
Parallelized C++ Implementation of a Merkle Tree
Andrew Flangas, Autumn Cuellar, Michael Reyes, Frederick C. Harris, Jr.

Department of Computer Science and Engineering
University of Nevada, Reno

{andrewflangas, acuellar24, michaelreyes}@nevada.unr.edu, fred.harris@cse.unr.edu

Abstract—Merkle trees are primarily known for being an
attribute found in blockchain technology. They are used for
encrypting data by hashing values multiple times to avoid
incidents such as hash collisions, or the successful guessing of
hash values. Merkle trees are not only a useful feature found on
the blockchain but in the field of Cyber Security in general. This
paper outlines the process of implementing a Merkle tree as a
data structure in C++ and then parallelizing it using OpenMP.
The final result is a Merkle tree password storing program with
reduced running-time and the ability to operate on multiple
processors. The validity of this program is tested by creating
a Merkle tree of the correct passwords, storing the value of
the root node, and then building a second tree where a single
incorrect password is stored within that tree. The two trees are
passed through an audit function that compares the root nodes
of the two trees. If they are different, then the tree in question
has been tampered with.

Keywords: Merkle tree, parallel programming, serial pro-
gramming, hash, OpenMP, processors, running-time, root node,
cyber security, MD5, UPC, MPI, password, data structure, login
data, threads, blockchain, performance

I. INTRODUCTION

In order to ensure security in a rapidly changing field of
technology, one must use techniques that are on the frontier
of said field. A Merkle tree is an attribute primarily associated
with blockchain, but it can also be used in the field of Cyber
Security, in general, in ways such as storing sensitive data.
By implementing a Merkle tree in C++, we are hoping to
disassociate it from blockchain and use it primarily as a tool
for Cyber Security purposes. This tool will then be parallelized
for optimization aspects such as reduced running time, as well
as the ability to run on multiple processors. The Merkle tree
will also be implemented as a data structure for a program that
will be able to test the efficacy and correctness of this tool.
The Merkle tree data structure will be implemented twice: a
serial version of the program and then a parallelized version
in order to analyze the differences in the running-time and the
number of processors being used.

The method that is used to parallelize the Merkle tree
data structure is the application programming interface
OpenMP [1], due to its simple and flexible interface for cre-
ating parallel programs in multiple languages including C++.
The type of application that is used to test the Merkle tree data
structure is that of a system for storing login data, in which the
Merkle tree is used to hash and store the user passwords. In
order to properly test the validity of this program, the known
passwords for the login system will be fed into the application
which will be the nodes for the construction of the Merkle

tree. A second tree will also be constructed in which a single
password from the original tree is altered. The root nodes of
the two trees will then be passed through an audit function,
which will compare the two roots to see if they are the same. If
one of the roots is different, then it proves the tree in question
has been tampered with. The running-times and number of
processor threads being used for both the serial and OpenMP
versions of the program will be output to the terminal as well.

The rest of this paper is structured as follows: Merkle Trees
and Parallelism is described in Section II. Login Application
Implementation is presented in Section III, Performance Re-
sults are discussed in Section IV, and Conclusions and Future
Work are covered in Section V.

II. MERKLE TREES AND PARALLELISM

A. Merkle Trees

A Merkle tree is a data structure that combines binary trees
and hash tables into one. Each node of the tree is a hash
function of the combined children hash functions. The leaves
are just a hash of the input value received while the root node is
a hash of the whole tree, the structure can be seen in (Fig. 1).
This tree can be very helpful in cyber-security applications.
The root node’s value is known based on the given input
values. Any changes to the inputs, resulting from an attack,
will cause the root node to change suddenly. This change will
be detected which can allow users to determine the system
as corrupt. Merkle trees are primarily used on blockchain
applications, where the data is hashed using a Merkle tree and
then the root node hash of the tree is added to a block. This
allows for increased security measures when encrypting data
that are not available when using traditional hashing methods.

Imagine a scenario of an online sealed-bid auction, where
bidders simultaneously submit sealed bids to the auctioneer, so
that no bidder knows the amount the other auction participants
are bidding. Assuming the bid amounts of the participants are
stored using traditional hashing methods, there is a way for one
of the participants to easily figure out the other prices. All the
malicious participant would have to do is guess the other bid
prices and then run those values through a typical md5, sha1,
or other traditional hashing algorithms to see if the hash values
line up with the ones being stored. If the hashes do line up and
the malicious participant was able to discover that the highest
bid hash being stored is 30 dollars, then he or she would
simply need to bid 31 dollars to win the auction. A Merkle
tree prevents this scenario from happening by combining the



hashes of the other bids into multiple levels of hashes until it
reaches a root node, which adds extra encryption.

