
Parallelizing the Slant Stack Transform with CUDA
Dustin Barnes

Computer Science and Engineering
University of Nevada, Reno

Reno, NV, USA
dkbarnes@nevada.unr.edu

Andrew McIntyre
Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA

amcintyre@nevada.unr.edu

Sui Cheung
Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA

scheung@nevada.unr.edu

John Louie
Nevada Seismological Laboratory

University of Nevada, Reno
Reno, NV, USA

louie@seismo.unr.edu

Emily Hand
Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA
emhand@unr.edu

Frederick C. Harris, Jr.
Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA

fred.harris@cse.unr.edu

Abstract—In geophysics, the slant stack transform is a method
used to align signals from different sensors. We focus on the use
of the transform within passive refraction microtremor (ReMi)
surveys, in order to produce high resolution slowness-frequency
plots for use as samples in a machine learning model. Running on
a single central processing unit (CPU) thread, this process takes
approximately 45 minutes, 99.5% of which consists of the slant
stack transform. In order to reduce the time taken to perform the
transform, we use NVIDIA CUDA programming model. Using
the same CPU, augmented with a GeForce RTX 2080 Ti we were
able to reduce this time down to as little as 0.5 seconds.

Index Terms—Parallel Programming, GPU, CUDA, PyCUDA,
Refraction Microtremor (ReMi), Seismic Refraction, Slant Stack,
Radon Transform, Beamforming Transform, Rayleigh Waves,

I. INTRODUCTION

Refraction Microtremor (ReMi) surveys use geophone-array
recordings of the Rayleigh component of ambient, vertically
directed seismic ground-vibration noise from passive sources
in order to obtain a shear-wave profile, describing the seismic-
velocity property of soils and rocks at different depths [1].
ReMi does not require drilling or the use of a seismic source
- such as hammers or explosives. ReMi provides a cheap, easy
to set up survey method that is effective in urban environments.
Although ReMi was originally developed as a means of
assessing earthquake safety and construction code compliance
for building sites, ReMi has been used for a wide variety of
applications such as geologic basin and bedrock analysis, and
foundation design for sites such as bridges and wind turbines.

Conducting a ReMi survey require obtaining array record-
ings, transforming the time- and distance-dependent seismic
records into a slowness-frequency (p-f) plot, manually esti-
mating the fundamental-mode Rayleigh dispersion curve, and
then manually fitting the selected dispersion points to a 1D
shear-velocity versus depth model. This is a labor-intensive
process with a mathematically under-determined result, which
can vary depending on the individual performing the analysis.
In addition, the amount of raw seismic data being recorded
for analysis is constantly increasing, beyond the capacity of
human analysts to keep up. As such, the ultimate goal of this

Fig. 1. An example of a generated p-f plot, with the fundamental mode
Rayleigh dispersion curve drawn in red. This one was generated using the
serial implementation.

research is to generate a machine learning model capable of
generating a velocity model given a p-f plot.

Methods of generating p-f plots are designed for human
consumption, constrained by the limitations of decades old
hardware. Increasing the demands on this algorithm to create
samples suitable for consumption by a machine learning
model make the time required to generate a batch of samples
infeasible for training. The vast majority of this time is the
result of performing the slant stack transform, which aligns
the signals from the geophone sensors along the time-offset
(tau) domain. Figure 1 is an example of visualized waves
in geophysics. It is built from the sensor measurements in a
linear array (traces). It accumulate samples (intensity) at each
point and it is currently in a low resolution grids for program
performance purpose.

The remainder of the paper is structured as follows: Sec-
tion II provides an overview of the ReMi process and seismic
imaging techniques. Section III provides a brief background
for CUDA. Section IV provides a description of the algorithm

1



which slant stacking utilizes, and different methods of optimiz-
ing this for CUDA. Section V provides details on hardware
and software used. Section VI describes the outcomes of our
study, and Section VII provides conclusion and a discussion
on future work, potential improvements, and applications of
our work.

