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Abstract—In this paper, we use graphics processing
units(GPU) to accelerate sparse and arbitrary structured neural
networks. Sparse networks have nodes in the network that are
not fully connected with nodes in preceding and following layers,
and arbitrary structure neural networks have different number
of nodes in each layers. Sparse Neural networks with arbitrary
structures are generally created in the processes like neural
network pruning and evolutionary machine learning strategies.
We show that we can gain significant speedup for full activation
of such neural networks using graphical processing units. We
do a prepossessing step to determine dependency groups for
all the nodes in a network, and use that information to guide
the progression of activation in the neural network. Then we
compute activation for each nodes in its own separate thread in
the GPU, which allows for massive parallelization. We use CUDA
framework to implement our approach and compare the results
of sequential and GPU implementations. Our results show that
the activation of sparse neural networks lends very well to GPU
acceleration and can help speed up machine learning strategies
which generate such networks or other processes that have similar
structure.
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I. INTRODUCTION

Artificial neural networks, first proposed by McCuloch and
Pitts in 1943 [1], are universal function approximators loosely
based on biological neural networks. Neural networks with
back propagation [2] is a robust method in machine learning.
Artificial neural networks(ANN) have interconnected nodes
that are separated into three types - inputs, outputs and hidden
nodes. Inputs nodes are sensor nodes that take in values from
outside the system, output nodes are the nodes that produce
the answers from the network and hidden nodes are the nodes
which lie in the information propagation path of the neural
network. Each node is activated based on the nodes from which
it has incoming connections, and the activation is calculated
by weighting all the incoming node values with corresponding
connection weight and summing all the values. The sum is
then thresholded for the final activation. Generally the sum is
passed through sigmoid function to constrain it within −1 and
+1 values.

sigmoid(x) = (1/(1 + e−4.97∗x))

Conventionally, neural networks have structure which con-
sists of nodes cleanly segmented into layers as shown in Figure
1 with incoming nodes shown in red and outgoing nodes shown
in green. Nodes in each layer are not connected with each

Fig. 1. Representation of conventional feed forward neural network with
input, hidden and output layers

other and are fully connected with the nodes in preceding
layer and the following layer. This structure lends very well to
vectorization where each layer is represented by matrices of
weights and the propagation and activation can be calculated
with the multiplication of the layer matrices. This property is
utilized for GPU acceleration of such neural network. As GPUs
are well suited for large in matrix multiplications, such neural
networks have seen large speedups, even for huge networks [3].

This paper is concerned with the activation of sparse
and arbitrary structured neural networks. Neurons in sparse
neural networks do not have full connection with nodes
from preceding layer and following layer. Neural networks
have arbitrary structure when nodes from sparse networks are
also pruned. In such case, such networks cannot be cleanly
separated into layers, i.e. they are not fully connected and can
have incoming and outgoing links to any node in the graph as
shown in Figure 2. Sparse networks are a subset of arbitrary
structured neural networks(ASNN)s and are generated by
neural network pruning algorithms [4], [5]. ASNNs can be
generated by pruning both connections and nodes from fully
trained dense networks. They are also created by rule based
network structure generators, and some of which are applied in
machine learning to generate networks best fit for a given prob-
lem. Neural Evolution of Augmenting Topologies (NEAT) [6]
with direct encoding, HyperNEAT [7] which uses generative



Fig. 2. Representation of neural network with arbitrary structure

encoding, and grammar based substitution and bi-directional
growth encoding [8] are some of the few processes which
can generate ASNNs. With the start of application of neuro
evolution to deep neural networks [9], full propagation of these
network will take significant portion of compute time of total
program running time. GPU acceleration methodologies used
for conventional NN will not work with ASNNs, thus, if we
can use GPU to accelerate arbitrary neural networks, we can
have considerable gains in speed and both memory and power
efficiency.