Fig. 1: The structure of a Merkle tree [2]

B. OpenMP

OpenMP is a C++ library that helps parallelize shared-
memory programs. This library is comprised of library rou-
tines, environment variables, and compiler directives that
influence the behavior of the running time. It does this
through the use of threads and gives programmers a simple
yet flexible interface for developing parallel programs. The
main distinction between OpenMP and its close counterpart
Message Passing Interface (MPI), is that OpenMP is used for
parallelism within a multi-core node, whereas MPI is used for
parallelism between nodes. The one that will most likely see
more favorable results in terms of decreasing the running-time
is MPI over OpenMP, however, MPI is more complex and not
as intuitive as OpenMP.

One of the main reasons OpenMP was used for this project
over MPI was to prove that by parallelizing a Merkle tree
using the most straight-forward method, will show a significant
decrease in the overall running time of the program. OpenMP
will be an efficient way to parallelize a Merkle tree program by
splitting up the workload on a single machine. Each node can
have its own thread to calculate the value at that specific node.
This will be a quick computation to do because the thread can
easily read the children node’s values to use in the parent
node’s hash function. Locks will need to be used so valid data
is used at every level of the tree. The parallelization of the
Merkle tree will be done using the OpenMP pragma operations
on the primary region of the code that heavily influences the
running time of the program.

C. Unified Parallel C

Although Unified Parallel C or UPC++ was not used in
this project, it has the potential to show promising results
in regards to future work and is thus worth mentioning.
UPC is a high-performance computing extension of the C
programming language that can be used for large-scale parallel
machines. UPC utilizes a shared global address space along
with distributed memory that gives the programmer the ability
to use a single shared, partitioned address space. This allows
for variables to be directly read and written by any processor,
but the variables are also physically correlated with a single
processor.

The amount of parallelism is fixed at the startup time of
the program due to the use of a single program, multiple
data computation models, which usually results in a single
thread of execution per processor. UPC combines the control
over the data layout and performance of the message passing
programming paradigm, with the programmability advantages
of the shared memory programming paradigm which makes
it a powerful tool for parallel programmers. This allows for
the workload of a program to not only be split between other
processors, but also different machines with their own sets of
processors. Out of all the methods mentioned so far, UPC++
would probably give the best results in terms of running-time
and processing power compared to the others.

D. Related Work

There is a method described in [3] that differentiates from
the current standard of using naive locking for Merkle tree
updates of the entire tree. This method is known as Angela
and is a distributed and concurrent sparse implementation of
a Merkle tree. The method is distributed by utilizing Ray onto
Amazon EC2 clusters, and then retrieves and stores the state
using Amazon Aurora. The main aspect that Angela is moti-
vated by is Google Key Transparency, which comes in direct
inspiration from its underlying Merkle tree known as Trillian.
Angela publishes a new root after some amount of time after
assuming that a large number of its 2256 leaves are empty,
which is the same task offered by Trillian. The approaches
used by Google Trillian and the concurrent algorithm offered
by Angela are compared, which shows nearly a 2x speedup.

Some other related research is stated in [4] which claims
to be the first to provide complete, succinct, and recursive
sparse Merkle tree definitions, along with related operations.
These definitions show, when applied, that efficient space-time
trade-offs for different caching strategies are enabled. It is also
shown that utilizing SHA-512/256 to generate verifiable audit
paths to prove (non-)membership, is done in nearly constant
time which is less than 4ms. These results were concluded
despite there being a limited amount of cache space, as well
as there being a minimal effort of complete security embedded
in the multi-instance setting. The size of the cache structure
was smaller than the underlying data structure that was the
target for authentication.

The paper [5] discusses hash functions derived from three
modes of operation considering an inner Variable-Input-



Length function. The inner function mentioned can be a
sponge-based hash function, or a prefix-free MD and single-
block-length(SBL) hash function. This paper discusses nu-
merous techniques used for optimization purposes pertaining
to developing parallel hash functions derived from trees in
which all the leaves possess the same depth. The first result is
comprised of a scheme that optimizes the topology of the tree
to decrease the running time. The second result shows that the
number of required processors can be minimized by slightly
modifying the corresponding tree topology, without affecting
the optimal running time. Therefore, this technique proves to
reduce not only the running time but the number of required
processors as well.

The hardware cost of implementing hash-tree based verifica-
tion of untrustworthy external memory via a high-performance
processor is reviewed in [6]. Certified program execution
can be a result of this verification enabling these types of
applications. Multiple schemes are displayed offering different
integration levels that are between the on-processor L2 cache
and the hash-tree machinery. A set of simulations also display
the best version of the performance overhead that is less
than 25 percent as a result of these methods. This is a
significant decrease from the naive implementation, which
normally presents a 10x overhead result.

