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Abstract—A pandemic can arise without warning, and it is
important for those in charge of managing the outbreak to
understand how diseases spread. Being able to simulate the
spread of a disease in varying environments can help the world
be more prepared when an outbreak occurs. The COVID-19 City
Simulator allows the user to test the spread of the virus under
multiple different scenarios. Parallel computing can help to make
these simulations more efficient by allowing data to be gathered
at a faster rate on a particle simulation. This paper shows how
OpenMP and MPI can improve a pandemic simulation by cutting
the runtime from over 25 seconds to under 10 seconds when 4
threads and 4 boxes are used. We also find that the speed of
implementing a lockdown largely impacts the amount of cases
and deaths in the city.

Index Terms—Parallel Computing, OpenMP, MPI, Hybrid
Model, COVID-19, Pandemic, Simulation, Disease Spread, Par-
ticle Simulation, Parameter tuning

I. INTRODUCTION

Many mathematical models exist to represent the spread
of infectious diseases in a population. These models vary
widely, but all models have large limitations when generalizing
a population. However, they can still be helpful to gain
understanding of the biological and sociological factors that
contribute to the spread of disease [1]. This knowledge can
be used to advice public health policy so institutions can deal
with disease outbreaks in the best way possible. This study is
being conducted due to its modern relevance with the COVID-
19 pandemic.

Many countries have reacted differently to this pandemic,
but being able to accurately simulate the spread of a disease
can help the entire world handle outbreaks more effectively.
This simulation can display how different factors such as
population density and amount of public interaction will affect
the spread of a virus. We will be looking at lockdowns orders,
which include public policies that attempt to reduce spread
by reducing interactions in a city. Due to the challenge of
implementing lockdowns, some countries have implemented
them more strictly and more quickly than others. This study
attempts to investigate the extent to which the speed at which
a city locks down affects the public health outcomes of the
city.

The paper will also discuss how parallel computing can
make simulations more efficient, since making simulations

more efficient will allow for them to be more realistic and
useful for understanding the problem. Shared memory paral-
lelism involves using multiple threads that share a common
memory space to execute tasks in parallel. Message passing
parallelism involves executing tasks on different boxes that
don’t share memory, and require messages be sent to exchange
information needed for processing. Both techniques are pow-
erful and can be used in tandem to maximize the efficiency of
computing resources on a simulation.

In Section 2, the background and relevant past research are
discussed. In Section 3, the detailed approach of the simula-
tion’s implementation is described. In Section 4, the results of
simulation trials are reported and analyzed. Finally, Section 5
gives the conclusion of the paper’s work and describes future
work to expand knowledge on this topic.

II. RELATED WORKS

The simulation discussed in this paper is based on other
models used to simulate the spread of disease. The first
model used as inspiration is the SIR disease model. This
model splits a population into three compartments: susceptible,
infected, and recovered. This model was based on Kermack-
McKendrick theory from 1927 [2]. The SIR Disease model
uses transition functions to move individuals of the population
between the three compartments. This system of compartments
and transitions is modeled with ordinary differential equations
(ODEs), and it is a deterministic model. Another type of
models that improve upon deterministic models are stochastic
disease models. They improve upon standard compartmental
models like SIR by adding some elements of randomness [3].
These stochastic models can use Continuous Time Markov
Chains or Stochastic Differential Equations to simulate the
spread of disease.

Britton describes a special epidemic model with site con-
tamination [4]. This model divides a space into several dif-
ferent sites with a random number of particles in each site
to represent the individuals of a population. The particles can
move randomly between neighboring sites. When an infected
particle reaches a new site, all other particles currently at
that site become infected. Germann made a model that used
mitigation strategies for pandemic influenza in the United
States [5]. This was a complex simulation model used to study
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influenza in the United States. The model used data from
the 2000 US Census and divided the population into seven
“mixing groups” that could contact one another. The model
considered various interventions such as vaccination and social
distancing to determine how different factors would affect the
spread of influenza.

For the simulation, multiple methods of computer paral-
lelization of particle simulators were researched. We had to
decide which method of parallelization would be most appro-
priate for the project. One source of research discussed many
different methods and platforms for parallel computing [6].
From this paper as well as our former experiences, we decided
that MPI was the most appropriate method for parallelizing
the simulation. Our research into parallelization methods also
showed the difference in performance for a program using pure
MPI against a program using a hybrid of MPI and OpenMP
[7]. The hybrid uses of both MPI and OpenMP was found to
improve performance over using MPI alone. The combination
of these two sources lead us to test the simulation using
three different methods of parallelization: OpenMP, MPI, and
a hybrid model using both OpenMP and MPI.