Graphics processing units were originally developed as a co
processor alongside the main CPU, to offload the processing of
graphics related tasks which are are massively parallelizable.
With co-accelerated advancements in games and GPU hard-
ware, the GPU architecture reached a point where they could
be used for general purpose computation. Initially, problems
for general purpose computation in GPU(GPGPU) had to
be converted into OPENGL shader programs utilizing non
standard methods [10] but with eager support from GPU man-
ufactures, platforms for general purpose computation on GPU
were created. Compute Unified Device Architecture (CUDA)
[11] and OpenCL [12] being two prominent examples. With
vendor support and capable frameworks, GPUs have become
a useful tool for massive data parallel problems.

This new found power of general purpose computation
on GPUs have been extensively utilized in neural network
development and research. One of the reason for deep learning
growth has been attributed to advancement in GPU capabil-
ity [13]. There are numerous GPU libraries supporting neural
network acceleration [14] and frameworks around them [15].
But GPU acceleration on arbitrary structure neural networks
is still lacking; which we explore in this paper. For GPU
acceleration of ASNN, we first perform a pre processing step
that segregates all the nodes into dependency hierarchy which
we call layers. Then we use thread parallalization available
with CUDA interface to compute all the nodes in that layer
at the same time. With our methodology, we have shown that
we can get significant speedup with the use of GPUs and the
speedup gets better with respect to increase in neural network
connections and depth of the network.

Remainder of this paper is organized as follows. Section II
describes previous approaches related to our current work, sec-
tion III describes the neural network representation, sequential
and GPU activation methodology and experimental setup. In
Section IV, we describe our results and compare the timing

and speedup between two strategies. lastly in Section V, we
draw our conclusions and explain possible future directions.

II. RELATED WORK

GPUs have been used for general purpose computation
from before the time they provided formal support for it.
Before APIs like CUDA and OPENCL were offered by the
GPU vendors, researchers utilised OPENGL shader languages
to coerce the GPU into performing non graphical process-
ing [10], [16]. The application of GPUs for accelerating data
parallel tasks has only increased after the introduction of the
supported APIs. NVIDIA maintains a host of different libraries
targeted to various application domains like deepLearning,
signal processing, linear algebra and others [17].

The power of GPU have been eagerly utilized in the
machine learning field as machine learning requires crunching
through big numerical calculations and large number of iter-
ations for making sense out of big datasets [18]. GPUs have
been applied to Neural networks, and have been especially
useful with the advent of deep learning, which uses neural
networks with large number of neurons and hidden layers [19].
Previous work on implementation of neural networks in GPUs
have started before the introduction of CUDA, where the
authors utilized texture processing pipeline of the GPU to
accelerate Multi layer perceptron and self organizing maps
with significant speedup [20]. Scherer et. al. have shown
in [21] that GPU can have gains of up to two orders of
magnitude for convolution neural networks. Cheltur et. al.
have also shown that convolutional neural networks can be
efficiently computed in GPUs with data framing in a form of
matrix and performing matrix multiplication to compute the
network [22]. Coates et. al. have shown that many consumer
grade GPUS in separate machines can be used for acceleration
of convolutional neural networks by using CUDA, and using
openMPI for multi GPU coordination [23]. Zhang et. al. have
also looked at accelerating sparse neural networks with custom
hardware accelerators [24].

Other types of neural networks have also seen good results
from GPU implementation. Nageswaran et. al. have imple-
mented a configurable simulation environment for the efficient
simulation of large scale spiking neural networks on GPU [25].
Juang et. al. have also shown significant speedup on fuzzy
neural networks with high dimensional inputs by using parallel
processing on GPUS [26], and GPUS have also been able to
reduce recurrent neural networks training time by a factor of
32 [27].

Neural network in general form are also graph structures,
and there have also been numerous research on graph process-
ing on GPUs. Luo et. al. showed that the speedup of upto
10x could be achieved with GPU implementation for breath
first search [28]. Harish and Narayan give implementation
of various graph processing algorithms on GPU in [29] and
note that in some cases sequential approach does not transfer
well to the GPU approach. In this paper, we are looking into
networks with non uniform structure and have to perform a pre
processing step on that structure to segregate the nodes where
we have to apply graph processing approaches.



