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Abstract—Recent research in biology has shifted the focus
toward single-cell data analysis. The new single-cell technologies
have allowed us to monitor and characterize cells in early
embryonic stage and in heterogeneous tumor tissue. However,
current single-cell RNA sequencing (scRNA-seq) technologies
still need to overcome significant challenges to ensure accurate
measurement of gene expression. One critical challenge is to
address the dropout event. Due to the low amount of starting
material, a large portion of expression values in scRNA-seq
data is missing and reported as zeros. These missing values
can greatly affect the accuracy of downstream analysis. Here
we introduce scIRN, a neural network-based approach, that can
reliably recover the missing values in single-cell data and thus can
effectively improve the performance of downstream analyses. To
impute the dropouts in single-cell data, we build a neural network
that consists of two sub-networks: imputation sub-network and
quality assessment sub-network. We compare scIRN with state-
of-the-art imputation methods using 10 scRNA-seq datasets. In
our extensive analysis, scIRN outperforms existing imputation
methods in improving the identification of cell sub-populations
and the quality of visualizing transcriptome landscape.

Index Terms—single cell, scRNA-seq, imputation, sequencing,
neural network, gene expression, residual network, dimension
reduction, clustering, visualization

I. INTRODUCTION

The ability to monitor and characterize biological samples
at single-cell resolution has opened up many novel research
fields, such as studying cells in early embryonic stage or
decomposition heterogeneous environment of cancer tumor [1,
2]. These promising applications have led to the generation
of a massive amount of single-cell data, where each dataset
consists of hundreds of thousands of cells [3-5].

Current single-cell RNA sequencing (scRNA-seq) technolo-
gies still need to overcome significant challenges to ensure
the accurate measurement of gene expression [6, 7]. One
notable challenge of scRNA-seq is the dropout events, which
happen when a highly expressed gene has no expression value
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in the sequencing data [8]. The sources of these errors can
be attributed to the limitation of sequencing technologies.
Due to the low amount of starting mRNA collected from
individual cells, failed amplification can happen and causes
the expression values to be inaccurately reported [9—11]. This
leads to an excessive amount of zeros in the expression values
of scRNA-seq data. On the other hand, the zero expres-
sion values can can also due to biological variability. Since
downstream analyses of scRNA-seq are performed on gene
expression data, it is essential to have a precise expression
measurement. Therefore, imputing scRNA-seq data to recover
the information loss caused by dropout would greatly improve
the quality of downstream analyses.

To address the dropout challenge, a number of imputation
methods have been developed to infer the missing data [12-
19]. Those methods can be classified into two categories:
(i) statistical-based methods, and (ii) diffusion smooth-based
methods. Methods in the first category include bayNorm [12],
SAVER [13], scImpute [14], scRecover [15], and RIA [17].
These methods typically model the data as a mixture of
distributions. For example, scImpute models the gene expres-
sion as a mixture of two different distributions: the Gaussian
distribution represents the actual gene expression while the
Gamma distribution accounts for the dropout events. Similarly,
SAVER [13] models read counts as a mixture of Poisson-
Gamma and then uses a Bayesian approach to estimate true
expression values of genes by borrowing information across
genes. Another method, scRecover [15], uses uses the zero-
inflated negative binomial model (ZINB) [20] to identify genes
with zero-inflated expression. After identifying genes with
true dropout, it uses the existing imputation methods such
as scImpute, SAVER or MAGIC to impute the data. A more
recent method, RIA [17], assumes that highly expressed genes
follow a normal distribution and apply hypothesis testing
method to identify true dropouts. Next, it imputes their values
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Fig. 1. The overall workflow of single-cell Imputation using Residual Network (scIRN). The first module (compression module) generates a compressed,
low-dimensional representation of original data. The input data is first filtered (using an one-layer, non-negative kernel autoencoder) to remove genes that
have insignificant contribution to the global structure of the data. After that, we project the data into a low-dimensional space to obtain a compressed data
matrix (latent data). This latent data is used as the training target for the imputation process. In the second module (imputation module), zero values in input
matrix are imputed using a neural network-based imputation model. These imputed values are added to original data without modifying the non-zeros values
to produce the imputed data matrix. The imputed data is compressed to a low-dimensional space (latent data). The parameters of the imputation module is
repeatedly optimized by minimizing the difference between the two latent matrices.

by using linear regression model. All of these methods assume
the gene expression data follows a specific distribution, which
does not always hold true in the reality. In addition, exiting
methods involve the estimation of many parameters for all
genes across the whole genome. This can potentially lead to
overfitting and high time complexity.