III. APPROACH

The city is represented by a particle simulation. The par-
ticles exist in a finite 2D space where particles represent
people living in the city and the space represents the city.
The simulation moves forward at discrete time steps, where
each time step t represents transitioning an hour forward in
real time.

To create a simulated epidemic model of the city, various
properties are added to both the particles and the organization
of the city to help simulate how a real city would experience
an epidemic.

A. Particles with Disease States

Each particle in the simulation will always exist in a disease
state. The set of states, S, includes Susceptible (S), Infected
(I), Recovered (R), and Deceased (D), based off the SIR
compartmental model (1).

S ∈ {S, I,R,D} (1)

We let Nt represent the number of total particles in the
simulation at a given time step. All living individuals will be
represented as particles in the simulation (2). Since deceased
individuals will be removed from the simulation, N can
decrease over time.

Nt = |St|+ |It|+ |Rt| − |Dt| (2)

The number of initial particles in the simulation, N0, is a
variable that will be examined as a parameter to determine
how larger population size (and thus higher population den-
sity) affects the disease transmission statistics. The simulation
begins with all individuals except for 1 being susceptible (3), 1
infected individual, and no recovered or deceased individuals.

|S0| = N0–1 (3)

Susceptible individuals have the chance to transition to the
infected state at every time step. Infected individuals can
spread the disease to susceptible individuals. The chance of
infection from an infected individual to a susceptible one at
any given time step is given by the probability of infection
α. However, infectious particles can only affect susceptible
particles if they are within a certain radius of infection β
(4). Individuals must also be in the same area to infect each
other, which will be discussed more in section B on City
Organization.

P (x infecting y) =

{
α dist(x, y) ≤ β
0 otherwise

(4)

Infected individuals can transition to either the recovered
or deceased state with probabilistic functions based on a
recovery factor γ and death factor δ, respectively (5) (6). These
functions are also based on the time since infection, with a
higher chance of either recovering or perishing the longer they
are infected. These probabilities are tested at each time step.

P (recovery, i steps after infection) = max(γi, 1) (5)

P (death, i steps after infection) = max(δi, 1) (6)

Recovered individuals are still part of the population but can-
not transition out of the recovered state. Deceased individuals
are fully removed from the population and simulation. The
simulation ends either when time step t reaches some stopping
point T or when there are no infected individuals remaining
in the population, whichever happens first.

B. City Organization

The total space of the city is partitioned into units we call
areas. Areas represent discrete regions where people stay, and
they are each represented as equal size, square regions. There
are both public and personal areas. Personal areas represent
homes, and every person will have exactly one personal area
that they visit. Public areas represent places that many people
visit, such as schools, workplaces, or stores.

The number of areas is proportional to the number of
particles in the simulation. For every 2 initial particles in the
simulation there will be 1 personal area, which is a proportion
that reflects housing to population data for United States cities.
For every 4 personal areas in the city, there will be 1 public
area. Figure 1 shows an example of the box distributions. The
relative locations of areas do not matter in this simulation.

At the beginning of the simulation, a set of areas are
assigned to each person. Personal areas are assigned such that
every person belongs to 1 personal area and every personal
area has 2 people. Public areas are assigned with more variabil-
ity, with each being assigned to N0/10 random people. These
values are treated as constant controls as other parameters are
investigated for their effects.

Each area that a person has assigned to them will also come
with a probability p of transitioning there at any given frame.



Fig. 1. Example 10× 10 grid layout for a city with N0 = 160. The shaded
regions represent public areas and the unshaded represent personal areas

C. Simulating Movement of People

There are two types of movements that particles have in the
simulation: movement between areas and movement within an
area.

Movement between areas is considered an instantaneous
jump from one area to another. At each time step, every person
will have a chance p to jump to one of their assigned areas
(assuming they are not already in that area). A random real
value between 0 and 1 is uniformly drawn for every person’s
possible areas to jump to, and if the value is less than the
probability, the jump will occur. The particle’s position will
be randomly chosen in the new area.