Fig. 3. Cuda memory architecture showing the relation between grid, block
and threads and the corresponding proximity and connections of different kinds
of memory elements

III. METHODOLOGY

A. CUDA

The CUDA application programming interface provides a
way to structure our operations to run on Nvidia GPUs. The
memory model in CUDA is divided into grids, blocks and
threads which have access to specific kinds of memory and
are all interfaced with the CPU, called a host, via a PCI bus as
shown in Figure 3. Code execution can be segmented to run in
grids and blocks, both of which can be molded to have one to
three dimensions depending on the problem. Each block runs
the kernel, a block of CUDA procedure, in individual threads.
Threads within a block can share a portion of memory called
shared memory, which has very low latency as it resides on
the chip. Current GPUs can run 32 threads in a block, which is
also called a warp, at a single time where same instructions of
a kernel executes on all the threads but runs on different data.
Optimizing for efficient allocation of warps could lead to better
performance. Threads in a block can be synchronized with

syncthreads() API call which syncs all the threads in a block
at the code location where all of them execute syncthreads().
Concept of unified memory was introduced in CUDA 4.0
which does away with the manual process of memory copying
from device to host and back. Now, we allocate a portion of
memory that is shared between both device and host and GPU
driver takes care of transfer of data when data is accessed from
either device. We use cudaMallocManaged() to allocate shared
memory and use cudaDeviceSynchronize() before accessing
any device data from the host.

B. Sequential activation

For sequential activation of arbitrary neural network, we
first perform pre processing on network structure to segment
the network into sequential hierarchy of nodes, which we call
layers of the ASNN. The algorithm to segment the network
is given in Algorithm 1. The function takes all nodes, input

Algorithm 1 Network segmentation algorithm
1: function SEGMENT NETWORK(R, IN,OP,CON ) .

R=required, IN=inputs, OP=outputs, CON=connections
2: L ← []
3: s← IN
4: while True do

. Candidate nodes for the next layer
5: c = { b for (a,b) in CON if a in s and b not in s}

. Used nodes whose entire input set is in s
6: t← {}
7: for n in c do
8: all ← (for a in s for (a,b) in CON if b = n)
9: if n in R and all then

10: t ← t U n
11: end if
12: end for
13: if t = φ then
14: break
15: end if
16: L ← L + t
17: s ← s U t
18: end while
19: return L
20: end function

nodes, output nodes and a structure containing all the network
connections as input for processing. First, we find candidate
nodes from the connections pool based on the nodes that have
already been assigned to some layer. The candidates are those
nodes for which incoming nodes all lie on the nodes that have
already been assigned to a layer and all its outgoing nodes
are not in the assigned set. From the candidate set, we only
add those nodes to the next layer if their entire input set is
contained in the nodes which are already assigned a layer
value.

For sequential propagation of the neural network, All the
nodes starting of the input layer is sequentially activated till the
output layer from which the answer is obtained. The activation
is calculated by going through all the incoming nodes and
multiplying the connection weights with the node values and
then summing them and then squashing them with the sigmoid
function.

C. Parallel GPU activation

For single GPU activation of the neural network, we use
the fact that all the nodes belonging to the same layer can
be activated at once without compromising the output of
the network in any way. For representation of the structure
of network in the GPU, we use a custom data structure
called CudaNode as depicted in Algorithm 2. Each CudaNode
structure represents a single node of the neural network where
each node contains a unique id, the number of incoming nodes,
the integer array containing the node ids for the incoming
connections and another float array for the corresponding
weights for the incoming nodes. Then, we also have a Boolean
that specifies if the node is a sensor i.e. takes external input for
the network. The layer variable is set by the prepossessing of
the neural network sequentially. The array of CudaNode structs
are sorted in ascending order based on their layer number,



Algorithm 2 Data structure to represent a single node in a
network

1: struct CudaNode
2: Integer: id . Unique id for the node
3: Integer: layer . Layer the node is in
4: Integer: numInNodes . No. of incoming nodes
5: Boolean: isSensor . True if input node
6: Integer[]: inNodes . Array of incoming Node ids
7: Float[]: inWeights . Array of incoming Node

weights
8: end struct

where the input layer starts with value 0 and then climbs up
to the last layer in the network. This is done to allow for better
cache performance for unified memory in the GPU as input
and output nodes will be close to each other in the array after
being sorted.

