. (6)

The cost to buyer i adds up the willingness of all buyers
excluded by player i to pay for quantity aji . i.e.

cji (s) =

∫ aji

0

pji (z, s−i) dz.

This is the “social opportunity cost” of the PSP pricing rule.

IV. USER STRATEGY

In any market, a buyer or seller would like to obtain the
maximum amount of utility possible while staying within
budget. The buyer’s utility maximizes the amount of data
allocated by the seller, while the seller’s utility maximizes the
cost of the data sold. Clearly, the cost is the product of the unit
price and the desired allocation. We examine cases where the
buyer has found an allocation that satisfies its demand AND
price constraints, and define a strategic bid to a move to a
better market position.



A. User valuation (strategic incentive).

We define each buyer as a user i ∈ I with quasi-linear
utility function ui = [uji ]j∈I . A buyers’ utility function is of
the form,

ui = θi ◦ σi(a)− ci, (7)

where the composition of the elastic valuation function θi
with σi distributes a buyers’ valuation of the desired allo-
cation a across local markets, submitting the strategic bid to
multiple seller’s auctions. The composition map represents the
codomain of θi(σi), which is the same as the domain of σi(a),
and performs the function of restricting the buyer’s domain
to minimize djpj − ci, i.e., maximize ui. Using this rule, we
extend the PSP rules described in [8] in order to find equilibria
in subsets of local data-exchange markets.

The sellers, j ∈ I are not associated with an opt-out func-
tion. We consider their valuation to be a functional extension
of the buyers, where θj is constructed from buyer demand. We
adopt the definition for an elastic valuation function as in [2],
which allows for continuity of constraints imposed by the user
strategies.

Definition IV.1. (Elastic demand) [2] A real valued function,
θ(·) : [0,∞) → [0,∞), is an (elastic) valuation function on
[0, D] if
• θ(0) = 0,
• θ is differentiable,
• θ′ ≥ 0, and θ′ is non-increasing and continuous,
• There exists γ > 0, such that for all z ∈ [0, D], θ′(z) > 0

implies that for all η ∈ [0, z), θ′(z) ≤ θ′(η)− γ(z − η).
We begin our analysis with buyer valuation θi. A buyers’

valuation of an amount of data represents how much a buyer is
willing to pay for a unit of data (bandwidth). This is equivalent
to the bid price when given a fixed amount of data. The buyers’
utility-maximizing bid (fixing the desired allocation z ≥ 0) is
a mapping to the lowest possible unit price,

fi(z) , inf
{
y ≥ 0 : ρi(y) ≥ z, ∀ j ∈ I

}
, (8)

where ρi(y) represents the demand function of buyer i at bid
price y ≥ 0. The market supply function is the extreme case
of possible buyer demand, and acts as an “inverse” function
of fi. We have, for bid price y ≥ 0, ρi(y) =

∑
j∈I:pji≥y

Dj .
The utility-maximizing bid price is the lowest unit cost for
the buyer to be able participate in all the auctions in Ii, and
corresponds to the maximum reserve price amongst the sellers.

From the perspective of the seller we have a more direct
interpretation of valuation as revenue. The demand function
of seller j at reserve price y ≥ 0 is ρj(y) =

∑
i∈I:pji≥y

σji (a).
We define the “inverse” of the buyer demand function for seller
j as potential revenue at unit price y, we have,

f j(z) , sup
{
y ≥ 0 : ρj(y) ≥ z, ∀ i ∈ I

}
. (9)

Unsurprisingly, f j maps quantity z to the highest possible unit
data price.

We show that user valuation satisfies the conditions for an
elastic demand function, based on (9). We first note that, in

general (and so we omit the subscript/superscript notation),
the valuation of data quantity x ≥ 0 is given by, θ(x) =∫ x

0
f(z) dz. We propose the following Lemma,

Lemma IV.1. (user valuation) For any buyer i ∈ I, the
valuation of a potential allocation a is,

θi ◦ σi(a) =
∑
j∈I

∫ σj
i (a)

0

fi(z) dz. (10)

Now, we may define seller j’s valuation in terms of revenue,

θj =
∑
i∈I

θj ◦ σji (a) =
∑
i∈I

∫ σj
i (a)

0

f j(z) dz. (11)

We have that θi and θj are elastic valuation functions, with
derivatives θi

′ and θj
′ satisfying the conditions of elastic

demand.