It is worth noting that since these jump timings are random,
people do not have set “schedules” and can stay in areas for
short and long amounts of time. There is also no notion of
day and night. The values are chosen to best simulate people
on average dividing their time evenly between time in public
and their time at home.

An intervention policy that is tested to affect these proba-
bilities is the lockdown. With a lockdown, the goal is to limit
the number of jumps to public areas. This is accomplished by
reducing the probability that any particle will jump to a public
area. A parameter that will be tested to find the effect of this
is the time of intervention implementation, τ . Changing this
will be used to determine the success of implementing the
lockdown early as to opposed to late.

Movement within an area occurs when a particle is not
jumping between areas. The movement occurs by randomly
picking an x and y value, each with a maximum magnitude.
This type of movement is used to simulate people coming in
proximity with one another to potentially spread the disease.

D. Parameter Estimation

To create a useful model, different parameters of the system
must be chosen that help to describe phenomena that occur in
real life. Table 1 shows a list of these parameters that will need
to be decided. They will be decided using both logic and with
respect to other parameters in the simulation. For example, the
probability of infection is to be chosen by using the current
knowledge that COVID-19 has a R0 (Reproduction Number)
number of approximately 2.2. A value for α will be decided

Symbol Description
N0 The number of initial particles
α The probability of infection at a time step
β The radius of infection for 2 particles
γ The factor for recovery probability
δ The factor for death probability
p The probability of jumping to a new area
τ The time of lockdown intervention

TABLE I
PARAMETERS THAT WILL BE INVESTIGATED AND TUNED IN THE

SIMULATIONS.

so that the trend shows that around 2.2 particles are infected
by a single infectious particle.

E. Parallelization Strategy

The simulation is implemented in C++ while utilizing the
OpenMP and MPI libraries for both shared memory and
message passing parallelization. Testing will be done on the
Bridges supercomputing environment where we will access up
to 16 nodes to test with at a time.

To distribute work evenly across the nodes used in the
simulation, every node will get the same number of public
and personal areas. Since the particles can jump to an area
on any node, the communication of jumping particles must be
done sequentially with each node having a chance to send its
jumping particles while all others must be ready to receive.

Since relative position between areas doesn’t matter, each
area can be viewed as its own 2D space, and the relative
(x, y) coordinate of each particle in the area, and the id of
the area where the particle exists is sufficient information for
processing.

F. Strategy for Measuring Success

Two approaches are used to measure the success of our
simulation. The first is to analyze the infections, recoveries,
and deaths that occur in the simulation. The second is to
measure the impact of parallelization on the simulation’s
performance.

For the first approach of analyzing disease metrics, graphs of
infections, recoveries, and deaths over time will be produced.
Graphs will also be produced that measure the total number of
infections, recoveries, and deaths that are caused by different
values. This provides useful intervention insight in the case
of altering τ , since we can measure how many lives can be
potentially saved by how quickly the lockdown is implemented
following the disease onset.

The second approach is to analyze the speedup induced
by the parallelization of the simulation. Experiments for both
strong and weak scaling will be performed by changing the
number of total particles in the city to show that the hybrid
approach scales well compared to a sequential implementation.

IV. RESULTS

One of our goals when running the simulation was to
determine the effectiveness of parallelization using OpenMP,
MPI, and then a hybrid of the two. Having a simulation



run efficiently is important for its usefulness as a tool to
better understand the spread of disease. First, we tested the
application using only OpenMP for parallelization. We ran a
simulation of 100,000 people using 1, 2, 4, 8, and 16 threads.
We ran each of these simulations 10 times and used the
average run time to determine the speedup of the simulation
with OpenMP. Figure 2 shows the average time taken to run
the simulation for each number of threads. Fig. 3 shows the
speedup of the simulation with each number of threads.

Fig. 2. The average runtime of the simulation tends to decrease with additional
OpenMP threads.

Fig. 3. The speedup of the program tends to increase with more OpenMP
threads.

Next, we tested the simulation using only MPI for paral-
lelization. Similarly to the OpenMP tests, we tested the MPI
simulation with 100,000 people and 1, 2, and 4 processors.
Unfortunately, due to resource restrictions with the Bridges
supercomputer at the time of these tests, we were not able to
run the simulation with more than 4 processors. We ran each
of the simulations 10 times and used the average runtime to
determine the speedup, strong scaling efficiency, and weak
scaling efficiency. Figure 4 shows the average runtime of
the simulation with different numbers of processors. Figure

5 shows the speedup of the simulation with an increasing
number of processors.

