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Abstract—Sampling based planning is an important step for
long-range navigation for an autonomous vehicle. This work
proposes a GPU-accelerated sampling based path planning al-
gorithm which can be used as a global planner in autonomous
navigation tasks. A modified version of the generation portion
for the Probabilistic Road Map (PRM) algorithm is presented
which reorders some steps of the algorithm in order to allow
for parallelization and thus can benefit highly from utilization
of a GPU. The GPU and CPU algorithms were compared using
a simulated navigation environment with graph generation tasks
of several different sizes. It was found that the GPU-accelerated
version of the PRM algorithm had significant speedup over
the CPU version (up to 78x). This results provides promising
motivation towards implementation of a real-time autonomous
navigation system in the future.
keywords: path planning, autonomous vehicle, probabilistic
roadmap, parallel computing, speedup

I. INTRODUCTION

The primary motivation of this work is to develop an
end-to-end navigation system for an autonomous vehicle.
Autonomous navigation can have a strong impact on society,
enabling an industry that affects many people’s daily lives.
This booming industry involves both academic institutions
and large enterprises competing together in order to develop
a feasible autonomous car. Three of the major components
autonomous navigation in uncertain environments include are:
the controller, roadway and obstacle detection, and path plan-
ning. While these systems will work together, each component
has its own set of engineering challenges in order for it to
function in real time and in the real world. For the purposes
of this work, we will focus on the path planning component.

In order for an autonomous system to perform in real-world
environments, this system must be able to generate a path
for navigation in real-time. This quick pace is one of the
main challenges of path planning algorithms for autonomous
vehicles. In recent years, many autonomous cars have begun
to include embedded GPUs into their systems. These GPUs
can be utilized towards the effort of developing a real-time
navigation system. One of the other big issues developers face

when choosing a path planning algorithm is how to incorporate
the dynamics of the vehicle into the plan.

Various types of path planners and dynamics models have
been used for autonomous navigation. This work focuses
specifically on sampling based motion planners. These meth-
ods tend to utilize both a global and a local planner. The local
planner is required to help the car navigate between different
way points. The global planner it used to generate this set of
way points from the start to the goal. Since a local planner
handles the small scale navigation and vehicle dynamics, a
simplified global sampling based path planning algorithm is
sufficient for generating a long-range path. For this reason, this
paper explores the use of Probabilistic Road Maps (PRMs) [1]
for global planning. In order to ensure this system can be
incorporated into a real-time autonomous navigation system
in the future, the paper proposes a GPU-accelerated PRM
algorithm.

The remainder of the paper is structured as follows: Sec-
tion II presents state-of-the art approaches to GPU-accelerated
sampling based planning for autonomous navigation, Sec-
tion III describes the details of the proposed approach, Sec-
tion IV describes the experimental setup and results, Section V
presents new and related directions of research, and Section VI
gives a concluding summary of the presented work.

II. RELATED WORK

The eventual goal of this work is to create a real-time
planner that will be integrated into the autonomous naviga-
tion system on the University of Nevada Reno’s autonomous
Lincoln MKZ vehicle. For the purposes of this work, this
section explores two main areas of research: state of the
art methods for autonomous navigation using sampling based
planners and state of the art methods for accelerating sampling
based planners using a GPU.



A. Autonomous Navigation Via Sampling Based Planning

Sampling based planning has been utilized as a means for
path planning in autonomous systems for over a decade. The
majority of these methods use a complicated path planning
function, such as Rapidly-exploring Random Trees (RRT) [2],
[3], [4], [5], [6]. However, the RRT algorithm requires most
if not all of the steps to be implemented on the GPU all at
once in order to avoid the high overhead cost of data transfer
between the CPU and GPU. Therefore, this work uses a more
simplistic algorithm (PRM) which allows us to incrementally
determine feasibility of a path with minimal overhead.