Proof. Let ξ be a unit of data from buyer bid quantity σji (a).
If ξ decreases by incremental amount x, then seller bid dji
must similarly decrease. The lost potential revenue for seller
j is the price of the unit times the quantity decreased, by
definition, f j(ξ)x, and so, θj(ξ)−θj(ξ−x) = f j(ξ)x, and (11)
holds. As we may use the same argument for (10), as such,
we will denote fi = f j = f for the remainder of the proof.
We observe that the function f is the first derivative of the
valuation function with respect to quantity. Letting θi = θj =
θ, the existence of the derivative implies θ is continuous, and
therefore, in this context, f represents the marginal valuation
of the user, θ′. Also, clearly θ(0) = θ(σ(0)) = 0. Now, as we
consider data to be an infinitely divisible resource, we have a
continuous interval between allocations a and b, where a ≤ b.
Now, as θ is continuous, for some c ∈ [a, b],

θ′(c) = lim
x→c

θ(x)− θ(c)
x− c

= f(c),

and so f = θ′ is continuous at c ∈ [a, b], and so as a ≥
0, θ′ ≥ 0. Finally, we have that concavity follows from the
demand function. Then, as θ′ is non-increasing, we may denote
its derivative γ ≤ 0, and taking the derivative of the Taylor
approximation, we have, θ′(z) ≤ θ′(η) + γ(z − η).

Finally, it is worth mention that the analysis of the auction
as a game only assumes some form of demand and supply,
in order to derive properties. The mechanism itself does not
require any knowledge of user demand or valuation.

B. User behavior.

Buyers and sellers are able to change their bid strategies
asynchronously. A user’s local strategy space is therefore non-
deterministic as the preferences of users are subject to change.
Although it is possible for a seller to fully satisfy a buyer i’s
demand, it is also reasonable to expect that a seller’s overage
data may not satisfy even a single buyer’s demand. In this
case, a buyer must split its bid among multiple sellers. The
buyer strategy bids in auctions with the highest quantities first,
a natural result of the demand curve.



The buyer strategy tends towards equal valuation of all local
markets, and therefore similar prices. Buyer i’s seller pool
is determined by minimizing n, the smallest set of sellers
that satisfy its demand Di: min

{
n ∈ I | nDn ≥ Di

}
.

Similarly, seller j determines the minimal set of buyers
that maximizes revenue and sells all of its data, Dj , i.e.

min
{
m ∈ I

∣∣∣∣ ∑
i∈Ij(m)

dji ≥ Dj
}

. We use j∗ = n ≤ I to

represent the seller with the least amount of data ∈ Ii, i.e.
Dj∗ ≤ Dj , ∀ j ∈ Ij .

Define the composition,

σji ◦ a = σji (a) =
aji
|Ii|

, (12)

to be the buyer strategy with respect to quantity for all sellers
j ∈ Ii. We propose the following scheme:

Definition IV.2. (Opt-out buyer strategy) Let i ∈ I be a buyer
and fix all other buyers’ bids s−i at time t > 0, and let a be
i’s desired allocation. Define,

σji (a) ,

{
σj
∗

i (a), j ∈ Ij ,
0, j 3 Ij .

(13)

and bid price pji = θ′i(σ
j
i (a)).

Let the reserve price for seller j be,

pj∗ = pji∗ + ε, (14)

where i∗ is the bidder with the highest “losing” bid price. A
truthful bid implies that the new bid price differs from the last
bid price by at least ε.

We will show that sellers are able to maximize revenue in
a restricted subset of buyers in I, and as such will attempt to
facilitate a local market equilibrium for this subset. A local
auction j converges when s

j(t+1)
i = s

j(t)
i ∀ i ∈ I, at which

point the allocation is stable, the data is sold, and the auction
ends. We propose a strategy to maximize (local) seller revenue.

Lemma IV.2. (Localized seller strategy (i.e. progressive allo-
cation)) For any seller j, fix all other bids [ski ]i,k 6=j∈I at time
t > 0 ∈ τ . For each t ∈ τ , let ω(t) be define the winner at
time t, and perform the update,

Dj(t+1) = Dj(t) − σj(t)ω(t)(a). (15)

Allowing t to range over τ , we have that Dj = 0, and a local
market equilibrium. We omit the proof, and provide a simple
example.