II. BACKGROUND

Several other works have shown the potential for CUDA
accelerated computation within geophysics. [2] and [3] are
both examples of using graphics processing units (GPU) to
accelerate processing, while [4] shows how ray tracing on
modern hardware can be used to increase the fidelity of
computational models. No work has been done on accelerating
the slant stack transform or ReMi surveys, with most research
in the field instead investigating different areas in which the
technique may be applied.

The remainder of this paper focuses on generating p-f plots
and the slant stack transform. Generating a p-f plot consists of
several distinct steps. First, the raw signals must be processed.
Each trace, consisting of the raw signals from each geophone,
must be centered, ensuring that they are measured as variations
around a zero-volt response level, and RMS normalization is
performed. Next, the signal is transformed into the frequency
domain and filtered. At minimum, a bandpass filter is used
with the maximum frequency determined by the Nyquist
frequency - the highest frequency able to be reliably sampled,
based on the sampling rate of the sensors - using a bandpass
filter. After frequency domain filtering is performed, the signal
for each trace is then transformed back into the time domain.

Once the raw data has been preprocessed, the slant stack
transform is applied. This generates a p-τ plot, with axes of
p, or slowness (s/m) and τ , or zero offset reflection time, and
with each point on the grid representing the intensity of the
signal received.

τ = t− p ∗ d (1)

t = τ + p ∗ d (2)

As shown in equation (1), τ is calculated by taking the
distance (d) of the current sensor from the first sensor in a
linear array and multiplying it by the current slowness (p) to
align the signal from a distant geophone to that of the first. The
intensity of the signal is the added to the current grid point.
When generating the p-τ plot, every point in the plot is iterated
over, and the time in the trace is calculated using Eq. (2). As
the calculated trace time is unlikely to align exactly with a
sampled point on the trace, linear interpolation is performed
between the two nearest values.

In the case where a time is outside the bounds of the trace,
either with negative time or beyond the sampled time frame, no
intensity is added. In addition to creating a plot from slowness
p = 0 to pmax, a p-τ plot is also created ranging from −pmax

to p = 0. Thus, the plot ranging from [0,pmax] captures waves
travelling along the array from the first sensor to last, and the
plot ranging from [-pmax, 0] captures waves travelling along

the array from the last sensor to the first. These are referred
to as the forward and reverse plots respectively.

Once the forward and reverse p-τ plots have been calcu-
lated, the reverse plot is inverted along the slowness axis, and
added to the forward plot, creating the combined plot. A final
Fourier transform is applied to all three plots, transforming
them into the frequency domain along the x axis. Additional
work may be done in order to visualize the data in different
ways.

III. CUDA

The graphical processing unit (GPU) has become a popular
device for creating a high performance parallel computing
platform for a relatively low cost. Each GPU contains a large
number of processing cores and each core can create many
threads that can all be executed in parallel. As a result, many
different types applications utilize GPUs to solve computation-
ally expensive problems and have been successful in increasing
the performance. NVIDIA provides their Compute Unified
Device Architecture (CUDA) programming model in order for
new and existing applications to be executed on the GPU.
CUDA extends the standard C/C++ language to give direct
access to the instructions and memory management for parallel
computation on NVIDIA GPUs

Starting with the G80 series, NVidia unveiled a new ar-
chitecture called the Compute Unified Device Architecture
(CUDA) to ease the struggles of programmers attempting to
harness the GPU’s computing power [5]. While the new ar-
chitect did not change the pipeline for graphics programmers,
it did unify the processing architecture underlying the whole
pipeline. Vertex and fragment processors were replaced with
groups of Thread Processors (CUDA Cores) called Streaming
Multiprocessors (SM). Initially with the G80 architecture,
there were 128 cores grouped into 16 SMs. The Kepler
architecture has 2880 coresgrouped into 15 SMs. The Maxwell
has SMs with 128 cores and has a varying number of SMs (3-
15) depending upon the model of GPU. The Pascal architecture
was also 128, but Turing was 64, and Ampre has gone back
to 128

In addition to the new architecture, CUDA also included a
new programming model which allowed application program-
mers to harness the data parallelism present on the GPU. The
primary abstractions of the programming model are kernels
and threads. Each kernel is executed by many threads in
parallel; CUDA threads are very lightweight and allow many
thousands of threads to be executing on a device at any given
time.