Authenticated Data Structures (ADS) are discussed at length
in [7], which defines an ADS to be data structures whose
operations can be carried out by an untrusted prover. This
results in a verifier being able to efficiently check the au-
thenticity of these operations. To create this scenario, the
prover produces a compact proof which is then checked by the
verifier, along with the results of each operation. Therefore,
ADS supports the processing of tasks to untrusted servers
without having to worry about the loss of integrity of the
data, as well as outsourcing data maintenance. This paper also
introduces a generic method that uses a simple extension to
a programming language similar to what is used in machine
learning algorithms, with which one can program authenticated
operations over any data structure that is defined by standard-
type constructors.

III. PASSWORD STORING APPLICATION IMPLEMENTATION

A. Program structure

The first part of the implementation procedure was to build
the serial version of the program. This entailed creating two
data objects: a Merkle tree class and a Node struct. The class
members of the Merkle tree include a Node pointer variable,
as well as a printTree and deleteTree function. Included in
the header file of the Merkle tree class is the declaration of
the audit function that is used to detect whether the tree has
been tampered with. The members of the Node struct include
a string variable to hold the hash values, two Node pointers
for the parent nodes, and lastly a function that passes a string
to hold as data, that being the passwords. The main file is set
up with the leaves of the tree declared as a vector of Node
pointers and a Merkle tree pointer is used to build the tree of
leaves. Using a for loop, the data is assigned and hashed to the

parent nodes in the leaves vector. The output of a simplified
built tree can be seen in (Fig. 2) along with the result of the
audit function.

Fig. 2: The output of the first two characters of the Md5
hashes for a version of the Merkle tree program with a small
number of nodes. The output also displays the result of the
audit function.

B. Program functionality
TThe program operates by reading in strings of passwords

from a file containing at max, 100,000 different passwords. It
stores these passwords as the data that is used for the leaves of
the Merkle tree. The passwords are hashed using the md5 hash
library, after which the tree is fully constructed and output to
the screen. This is the process for building one of the trees,
but in order to test the validity of the program, two trees were
constructed. The first tree is used to store all of the correct
password information taken directly from the file whereas the
second tree reads in the same passwords, except for altering
one of the password values. The two root nodes of the trees
are then compared using the audit function, which compares
the second tree, that being the tree in question, with the first
tree which is already known to be correct. If for any reason
the root hashes differ, then it can be assumed that one of
the password values is incorrect and the tree then becomes
obsolete. A separate program was also included in a header
file to keep track of the running times and print them to the
screen.



Fig. 3: The serial implementation used in defining the Merkle
tree.

Fig. 4: The parallel implementation used in defining the
Merkle tree.

C. Making the program parallel

The primary region of the program that influences the
running time the most is located in the file where the Merkle
tree class is defined. The differences between the parallel and
serial implementations can be shown in (Fig. 3) and (Fig. 4).

Fig. 5: The output of the running time for the serial program
when fed 1,000 passwords.

Fig. 6: The output of the running time for the parallel program
when fed 1,000 passwords.

The main difference between the two implementations is the
use of OpenMP in the parallel implementation, in which two
pragma commands are utilized. The pragma omp parallel
command is used to make the program parallel, and declare
multiple threads to be run on a certain number of processors.
The pragma omp for order operation is then used on the for
loop to further optimize the parallelization of the program.
The results of the two implementations can be seen in the
next section.

IV. PERFORMANCE RESULTS

To test the difference in running time between the parallel
and serial implementation of the program, different test cases
were executed on the Bridges supercomputer. There were three
different test cases in which the number of passwords fed to
the program was administered. The number of passwords fed
to both the serial and parallel program for the first test case
was 1,000 which can be shown in (Fig. 5) and (Fig. 6), 10,000
for the second which can be shown in (Fig. 7) and (Fig. 8),
and 100,000 for the third which can be shown in (Fig. 9)
and (Fig. 10). The reason for choosing this method to test the
differences in running time was to illustrate the effectiveness
of the parallelization which could be more easily observed
when increasing the number of nodes in the tree.

The results for the 1,000 password test case show that there
is a significant decrease in the running-time in the parallel
implementation when run on all the processors by a factor of
.0001. When tested using 10,000 passwords, however, there

Fig. 7: The output of the running time for the serial program
when fed 10,000 passwords.

Fig. 8: The output of the running time for the parallel program
when fed 10,000 passwords.



Fig. 9: The output of the running time for the serial program
when fed 100,000 passwords.

Fig. 10: The output of the running time for the parallel
program when fed 100,000 passwords.

seemed to only be a decrease in the running-time in the parallel
implementation when split between three threads, which was
by a factor .001. The final case when tested using 100,000
passwords showed a significant decrease in running-time in
the parallel implementation when running all processor threads
by a factor of .01. These results show significant decreases in
running-time when tested with the parallel implementation in
all cases in at least one, or all of the processor thread options.
All of the parallel implementation results show that the fastest
running-time is achieved when the workload is split between
three threads.