C. A simple example.

We give a simple example of convergence to a local
market equilibrium, where the buyers are assumed to respond
according to (5).

Name Bid total Unit price
A 50 1
B 40 1.2
C 26 1.5
D 20 2
E 14 2.2

Let s(1) = [(65, ε)]i∈I and s(2) = [(85, ε)]i∈I . The buyer bids
are as follows:

sA = [(0, 0), (50, 1)],

sB = [(0, 0), (40, 1.2)],

sC = [(0, 0), (26, 1.5)],

sD = [(0, 0), (20, 2)],

sE = [(0, 0), (14, 2.2)].

Then at t = 1, s(2) =
[(0, p(2)), (20, p(2)), (26, p(2)), (20, p(2)), (14, p(2))], and
so (D(2), p(2)) = (85, 1 + ε), The buyer response is,

sA = [(50, 1), (0, 0)],

sB = [(40, 1.2), (0, 0)],

sC = [(0, 0), (26, p(2))],

sD = [(0, 0), (20, p(2))],

sE = [(0, 0), (14, p(2))].

At t = 2, (D(1), p(1)) = (65, 1 + ε), with bid
vector s(1) = [(25, p(1)), (40, p(1)), (0, 0), (0, 0), (0, 0)].
(D(2), p(2)) = (25, 1 + ε). Then,

sA = [(25, p(1)), (25, p(2))],

sB = [(40, p(1)), (0, 0)],

where we have removed bids to indicate
winner(s) with a tentative allocation. At t =
3, (D(1), p(1)) = (50, 1 + ε), with bid vector s(1) =
[(25, p(1)), (40, p(1)), (0, 0), (0, 0), (0, 0)].(D(2), p(2)) =
(0, 1 + ε) and s(2) = [(25, p(1)), (0, 0), (26, p(2)), (20, p(2)),
(14, p(2))]. Then,

sA = [(25, p(1)), (0, 0))].

At t = 4 the auction ends.
1) Individual rationality/selfishness.: Value is modeled as

a function of the entire marketplace: a buyer’s valuation is
aggregated over all the auctions, and the seller’s valuation is
aggregated over its own auction. We must ensure that a user’s
private action satisfies the conditions of a direct-revelation
mechanism, as well as adheres to the collective goals. We show
that, from (IV.2) and (IV.2), an individual user will contribute
to local stability, given global market dynamics S.

We model the impact of the dynamics of S of the data-
exchange market on a local auction j. As we have shown,
the seller behavior is a reaction of buyer behavior, and have
presented some rules. The market fluctuations from S give
auctioneer j the chance to infer information about the global



market. We demonstrate that the symmetry between buyer
and seller behavior stretches across subsets of local auctions.
Additionally, we identify a clear bound restricting the range
of influence that local auctions have on each other. Consider
a single iteration of the auction, where a seller updates bid
vector sj , and the buyers’ response si, to comprise a single
time step. We have the following Proposition,

Proposition IV.1. (Valuation across local auctions) For any
i, j ∈ I,

j ∈ Ii ⇔ i ∈ Ij . (16)

Fix an auction j ∈ I with duration τ and define the influence
sets of users. The primary and secondary influencing sets are
given as,

Λ =
⋃
i∈Ij
Ii, and λ =

⋃
i∈Ij

( ⋃
k∈Ii

Ik
)
. (17)

Define ∆ = Λ ∪ λ. Fixing all other bids sji ∈ I, and time
t > 0 ∈ τ , we have that,∑

j∈Λ

θji =
∑
i∈λ

θji . (18)

Proof. As this is our main result, we provide an outline of the
(exhaustive) proof, illustrating the most important case, when
a market shifts affect auction j, and the direct influence of the
shift on the connected subset of local markets.
A local auction j ∈ I, is determined by the collection of buyer
bid profiles. Using Proposition IV.2 and (16), we have that,

i ∈ Ij ⇔ pji > pji∗ , (19)

where we define i∗ as the losing buyer with the highest bid
price in auction j. By (8) pji ≥ pji∗ + ε, thus pji < pji∗ can
only happen during a market shift. Consider k ∈ Ij at time t
where, for example, some buyer(s) enter the auction, and so
(19) implies that

∑
i∈Ij σ

j
i (a) > Dj . Now, pji < pji∗ ⇒ k 3

Ij and sjk > 0 will cause k to initiate a shift. By definition
IV.2, k will set sjk = 0, and begin to add sellers to its pool.
Suppose that at time t, j’s market is at equilibrium. Unless k
adds a seller with a higher reserve price within |Ij | time steps,
by (15), the auction ends. We have that, ∀ i ∈ Ij , @ sji > 0
where i 3 Ij , and (16) holds.