Significantly fewer works utilize a simple sampling based
planning method, such as PRM. The works in [7] and [8]
used PRMs to perform navigation tasks for an autonomous
unmanned aerial helicopter. Although this work performed
planning in 3D, autonomous car navigation is similar as
obstacles are 3-dimensional. The work proposed in [9] utilizes
PRMs for multi-robot motion planning for car-like robots. The
planning methods in this work are similar to planning for
autonomous navigation tasks as well.

One recent work combines PRMs and reinforcement learn-
ing for long-range robotic navigation [10]. The application
of this work is most similar to our intended application.
In this work, an RL agent learns short-range, point-to-point
navigation polices the capture the robot dynamics, which
acts as the local planner for the autonomous navigation task.
Similar to the proposed work, this paper uses PRM for the
global planner for navigation.

Each of these papers are focused on creating a full au-
tonomous navigation system. They focus not only on a global
planner, but also utilize local planners to ensure the navigation
adheres to the dynamics of the system. Therefore, these papers
focus on a different application than the proposed work, as
none of these methods utilize GPUs to accelerate the global
planning. Instead of focusing on ensuring correct dynamics
through a local planner, the proposed work focuses on speed-
ing up the global planner by utilizing the GPU. Creating an
end-to-end autonomous navigation system is currently out of
the scope of this project, but the methods proposed in this
work may be utilized in such a system in the future.

B. Sampling Based Planning using a GPU

Many works utilize the GPU to speed up various sampling
based methods. Some works focus on complicated methods,
such as RRT [11], [12], [13]. Other works focus on simpler
methods such as PRMs [14], [15], [16]. However, all of these
methods focus on a different problem formulation than that
proposed in our future work on the autonomous car.

The work in [17] is most similar to our proposed method.
This work developed a GPU-based parallel collision detection
algorithm for motion planning using PRMs. Although this
work develops a very thorough algorithm for GPU-accelerated
PRMs, the applications discussed in this work are slightly
different than those proposed in our work. Our proposed
methods is focused on speeding up the global planner for a
long-range autonomous navigation system for an autonomous

car. Therefore, the overhead of the work proposed in [17] is
unnecessary for our application, as we are only focusing on
a small portion of the planning problem. This focus on long-
range navigation requires planning in very large spaces, which
are not addressed in [17].

III. METHODOLOGY

The proposed work is focused on speeding up the generation
portion of the PRM algorithm by utilizing the computational
efficiency of the GPU. The steps of the generation portion of
the PRM algorithm are shown in Algorithm 1. The general idea

Algorithm 1 Main steps of the generation portion of the PRM
algorithm.

1: Graph G is empty

2: while number of vertices in G < N do

3: generate random configuration q

4 for each g, select k closest neighbors do

5 for each neighbor q’ do

6: local planner connects q to its neighbors
7 if connection is collision free then

8 add edge (q, q°) to G

9 add vertex q to G

behind the PRM algorithm is to generate a set of random points
in the configuration space (i.e. generate a configuration) that
are not in collision with the obstacles in the space. Then each
point is connected to its k-nearest neighbors, thus generating
a graph of the configuration space which can later be used for
planning during the query phase of PRM. For the purposes
of this work, we are not discussing the query phase of PRM,
as we only provide modifications to the generation phase for
PRM.

In order to develop a GPU-accelerated PRM algorithm, a
few minor changes have to be made to this algorithm. These
changes are focused on changing the order of the steps in order
to allow for parallelization in the code. The GPU-accelerated
PRM algorithm is shown in Algorithm 2.

Algorithm 2 Modified version of the generation portion of the
PRM algorithm to allow for parallelization.

1: Graph G is empty
: Target vector t is empty
: generate N random configurations q
: for each q, check for collisions do
if point is collision free then

save q into t

: for each q in t, find k closest neighbors do
if connection is collision free then

add edge to G

add vertex to G

=4

Several important remarks about the implementation of
the GPU-accelerated PRM algorithm are discussed in the
following subsections.



A. Data Transfer Overhead

In the current version of the GPU-accelerated algorithm, the
random configurations are generated on the CPU. They are
then transferred over to the GPU, and are used on the GPU
for the remainder of the algorithm. The rest of the algorithm
is run on the GPU so there is almost no other data transfer
overhead for generating the graph using this method. The only
caveat here is discussed in Section III-C, where we see there
is an additional minimal overhead to maintain the graph as it
is generated.