CUDA exposes the computational power of the GPU
through a C programming model. It additionally provides
an API for scheduling multiple streams of execution on the
GPU. This allows the hardware scheduler present on CUDA
enabled GPUs to more efficiently use all of the compute
resources available. When using streams, the scheduler is able
to concurrently execute independent tasks.

2



Changes over the years to CUDA have included shared
memory between the host and device as well as kernel calls
from kernels.

IV. APPROACH/IMPLEMENTATION

The slant stack algorithm itself is fairly straightforward.
Algorithm 1 describes the basic serial implementation of the
transform, with Algorithm 4 describing the processes used to
interpolate the intensity of a signal on a trace, given the ideal
time. This process is identical for both the serial and parallel
algorithms, however it does require a significant amount of
computation. Our test case, generating a 1648x1648 plot from
a stream with 15 traces, requires 147 million executions of
Algorithm 4.

Algorithm 1: Serial Slant Stack Transform
Create Output Plot
for trace do

for tau do
for p do

tideal = τ + d ∗ p
Accumulate on plot // Call Alg 4

end
end

end

For our parallel implementation, two algorithms are de-
scribed. Algorithm 2 performs a CUDA call on each trace
in a stream, limiting the amount of memory required at the
cost of more frequent CUDA calls. Algorithm 3 sends the full
stream to the GPU, and processes it in a single CUDA call,
but there must be sufficient VRAM available on the device for
the output array, all traces, as well as memory available for
computation.

When Algorithm 2 is executed, a trace is sent to the GPU
and the result of each point in the output array is calculated
and summed to the same global array. Once all traces have
been called, the results are transferred back to the host. This
method simplifies the process - each trace modifies each point
of the output array once, and so it is guaranteed that there
will be no race conditions present when calculating a single
trace - as well as reducing the amount of memory required
for computation. For our test case, the output array requires
approximately 1.28 GB of VRAM to store, with additional
memory needed for the trace itself. Some additional cost is
also incurred due to the more frequent communication required
between the device and host, though it is not significant unless
generating very small plots.

Algorithm 3 performs a batch computation of all traces.
Similar to Algorithm 2, a global output array is used to store
the results. However consideration must be given to potential
data races, as multiple threads may attempt to modify the
same memory locations. In this case, each trace within the
stream will modify each element of the global output array
once - resulting in 15 increments of every value. This requires

Algorithm 2: CUDA Kernel per Trace
CPU:

Create Output Plot
for trace do

CUDA Call
end

KERNEL:

tideal = threadIdx.x+threadIdx.y*distance
Add to Output Array // Call Alg 4

Algorithm 3: CUDA Kernel per Stream
CPU:

Create Output Plot
Send all traces to GPU
CUDA Call

KERNEL:

Calculate Trace Time
tideal = threadIdx.x

+ threadIdx.y*distance
+ threadIdx.z*traceLen

Add to Output Array // Call Alg 4

additional checks to ensure that no two threads are operating
on the same location, either via use of atomics, temporary
arrays for each trace, or subdividing the output array into
several smaller arrays. Additionally, loading the entirety of
the stream into VRAM may cause difficulties depending on
the size of the survey. For the purposes of this study, we only
implement Algorithm 2.

To implement these methods, we use the PyCUDA library,
which gives access to NVIDIA’s CUDA parallel computation
API in python. This allows us to easily parallelize our serial
code, which is implemented in python. Additionally, utilizing
python allows for easier integration with machine learning
models, and better support for reading geophysics data.

Algorithm 4: Process to find intensity

if abs(tideal) < tmax then
tlow = floor(tideal/dt)
thigh = ceil(tideal/dt)

intensity = trace[thigh]−trace[tlow]
thigh−tlow

(tideal − tlow)
plot[τ ][p] += intensity

end
else

Skip
end

3



V. HARDWARE AND SOFTWARE USED

CUDA and PyCUDA are used in this project both in
the sequential and parallel implementations. As mentioned
in Section III, CUDA is parallel computing platform and
programming model that was designed for NVIDIA graphics
cards. CUDA helps speed up computing application signif-
icantly when there is a lot of data that is computed at the
same time. CUDA supports languages such as C, C++, Fortran,
Python, and Matlab. In this work, we utilized PyCUDA for a
python implementation of the slant stack transform implemen-
tation [6].