Now, the subset Ij ⊂ I determines j’s reserve price pji∗ .
We will assume the buyer submits a coordinated bid, using
(5). The reserve price (14) of seller j is determined at each
shift, and is the lowest price that j will accept to perform any
allocation. Let pj∗ denote the reserve price of auction j and
p∗i denote the bid price of buyer i, i.e. pki = p∗i , ∀ k ∈ Ii.
Using Proposition IV.2, for each i ∈ Ij , we have from (8),
(9), that p∗i ≥ pk∗, ∀ k ∈ Ii. In the simplest case, consider a
disjoint local market j, where ∀ i ∈ Ij , ski = 0, ∀ k 6= j ∈
Ii ⇒ Λ = {j} and λ = Ij . Again using (8) and (9), it is clear
that θi = θj , ∀ i ∈ Ij . In all other cases, the sellers ∈ Λ are
competing to sell their respective resources to buyers whose

valuations are distributed across multiple auctions. The bid
price of buyer i ∈ Ij is determined by, p∗i = maxk∈Ii(p

k
∗).

Λ is the set of sellers directly influencing the bids of buyers
in auction j. Now, the reserve price for auction j is such that,
pj∗ ≤ mini∈Ij (p∗i ) − ε. From (17), Λ is defined by a seller
j ∈ I, where each user k ∈ λ has some direct or indirect
influence on j. Denote ∆j = Λj ∪ λj .

Consider the set λj . For some buyer i ∈ Ij , and then for
some seller k ∈ Ii, we have a buyer l ∈ Ik. By (16), i, l ∈ Ik,
and so the reserve price pk∗ ≤ min(p∗l , p

∗
i ), and k, j ∈ Ii ⇒

p∗i ≥ max(pk∗, p
j
∗). Suppose that l 3 Ij ⇔ j 3 Il, so that

p∗l < pj∗, and the valuation of buyer l does not impact auction j
and vice versa, i.e. θjl = 0. Since l ∈ Ik, p∗l ≥ pk∗ ⇒ pk∗ < pj∗,
and i ∈ Ij ⇒ p∗i ≥ pj∗. Therefore, we have that the ordering
implied by (17) holds, and,

pk∗ ≤ p∗l < pj∗ ≤ p∗i , (20)

for any buyer l ∈ λj such that l 3 Ij . We use a similar
argument for a secondary user q ∈ Il.

Finally, consider the subset Λj ; a shift occurs in 2 cases. (1)
If i ∈ Ij decreases its bid quantity so that

∑
i∈Ij σ

j
i (a) < Dj ,

and (2) if buyer i∗, defined in Proposition IV.2, increases its
valuation so that pji∗ < pj∗. Fixing all other bids, a decrease
in q’s demand will directly impact buyer i. If at the end of
the bid iteration, we still have that i is the buyer with the
lowest bid price, then (9) holds and j’s valuation does not
change. Otherwise a new i∗ will be chosen upon recomputing
Ij , as in Lemma IV.2, and the market will attempt to regain
equilibrium. We determine the influence of ∆k∗ on ∆j by
(19).

In each case we have that (8) and (9) hold for some fixed
time t, and so, ∀ i ∈ Ij , any bid outside of our construction
has a zero valuation, with respect to buyers ∈ λ and sellers
∈ Λ, and therefore cannot cause shifts to occur except through
a shared buyer, e.g. some l ∈ Ik. Thus, in all cases, (8) and
(9) hold. Fixing all bids in any auction where q 3 Λj , ∀ i ∈
Ij ,∀ k ∈ Ii,∀ l ∈ Ik,∫ σk

i (a)

0

fi(z) dz =

∫ σk
i (a)

0

fk(z) dz, (21)

and ∫ σk
l (a)

0

fk(z) dz =

∫ σk
l (a)

0

fl(z) dz. (22)

Thus, with a slight abuse of notation for clarity,∑
λ

∫ σ(a)

0

fΛ(z) dz =
∑
Λ

∫ σ(a)

0

fλ(z) dz, (23)

where the result follows by construction, and the continuity of
θ′.