B. Utilizing Thrust Functions

In order to gain the most efficiency from utilizing the GPU,
several of the built in thrust functions were used. In order to
perform the initial collision check, the following steps were
taken:

1) use thrust::count_if to count the number of configurations
that are not in collision with the obstacle in the scene,
and

2) use thrust::copy_if to save the non-colliding configura-
tions to the target vector t

The count function is necessary to allocate a target vector of
the correct size to minimize the memory overhead required by
the remainder of the algorithm. The utilization of the thrust
functions allowed for a simple and efficient way to filter out
the configurations that were in collision with the obstacle in
the scene. Therefore, we are only left with configurations in
the target vector which are possible candidates for nodes in
the generated graph.

In order to find the nearest neighbors of the a given
configuration q in the vector t, the following steps were taken:

1) use thrust::transform to calculate the distance from each
configuration in t to q

2) use thrust::sort_by_key to sort the configurations by their
distance to q, and

3) get the first k sorted configurations, which correspond to
the k-nearest neighbors

By utilizing the transform function, we were able to get the
distance from one configuration to the rest very quickly. By
next applying a sorting function, we were able to quickly pull
out the k-nearest neighbors by simply taking the portion of the
data which corresponded to the closest configurations based
on their distances to the given configuration. This manner of
k-nearest neighbors search should be very efficient for large
graphs, due to the parllelization of both the distance check and
sorting via the thrust functions.

This process is then repeated for every configuration q in t,
in order to get the k-nearest neighbors for each configuration
in t. This repetition is done by iterating through this config-
urations, calling the above process each time. This iterative
portion is the slowest part of the proposed algorithm. With
additional data storage, this portion might benefit from further
parallelization in the future.

C. Storage of the Graph

The last important remark about this algorithm is that the
graph G is stored on the CPU. In order to do this, once we
have the k-nearest neighbors for a given configuration q, we
have to copy these from the GPU back to the CPU. This
results in an additional data transfer overhead in our algorithm,
as briefly mentioned in Section III-A. However, as we get
to large graphs, this transfer becomes minimal since each
configuration only transfers k neighbors. We can then store
the edges between these neighbors and the given configuration
q in the graph. Additionally, we store the given configuration
q as a vertex in the graph. Thus, our graph is made up of a
list of vertices and edges like normal. Storing the graph on
the CPU is very useful for visualization purposes. Visualizing
the generated graph is done on the CPU, so storing the graph
directly to the CPU as it is generated has much less overhead
since there is minimal data transfer between the CPU and the
GPU.

IV. EXPERIMENTAL VALIDATION
A. Experimental Setup

In order to evaluate the performance of the GPU-accelerated
algorithm, we performed several different test cases in which
we compared a CPU version of the algorithm with the GPU-
accelerated version. These were done on an MSI MS-16H2
laptop with an Intel 4 core i7 CPU (i7-4710HQ) with 16GB
of RAM and an NVIDIA GeForce GTX 860M with 4GB of
NVRAM and 1152 cores. In order to allow for a more direct
comparison, the CPU version also utilizes the parallelized
version of the PRM algorithm. Due to the use of thrust vectors
and functions, the only major differences between the CPU and
GPU version is whether the thrust vectors are stored on the
host or the device. In the CPU version, all of the thrust vectors
are stored directly on the CPU and no data transfer occurs to
the GPU. The details of the GPU version are discussed in
Section III.

The CPU and GPU-accelerated algorithms were compared
in a simulated navigation environment. This environment
consists of a single large obstacle in the center of the image.
The goal is to build a graph around the obstacle which can
be used to generate a navigation path through the space later
on. A sample of the environment is shown in Figure 1 with a
generated graph of 1,000 nodes.