However, significant does not mean a large decrease in
this context, it only means that it decreased enough to show
that there were some optimization benefits to using OpenMP.
A line graph of the running-times for each of the parallel
implementations can be viewed in (Fig. 11), (Fig. 12), and
(Fig. 13). The Merkle tree data structure is a complex target
to optimize due to the already quick processing capabilities
inherent in its structure. In retrospect, perhaps a method
involving the use of UPC++ would prove to be a better option
for decreasing the running-time even more, due to its ability to
split up the workload between different machines rather than
several processors on the same machine.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

These implementations of a Merkle tree, both the parallel
and serial versions, show that Merkle trees can be used with
success for certain aspects unrelated to blockchain applica-
tions. First, the serial version of the Merkle tree was built
and tested three times with passwords ascending in quantity
with each iteration, and the results of the running-time were
recorded. The method of testing involved two Merkle trees,
one that held the correct list of passwords and another with
the same list with one of the passwords being altered. The two
trees were then passed through an audit function to determine
the authenticity of the trees. If the root hashes of the two trees
differed in any way, then the audit function would return an
error message that the tree had been tampered with. In order to
parallelize the program, it simply took two OpenMP pragma
operations to do so. Then, the parallel implementation was

Fig. 11: Line graph of the running-time for the parallel
implementation using 1,000 passwords.

Fig. 12: Line graph of the running-time for the parallel
implementation using 10,000 passwords.

tested using the same methods as for the serial version, and
the results were again recorded.

Since there were multiple different running-times for the
parallel version depending on the number of processor threads
being used, the results were used to construct three line graphs
for each of the test cases. The results showed a significant



Fig. 13: Line graph of the running-time for the parallel
implementation using 100,000 passwords.

decrease in running-time in the parallel version for at least
one, or all of the processor thread options. The line graphs
more clearly represent the data and it shows that the favorable
processor thread amount for each of the test cases was three
processor threads. For an unclear reason at the moment, the
test case of running the program with 10,000 passwords only
shows a decrease in running-time when run with three threads,
every other processor thread option is slower than the serial
version. The best way to remedy this situation may be to use
a more effective parallel programming method like MPI or
UPC++ to achieve greater results.

B. Future Work

Some future work to consider for this project could be to
develop a parallel version of the same serial implementation
as this Merkle tree, but using a more complex MPI version,
rather than OpenMP, to see if the running-times can be reduced
even further. It would also be beneficial to get better results
for the 10,000 password test case as a result of using an MPI
implementation, where there is a decrease in running-time
from the serial implementation when run on all processors.
OpenMP has the ability to parallelize the program by creating
threads to run on multiple processors on a single machine,
but there are other techniques like that of using UPC++ that
can split the workload between different machines and thus,
decrease the running time even more. According to the results
recorded in this project, the optimal amount of threads to
run the Merkle tree program on was three, each running on
processors located on the same machine.

The next step for future work could also be to develop a
full login application system, where this Merkle tree can be

used in a real-life scenario where a user enters a username
and password to log into a system, and if entered incorrectly,
will change the root hash. A creative strategy can be used
to integrate the root hash of a Merkle tree into the main
functionality of the program. At the moment it is unclear
what such a program would look like, but the result could
be a far more secure system than the ones that are currently
accessible to the public. Known exploits for log-in systems
can be tested against this system that uses a Merkle tree to
store the passwords and then it can be observed if this system
is as vulnerable as traditional ones.

REFERENCES

[1] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff Mc-
Donald, and Ramesh Menon. Parallel Programming in OpenMP. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[2] Wikipedia. Merkle tree. https://en.wikipedia.org/wiki/Merkle tree, 2020.
https://en.wikipedia.org/wiki/Merkle tree.

[3] Janakirama Kalidhindi, Alex Kazorian, Aneesh Khera, and Cibi Pari. An-
gela: A sparse, distributed, and highly concurrent merkle tree. Technical
report, UC Berkeley, 2018.

[4] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse
merkle trees: Caching strategies and secure (non-)membership proofs.
Cryptology ePrint Archive, Report 2016/683, 2016. https://eprint.iacr.
org/2016/683.

[5] K. Atighehchi and R. Rolland. Optimization of tree modes for par-
allel hash functions: A case study. IEEE Transactions on Computers,
66(9):1585–1598, 2017.

[6] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches
and hash trees for efficient memory integrity verification. In Proceedings
of The Ninth International Symposium on High-Performance Computer
Architecture, 2003 (HPCA-9 2003), pages 295–306, 2003.

[7] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Au-
thenticated data structures, generically. ACM SIGPLAN Notices,
49(1):411–423, 2014.