2) Truthfulness (incentive compatibility).: We will prove
that the dominant strategy for buyers is to submit coordinated
bids, where all bids the buyer submits are equal. Our moti-
vation for coordinated bids comes from the idea of potential
games. In potential games, the incentive of all users to change



strategy can be expressed as a single global function. The
necessary condition of an ε-best reply is that the new bid
price must differ from the last by at least ε. Thus, our strategic
bid is an ε-best response. Now, an ε-best reply for user i is
p∗i = θ′i(σi(a)) + ε, for a given opponent profile s−i, and for
each j ∈ Ii. Now, as ε is the bid fee, we have that pji is
equal to the marginal valuation of player i in auction j, and
so incentive compatibility holds.

3) Social welfare maximization (exclusion-compensation).:
We define an optimal state of social welfare to be when
valuations are equal across a subset of local auctions. Then,
∆ ⊂ I is the subset of users where social welfare is achieved.
We finally have:

Corollary IV.1. (∆-Pareto efficiency) The subset ∆ ⊂ I is
Pareto efficient, in that no user can make a strategic move
without making any other user worse off.

Proof. Define s∗ = (z∗, θ
′
∗(z∗) as the set of truthful ε-best

replies for user i given opponent bid profile S−i, where ∀j ∈
Ii, sj∗ = s∗. Since θ′i is continuous, as was shown in Lemma
IV.1, and as s|∆ = {[sji ] ∈ λj × Λj} is continuous in s on
Sk = Πk∈λjSjk, then given that s∗ = s∗ = (f∗(p∗), p∗) =
(z∗, θ′(z∗)), we have that s∗ is truthful. The result now follows
directly from the result of Proposition IV.1.

V. CONCLUSION AND FUTURE WORK

We take these results as evidence of (at least one) fixed
point, and conjecture that an optimal solution exists, where
all users will receive the desired amount of data (negative or
positive), at a fair price.

The PSP auction is a natural data-pricing scheme for
consumers accessing a data-exchange market in their wireless
network, and that the desired properties of (1) truthfulness,
(2) individual rationality/ selfishness, and (3) social welfare
maximization are met. We conclude that there is a need for
better management of data on the consumer level; an advanced
implementation such as the PSP auction presented here would
ensure that the consumers in any such exchange market benefit
from their participation. It is clear that there is profit to be
made by supplying data to the data-driven consumer. However,
customer care is necessary to hold the “lifetime consumer”.
Consumers, when allowed to manage their own overage data,
are able to do so fairly and efficiently. It is not unreasonable to
allow them to manage their own data; this benefits all wireless
users.

Mathematically, we have shown that if truthfulness holds
locally for both buyers and sellers, i.e. pi = θi

′, ∀ j ∈ Ii
and pj = θj

′
, ∀ i ∈ Ij , then, in the absence of market shifts,

there exists an ε-Nash equilibrium extending over a subset
of connected local markets. Observing the symmetric, natural
topology of the strategy space, we conjecture that a unique
subspace limit exists for connected ∆. A study of this space
and the design of the necessary framework is the direction of
our future work.

In future work, we intend to show that s|∆ represents a
continuous mapping [0,

∑
k∈λj

Dk]i∈Λj onto itself, and show

that the continuous mapping of the convex compact set s∗
into itself (s∗) has at least one fixed point, i.e., ∃ some
k 6= i such that z∗ = σ∗(z) ∈ [0, Dk]i∈Λj . We want to
show that the symmetry built into strategy space provides
built-in conditions for convergence and stability, indicating a
network Nash equilibrium (NE). Wireless users are modeled
as a distribution of buyers and sellers with normal incentives.

Finally, as a result of user behavior and subsequent strate-
gies, we determine that the data-exchange market behaves
in a predictable way. However, each auction may be played
on the same or on different scales in valuation, time, and
quantity; therefore the rate at which market fluctuations occur
is impossible to predict. Nonetheless, we have shown that our
bidding strategy results in (at least one), Nash equilibrium,
where again the reserve prices are fixed by the seller at bid
time.
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