In order to evaluate the performance of the algorithms,
we used them to generate graphs with different numbers of
nodes. We looked at how long it took to generate a graph
with 10, 100, 1,000, 10,000, and 100,000 nodes. However,
due to the incredibly long runtime of the CPU algorithm with
100,000 nodes (> 5 hours ), we chose to omit running this
scenario on the CPU. Therefore, the case for generating a
graph with 100,000 nodes is only run and analyzed for the
GPU-accelerated version of the algorithm. Thus, in all of the
figures, the scenario for the CPU with 100,000 nodes is left
blank, and in the tables it is marked as N/A. Within each case,
we averaged the runtime over 5 trials. The base environment
was consistent across all trials.



Fig. 1. A sample image of the simulated navigation task. The black sphere in the center is the obstacle in the scene. The green dot in the lower left is the
starting point and the red dot in the upper right is the ending point for the navigation task. The dots and lines represented a graph consisting of 1,000 nodes

that was generated by the GPU-accelerated algorithm.

B. Results and Discussion

The comparison of runtimes between the CPU and GPU-
accelerated PRM algorithm for the different scenarios are
shown in Table I and Figure 2. Additionally, we looked at
a simple version of throughput across these different cases
as well. In order to compute throughput, we simply divided
the number of nodes generated by the runtime. This gives us
a rough estimate of how many nodes can be generated per
second. The throughput is shown in Table II and Figure 3.
Lastly, we looked at the speedup of the GPU with respect
to the CPU version. The speedup is shown in Table IIT and
Figure 4.

From Table I we see that in large cases the GPU-accelerated
version ran significantly faster, but in very small cases, the
CPU version greatly outperformed the GPU version. This
results is what we expected; as the graph grows in size, the
GPU should perform faster than the CPU version. This result

is further illustrated in Figure 2. We see that the slope of the
runtime line for the GPU version is much less than the slope
of the runtime line for the CPU version. This illustrates that
as the number of nodes continue to grow, the difference in
runtimes should continue to grow as well, implying that the
GPU version performs better on larger graphs.

From Figure 3 we see strong trends in the CPU and GPU
throughput. For small graphs, the CPU version has high
throughput, but it quickly diminishes. On the other hand, the
GPU version has small throughput to start and it gets better
as the number of nodes increases, up until the 100,000 case.
At this point, we see the throughput decreases slightly. Based
on this information, the GPU algorithm works well for large
graphs, but the performance decreases if the graphs get too
large. The exact values of the throughput can be seen better
in Table II.

In order to further analyze the performance of these meth-
ods, we compare them to calculate the speedup of the GPU-



TABLE I
CHART OF THE RUNTIME IN SECONDS AVERAGED OVER 5 TRIALS OF
BOTH THE CPU AND GPU-ACCELERATED VERSION OF THE MODIFIED
PRM ALGORITHM. THE FIRST ROW SHOWS WHICH SCENARIO WAS RUN (N
=10, ..., 100,000). THE NEXT TWO ROWS SHOW THE TIMES FOR THE
CPU AND GPU RESPECTIVELY.

N 10 100 1,000 10,000 100,000
CPU | 0.0042 | 0.0524 | 2.312 | 224.6414 N/A
GPU | 0.1204 | 0.1326 | 0.396 2.8516 44.5028

Loglog Plot of Runtimes for Various Graph Generation Sizes
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Fig. 2. A plot of the runtime in seconds of both the CPU and GPU-accelerated
version of the modified PRM algorithm.

accelerated version with respect to the CPU version. The
speedup for each scenario is shown in Table III. The results in
this table reflect what we saw in the runtime and throughput
tables/plots. For small graphs, the GPU performs worse due
to the overhead of the initial data transfer. As the graphs get
larger, this overhead becomes minimal resulting in a significant
speedup of the GPU version with respect to the CPU version.
We see that for large graphs (N = 10,000) the GPU-accelerated
version of the algorithm results in a speedup of 78x. From
Figure 4 we see that we have nearly linear speedup on a
loglog scale as the number of nodes in the graph increases.
This shows that although the throughput went down a bit
on the largest size graph, the speedup would probably still
be significant for very large graphs. Unfortunately, due to
extremely long run time, we were unable to run the CPU
version for the 100,000 case so we cannot get a speedup to
prove that the trend of a linear speedup on a loglog scale
continues for this case.