PyCUDA is a Pythonic access method for NVIDIA’s CUDA
parallel computation API. PyCUDA has C++ style syntax
so that it’s ease-to-use. It provides automatic error checking
where all CUDA calls are translated as Python exceptions. It
has a very fast runtime, along with automatically allocating
and de-allocating space in the program [7].

A. Hardware used

The hardware described was used for both the sequential
and parallel implementations of the code. Since CUDA is
limited to use for NVIDIA graphics cards. It is very important
to have a workstation that is set up with NVIDIA graphics
card(s). We also wanted to have a decent CPU where it
can send the CUDA instructions to the NVIDIA graphics
card(s) rapidly. For this paper, we used a workstation that has
NVIDIA graphics card and a Intel CPU. Here is the essential
components of our workstation set up:

• Intel® Core™ i5-4670K Processor
• GeForce RTX 2080 Ti
Intel® Core™ i5-4670K Processor is the 4th generation

Intel® Core™ i5 Processors. It has 4 cores and 4 threads,
processor base frequency of 3.40GHz, and 6MB of Intel®
Smart Cache (which allows all cores to dynamically share
access to the last level cache) [8].

The machine was running a Debian version of Linux.
GeForce RTX 2080 Ti was the lastest version of NVIDIA

graphics card at the time of this work. A GeForce RTX 2080
Ti was used in the workstation and it is made by EVGA and
the model is 11G-P4-2281-KR. A GeForce RTX 2080 Ti has
4352 of NVIDIA CUDA® Cores, 14 Gbps of memory speed,
11 GB GDDR6 VRAM.

B. Software used

In the CUDA implementation, we used software packages
from CUDA 10.2, pycuda 2019.1.2 [7], NVIDIA Driver 3.5,
numpy 1.18.2 [9], obspy 1.2.1 [10], [11], and evodcinv 1.0.0
[12]. ObsPy is a seismology framework for Python, which
provides tools necessary to parse common file formats. In this
project, ObsPy is exclusively used to read in the trace data.

VI. RESULTS

Implementing the slant stack transform in CUDA allowed
for a considerable speed up, while still producing accurate
results. Prior to CUDA parallelization, an individual trace
would take approximately 400 seconds to to calculate using

the CPU described in Section V. This resulted in our test case
needing approximately one and a half hours of calculation.
After parallization was implemented, a single trace could
be processed in approximately 0.01 seconds, with the entire
process averaging 0.65 seconds. We observed an average
speedup of approximately 10,000 times. This is consistent with
the peak performance of the two devices, as the the 2080ti is
capable of 14.2 teraflops (TFLOPS), compared to the 13.6
gigaflops (GFLOPS) available when using a single core of on
the CPU.

We measured both GPU memory and processory utilization
using the NVIDIA System Management Interface. As dis-
cussed in Section IV, Algorithm 2 was unable to saturate the
GPU, peaking at only 5 percent GPU utilization. Despite this,
memory utilization peaked at 40 percent, or 4.4GB. This shows
that there is still room for improvement, such as processing
multiple traces at once.

Figure 2 shows the CUDA generated plots, with one zoomed
in, covering the same region as the serial version shown
in Figure 1. The second plot shows the same data, beyond
the fundamental mode dispersion curve and extending to the
Nyquist frequency of our test case. It’s worth noting that these
plots are both generated with the same resolution, however
the larger one is impractical for use without using GPU
acceleration.

Figure 3 shows the runtime for both devices at different
problem sizes. The runtime scales linearly with the number of
grid points that need to be calculated, with some inconsisten-
cies on the GPU when calculating with very small problem
sizes.

VII. CONCLUSION AND FUTURE WORK

The findings in this project indicate that the spreading
the calculations for the slant stack transform across multi-
ple CUDA cores provides substantial speedup. The drastic
increase in the amount of data that the program can produce
in a certain amount of time makes the method viable for use
in machine learning. By making the slant stack transform a
parallel process through CUDA, we were able to achieve close
to real time computation.