CUDA kernel for GPU activation is described in Algorithm
3. The kernel for GPU activation takes the value for total num-
ber of layers in the network, another integer array containing
number of nodes in each layer, the main CudaNodes array
containing sorted node entities, and an input array of floats
which contains values for input layer of the neural network.
Size of the output float array is equal to the size of number
of nodes in the network as each node writes its activation
result to this array, which all other nodes will also be able to
observe and write to. We have a variable cl which determines
the current layer that the kernel is processing and sid, the
start id which holds the id of the first node of the layer being
computed. We will already have spawned many threads which
will correspond to one node of the layer being activated. In
case the current node is a sensor, we just perform sigmoid
activation on the input variable from input array corresponding
to the current node id. If the current node is not a sensor, we
sum the values from all the incoming nodes after weighting
them with the connection weight then do the sigmoid activation
on the resulting sum.

After one activation of one node is completed, we call
syncthreads() in the kernel to wait for all other nodes on the

layer to finish computing. After synchronization, we increase
the current layer variable to denote that we have progressed
one layer of the neural network and increase start id by the
number of nodes which were present in the completed layer.
We compare current layer variable against total number of
layers of the neural network and exit out of the loop if current
layer is greater then the total layers, which signifies that the
network has completed activation. After completing activation,
we make sure to call cudaDeviceSynchronize() function before
we read in the answers from the host to give the host enough
time to copy the results from the device memory to host
memory. Then, we read in the values from output array which
has the final activations of output nodes in the network.

D. Experimental setup

We used the CUBIX machine in our department for running
all our experiments, which had the following configuration:

• Two 6 core Intel Xeon CPUs (E5-2620 0 @ 2.00GHz)

• CPU caches of L1: 32K, L2: 256K, L3: 15360K

Algorithm 3 CUDA kernel for calculating activation for
ASNNs

1: . Integer: TL = Total layers in a network
2: . Integer[]: NNL = Number of nodes in layers
3: . CudaNode[]: n = Array of all the nodes
4: . Float[]: in = Input values for network
5: . Float[]: op = Array for output values
6: function CUDA ACTIVATION(TL, NNL, n, in, op)
7: Integer: cl ← 0 . Current Layer
8: Integer: sid ← 0 . Start id
9: Integer: id ← threadIdx.x

10: while cl < TL and id < NNLc1 do
11: CudaNode: cn ← nsid+id

12: if cn is a sensor then
13: opcn.id ← call sigmoid(incn.id)
14: else
15: Float: sum ← 0
16: for i from 0 → cn.numInNodes - 1 do
17: sum += cn.inWeightsi * opcn.inNodes[i]

18: end for
19: opcn.id ← call sigmoid(sum)
20: end if
21: call syncthreads()
22: sid ← sid + NNLc1

23: cl ← cl + 1
24: end while
25: end function

• 64 GB of RAM

• 8 GTX 1080 with 8GB DRAM each

For all the results that follow, experiments were run 10
times and averaged for GPU activation timings and run 5 times
and averaged for sequential activation timings.

IV. RESULTS AND DISCUSSION

A. Sequential results

From Figure 4 we can see that the execution of networks
take linear amount of time with respect to the number of
connections in the network. Increase in number of layers also
correspond with the increase in execution time. Thus, with
large number of connections and many layers, the execution
time drastically increases. It is also possible for a network
with same number of connection to have different execution
time based on number of layers, as even with same number of
connections, network with deeper layers take longer to execute.

B. Single GPU result

From Figure 5 we see that there is a general upward
trend for the execution time with respect to the number of
connections. But it should be noted that the slope is very flat
compared to the sequential execution graph. The minimum is
at 1ms and the maximum at 2.5ms.