Overall, from the experiments, we see that the GPU-
accelerated version is much faster and more efficient for large
graphs than the CPU version. Therefore, for the future applica-
tion of long-range autonomous navigation, this algorithm will
be very beneficial as the graphs necessary for path planning
in these applications will be very large.

TABLE II
CHART OF THE THROUGHPUT OF BOTH THE CPU AND
GPU-ACCELERATED VERSION OF THE MODIFIED PRM ALGORITHM.
THROUGHPUT IS CALCULATED BY TAKING THE NUMBER OF NODES IN
THE GRAPH DIVIDED BY THE RUNTIME.THE FIRST ROW SHOWS WHICH
SCENARIO WAS RUN (N =10, ..., 100,000). THE NEXT TWO ROWS SHOW
THE THROUGHPUT FOR THE CPU AND GPU RESPECTIVELY.

N 10 100 1,000 10,000 100,000
CPU | 2380.95 | 1908.40 | 432.53 44.51 N/A
GPU 83.06 754.15 | 2525.25 | 3506.80 | 2247.05

Loglog Plot of Throughputs for Various Graph Generation Sizes
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Fig. 3. A plot of the throughput of both the CPU and GPU-accelerated

version of the modified PRM algorithm. Throughput is calculated by taking
the number of nodes in the graph divided by the runtime.

V. FUTURE WORK

This work presents several important directions for future
work. In order to further increase the speedup from the
GPU-accelerated PRM algorithm, the random configuration
generation will be performed on the GPU instead of the CPU.
This will eliminate the overhead of transferring the data from
the CPU to the GPU in the first step of the algorithm. In
the future, this algorithm will be incorporated into an end-
to-end autonomous navigation system. This component will
be the global planner used for long-rage navigation tasks
performed by the University of Nevada Reno’s autonomous
Lincoln MKZ vehicle. This GPU-accelerated algorithm will
help to ensure that the autonomous navigation system performs
in real-time. If it is found that the speedup from this algorithm
is not enough to perform navigation tasks in real-time, several
other parallelizations of the algorithm could be programmed
later such as those described in [17]. Additionally, the current
version of the algorithm can be modified to include extra
data storage to allow for the k-nearest neighbor search to be
parallelized to run simultaneously across all configurations at
once to help speed up the algorithm.

VI. CONCLUSION

This work is the first step towards a real-time autonomous
navigation system. The focus is on speeding up a sampling



TABLE III
CHART OF THE SPEEDUP OF THE GPU-ACCELERATED VERSION OF THE
MODIFIED PRM ALGORITHM WITH RESPECT TO THE CPU VERSION.
SPEEDUP IS CALCULATED BY TAKING THE RUNTIME OF THE CPU
VERSION / RUNTIME OF THE GPU VERSION. THE FIRST ROW SHOWS
WHICH SCENARIO WAS RUN (N = 10, ..., 100,000). THE NEXT ROW
SHOWS THE SPEEDUP OF THE GPU ALGORITHM.

N 10 100
Speedup | 0.035 | 0.395

1,000
5.84

10,000
78.82

100,000
N/A

Loglog Plot of Speedup for Various Graph Generation Sizes
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Fig. 4. A plot of the speedup of the GPU-accelerated version with respect to
the CPU version of the modified PRM algorithm.

based path planning algorithm for long-range navigation. This
work proposes a GPU-accelerated sampling based planner
which can be used as a global planner in autonomous navi-
gation tasks. The sampling based path planning algorithm ex-
plored in this work is the PRM algorithm. A modified version
of the generation portion for the PRM algorithm is presented.
Both a CPU and GPU-accelerated version of this algorithm
were evaluated using a simulated navigation environment with
graph generation tasks of several different sizes. Based on
these experiments, we found that the GPU-accelerated version
of the PRM algorithm had significant speedup (up to 78x)
over the CPU version. This result is the first step towards the
implementation of a real-time autonomous navigation system
in the future.
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