Fig. 4. The average runtime of the simulation decreases when more processors
are added with MPI.

Fig. 5. The speedup of the program increases when more processors are
added with MPI.

We were able to see a much larger speedup when using MPI
than when using OpenMP. Even with 16 OpenMP threads, the
speedup was below 2.5 while 4 processors with MPI yielded a
speedup of about 3.6. The strong scaling efficiency with MPI
also stayed above 85% while the strong scaling efficiency of
OpenMP dropped to about 42% with 4 threads and to about
15% with 16 threads.

The final test conducted on the efficiency of different paral-
lelization methods was to use a hybrid model of OpenMP and
MPI. We ran these tests with 100,000 people in the simulation.
We ran the tests with 1, 2, 4, 8, and 16 threads, and 1, 2
and 4 processors. Figure 6 shows the resulting runtimes with
various configurations of threads and processors. We found the
best speedup with 4 threads and 4 processors, but overall, the
runtime tended to decrease when more threads and processors
were used.

Besides running tests on the efficiency of the simulation, we
also ran tests to determine the effectiveness of a lockdown dur-



Fig. 6. The runtime of the simulation tends to decrease with more threads
and more processors.

ing a disease outbreak. In the simulation, a lockdown can be
set to occur during a particular time step. After the lockdown
occurs, people will be much less likely to jump to areas outside
of their personal space. Figure 7 shows the number of people
susceptible, infected, recovered, and deceased for each time
tick when no lockdown was implemented. Figure 8 shows the
same statistics but in this case, a lockdown was implemented
about one quarter of the way through the simulation. Figure
9 shows the results of implementing a lockdown one tenth of
the way through the simulation.

Fig. 7. State of the disease over time when no lockdown is implemented.

We can see from Fig. 7, 8, and 9 how a lockdown slows
the spread of disease. With no lockdown, about 91% of the
simulation population became infected at some time. Even
when a lockdown occurred a quarter of the way through the
simulation, about 91% of the population was infected with
the disease. We saw the most dramatic difference when a
lockdown was implemented one tenth of the way through
the simulation. In this instance, only 20% of the population
became infected with the disease.

Fig. 8. Spread of disease when a lockdown is implemented one quarter of
the way into the simulation.

Fig. 9. Spread of the disease when a lockdown is implemented early in the
simulation.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, we found that a hybrid parallel model using
both OpenMP and MPI yielded the best performance when
running the simulation. We also found that using only MPI
produced a much better efficiency than using only OpenMP.
OpenMP however did improve the runtime over using the base
serial implementation.

In terms of improving the performance of the simulation,
future work could include implementing different approaches
to parallelization. Other technologies such as CUDA could be
used to implement the simulation, and then the results could be
compared to our implementation. There are still many methods
and platforms for parallelization that could be explored with
this project [6]. This future work could help to discover if
using MPI and OpenMP was the most appropriate way to
implement the simulation. If allowed more resources in the
future, we would also like to be able to test our simulation
using more than 4 processors with MPI. We would like to be
able to see how using 8 and 16 processors would improve the
speedup of the simulation.



The results of the simulation showed just how important
early action is when a possible pandemic is at hand. Early
preventative measures proved to be very effective at reducing
the number of people to be infected by a disease. Our data
showed that waiting too long to try to stop the spread of
infection can allow the disease to reach many people.

In the future, more work could be done to make the
simulation a better representation of the world’s population
as our Coronavirus simulation was conducted on a homoge-
neous population. Possible future work into this simulation
could include introducing genetic differences such as age or
preexisting health conditions that would make a person more
or less likely to die after being infected. Immunities could
be introduced so that some people within the simulation are
unable to be infected. Areas of different population densities
could be introduced to see how the spread of a disease differs
in a large community versus a smaller one. Another factor that
could be added to the simulation is hospitalization. Infected
persons would be isolated to one location therefore making
them less likely to infect others and more likely to recover.
Another interesting addition to the simulation would be to
add the creation of a vaccine to the disease. This would allow
us to see how a vaccine would help to lessen the spread of
the disease as well as see how the lifetime of the disease is
shortened. There exists a lot of future work that could be done
to make this simulation a more accurate representation of the
world’s population.
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