Although in this work we apply the slant stack transform to
ReMi surveys, the transform is not specific to this technique.
As such, this can be beneficial to any work which uses slant
stacking, particularly if processing a large amount of files, or
attempting to generate plots with high resolution.

Future work for this project includes having the calculations
be performed through batch processing. This would signifi-
cantly boost the output of the program, since more data can
be generated over a shorter period of time. In addition to
the slant stack transform, other parts of the algorithm can
be parallelized. For example, the process of transforming and
filtering the raw data is currently a serial operation. While the
overhead from preprocessing everything in a serial fashion is
small, larger inputs may negatively affect the runtime of the
program. The Fourier transforms performed on the set of traces

4



Fig. 2. These p-τ plots were generated using our CUDA implementation.
The top plot shows the zoomed in figure, comparable to the one presented
in Fig. 1. The bottom plot shows the full figure, extending to the Nyquist
frequency of our test case.

Fig. 3. This is the runtime comparison plot between the Intel® Core™ i5-
4670K (CPU) and the GeForce RTX 2080 Ti (GPU).

can also be implemented into CUDA as well, limiting the data
that needs to be sent to the GPU to only the raw traces.

REFERENCES

[1] J. Louie, “Faster, better: Shear-wave velocity to 100 meters depth from
refraction microtremor arrays,” Bulletin of the Seismological Society of
America, vol. 91, 04 2001.

[2] Y. Wang, H. Zhou, X. Zhao, Q. Zhang, P. Zhao, X. Yu, and
Y. Chen, “CuQ-RTM: A CUDA-based code package for stable
and efficient q-compensated reverse time migration,” GEOPHYSICS,
vol. 84, no. 1, pp. F1–F15, Jan. 2019. [Online]. Available:
https://doi.org/10.1190/geo2017-0624.1

[3] B. Holt and D. Ernst, “Accelerating geophysics simulation using cuda,”
The Journal of Computational Science Education, vol. 2, pp. 21–27, 12
2011.

[4] M. Sarajaervi and H. Keers, “Ray-based modeling and imaging in
viscoelastic media using graphics processing units,” GEOPHYSICS,
vol. 84, no. 5, pp. S425–S436, Sep. 2019. [Online]. Available:
https://doi.org/10.1190/geo2018-0510.1

[5] D. Kirk, “NVIDIA CUDA software and GPU parallel computing archi-
tecture,” in ISMM, vol. 7, 2007, pp. 103–104.

[6] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, p. 40–53, Mar. 2008.
[Online]. Available: https://doi.org/10.1145/1365490.1365500

[7] A. Klöckner, N. Pinto, B. Catanzaro, Y. Lee, P. Ivanov, and A. Fasih,
“GPU scripting and code generation with PyCUDA,” in GPU Computing
Gems Jade Edition, W. mei W. Hwu, Ed. Elsevier Inc, 2012, pp. 373–
385.

[8] Intel Corp., “Intel® core™ i5-4670k processor: 6m cache,
up to 3.80 ghz,” visited on (11/2/2020). [Online]. Avail-
able: https://ark.intel.com/content/www/us/en/ark/products/75048/intel-
core-i5-4670k-processor-6m-cache-up-to-3-80-ghz.html

[9] NumPy, “NumPy: The fundamental package for scientific
computing with python,” visited on (11/2/2020). [Online]. Available:
https://numpy.org/

[10] The ObsPy Development Team, “ObsPy: A python framework
for seismology,” visited on (11/2/2020). [Online]. Available:
https://github.com/obspy/obspy/wiki

[11] M. Beyreuther, R. Barsch, L. Krischer, T. Megies, Y. Behr,
and J. Wassermann, “ObsPy: A Python Toolbox for Seismology,”
Seismological Research Letters, vol. 81, no. 3, pp. 530–533, 05 2010.
[Online]. Available: https://doi.org/10.1785/gssrl.81.3.530

[12] K. Luu, “EvoDCinv,” visited on (11/2/2020). [Online]. Available:
https://github.com/keurfonluu/EvoDCinv

5