C. Comparison and speedup

From Figure 4 we notice that compared to sequential
execution, the GPU execution time lies flat and skims the x-
axis. We can also compare the log of execution time from



Fig. 4. Increase in execution time with respect to number of connections in
a network for Sequential(blue) and GPU(red) approaches

Fig. 5. Increase in execution time with respect to number of connections in
a network using GPU implementation

Figure 6 where we see that the sequential execution time
is very low for smaller networks but grows log linear with
the number of connections. The log graph of execution time
for sequential method has a steep slope at start, and still
has positive slope after 30000 connections, while the GPU
execution curve is flat with the x axis after 30000 connections.
Thus, we can be certain that the GPU approach will scale well
with increase in number of connections.

For speedup, we can see from the Figure 7 that initially,
the speedup factor of sequential timings compared with GPU
timings are lower than one which means that the GPU ap-
proach is slower than the sequential approach for very small

Fig. 6. Log of execution time with respect to number of connections in
network, showing the comparison of execution times for Sequential and GPU
approaches

Fig. 7. Increase in speedup factor with increase in number of connections
in a network showing the linear increase in speedup. Red line shows where
speedup crosses the factor of 1

networks. This is predictable as overhead of copying to and
from the device negates any speedup from the computation
happening at the device. Till 8000 connections, speedup from
GPU is similar to the the sequential implementation, but
after 8000 connections, speedup shows linear increase with
number of connections. The jagged structure of the line is
due to the variation in number of layers possible for a same
connection count i.e. low depth networks can be computed
quickly compared to deeper networks. From the graph, we
can see that the speedup factor is fairly high for low depth
networks too and is linearly increasing with increase in number
of connections. This results signify that we will have more
gains the larger our network gets. If we take a network with
70,000 connections, we can get up to 15 times speedup, which
will have huge gains given that the networks are evaluated for
thousands of iterations for any given problem.

V. CONCLUSION AND FUTURE WORK

Our research focused on finding effective ways of accel-
erating arbitrary structured neural networks. We were able to
show that: by pre-processing the network to segment it into
dependent layers and then using CUDA threads to execute all
the nodes in the same layer at the same time, we can get
speedup that increases with the size of the connections in the
neural network. From our experimentation, we have shown
linear speedup increase for our GPU implementation compared
to our sequential implementation.

We can further improve on this work by extending the
approach to incorporate grid wide thread locking to synchro-
nize threads in a grid group which will significantly increase
the number of nodes which can be processed simultaneously.
The natural extension of this work is, to find ways to perform
network segmentation in GPU itself; which will also have
significant impact on the overall efficiency of current approach.
Our approach of using GPUs to accelerate arbitrary neural
networks can also be used for other domains of research,
as networks found in nature generally have non uniform
structure, so our research can be incorporated for their study
and simulation. One prominent example is of biological brains
which have arbitrary structure with huge number of nodes and
connections. We could simulate and study such large networks
if we can extend the processing capacity by coordinating
multiple GPUs to compute a single network.



VI. ACKNOWLEDGMENTS

This material is based in part upon work supported by
the National Science Foundation under grant number IIA-
1301726. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] W. S. McCulloch and W. Pitts, “A logical calculus of
the ideas immanent in nervous activity,” The bulletin
of mathematical biophysics, vol. 5, no. 4, pp. 115–133,
1943.

[2] R. Hecht-Nielsen, “Theory of the backpropagation neu-
ral network,” in Neural networks for perception, Else-
vier, 1992, pp. 65–93.

[3] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Under-
standing the efficiency of gpu algorithms for matrix-
matrix multiplication,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, ACM, 2004, pp. 133–137.

[4] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain
damage,” in Advances in neural information processing
systems, 1990, pp. 598–605.

[5] B. Hassibi and D. G. Stork, “Second order derivatives
for network pruning: Optimal brain surgeon,” in Ad-
vances in neural information processing systems, 1993,
pp. 164–171.

[6] K. O. Stanley and R. Miikkulainen, “Evolving neural
networks through augmenting topologies,” Evolutionary
computation, vol. 10, no. 2, pp. 99–127, 2002.

[7] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A
hypercube-based encoding for evolving large-scale neu-
ral networks,” Artificial life, vol. 15, no. 2, pp. 185–212,
2009.
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