Methods in the second category include DrImpute [16],
MAGIC [18], and kNN-smoothing [19]. MAGIC imputes zero
expression values using a heat diffusion algorithm [21]. It
constructs the affinity matrix between cells using Gaussian
kernel and then constructs a Markov transition matrix by
normalizing the sc-RNA similarity matrix. Next, MAGIC
estimates the weights of other cells using the transition matrix.
Another method is DrIlmpute [16] that is based on the cluster
ensemble [22] and consensus clustering [23, 24]. It performs
clustering for a predefined number of times and imputes the
data by averaging expression values of similar cells. If the
number of clusters is not provided by users, DrImpute uses
some default values that might not be optimal for the data.
kNN-smoothing is designed to reduce noise by aggregating
information from similar cells (neighbors). The method as-
sumes that the zero counts of scRNA-seq data follows a
Poisson distribution. For cells that contain zero counts, kKNN-
smoothing performs a smoothing step using each cell’s k
nearest neighbors either through the application of diffusion
models or weighted sums respectively. The major drawback of
these methods is that they rely on many parameters to fine-tune
their model, which often leads to over-smoothing the data.

Here we propose a new approach, single-cell Imputation
using Residual Network (scIRN), that can reliably impute
missing values from single-cell data. Our method consists

of two steps. The first step is to generate a compressed and
accurate low-dimensional representation of the original data.
The second step is to estimate the missing values using a
neural network and information from the low-dimensional
representation. The approach is tested using 10 single-cell
datasets in comparison with four other methods. We demon-
strate that scIRN outperforms existing imputation methods
(MAGIC [18], scImpute [14], SAVER [13], and Drlmpute
[16]) in improving the identification of cell sub-populations
and the quality of biological landscape.

II. METHODS

The input of scIRN is an expression matrix, in which rows
represent cells and columns represent genes or transcripts. The
overall workflow of scIRN is described in Figure 1, which
consists of two modules: (i) generating a low-dimensional,
non-redundant representation of the original data, and (ii)
imputing the dropout values. The purpose of the first module
is to remove redundant signals and noise from the data. The
output of the first module is a low-dimensional, non-redundant
representation of the original data. This presentation is used
as the target for the second module. In the second module,
we impute the original data using a residual network. The
parameters of the residual network are repeatedly adjusted so
that the compressed representation of the imputed data is as
similar to the non-redundant representation as possible. The
details of each step are described in the following sections.

A. Generating low-dimensional, non-redundant representation

To generate a compressed, low-dimensional representation
of original data, we apply our previously developed method,
called scDHA [34]. scDHA consists of two core modules.



TABLE I
DESCRIPTION OF THE 10 SINGLE-CELL DATASETS USED TO ASSESS THE PERFORMANCE OF IMPUTATION METHODS.

Dataset Tissue Size  Class  Protocol Accession ID Reference

1. Deng Mouse Embryo 268 6  Smart-Seq2  GSE45719 Deng et al., 2014 [2]

2. Pollen Human Tissues 301 11  SMARTer SRP041736 Pollen et al., 2014 [25]

3. Usoskin Mouse Brain 622 4  STRT-Seq GSE59739 Usoskin et al., 2015 [26]
4. Kolodziejczyk  Mouse Embryo Stem Cells 704 3 SMARTer E-MTAB-2600  Kolodziejczyk et al., 2015 [27]
5. Xin Human Pancreas 1,600 8  SMARTer GSE81608 Xin et al., 2016 [28]

6. Muraro Human Pancreas 2,126 10  CEL-Seq2 GSES85241 Muraro et al., 2016 [29]
7. Klein Mouse Embryo Stem Cells 2,717 4 inDrop GSE65525 Klein et al., 2015 [30]

8. Romanov Mouse Brain 2,881 7  SMARTer GSE74672 Romanov et al., 2017 [31]
9. Zeisel Mouse Brain 3,005 9  STRT-Seq GSE60361 Zeisel et al., 2015 [32]
10. Baron Human Pancreas 8,569 14 inDrop GSE84133 Baron et al., 2016 [33]

The first module is a non-negative kernel autoencoder that
can filter out genes or components that have insignificant
contributions to data representation. The second module is a
Stacked Bayesian Self-learning Network that is built upon the
Variational Autoencoder [35] to project the filtered data onto
a much lower-dimensional space. The output of scDHA is a
low-dimensional matrix that preserves the global structure of
the original data. This representation is used as the training
target for the imputation module.

B. Imputing dropout data using residual network

To impute the dropouts in single-cell data, we build a
neural network that consists of two sub-networks. The first
network aims to infer the true value of zeros in the data.
The output is a matrix with the same size as the input, in
which the values at zero positions are modified. The non-
zero values remain the same as of the original data. The
second network aims to compress the imputed data to a lower
dimension. This compressed data has the same size as the
representation generated in the first step. By minimizing the
difference between the representation generated from imputed
data and the representation from the first step, the imputed
values are ensured to have high accuracy.

The formulation of the neural network can be written as:

Xr = f1(X)
Z' = fo(X1)

where X € R is the input of the model (X is simply the
original data), f; and fo represent the transformation by the
two sub-networks, f; imputes the zero values in the data, fo
compresses the imputed data onto a lower-dimensional space,
and Z/ € R™ (m << n) is the compressed data. For the f;
transformation, we use residual network [36] for a more stable
and accurate imputation grocess. The network is optimized
by minimizing ||Z’ — Z||;, where Z is the low-dimensional
representation generated by scDHA.

III. RESULTS

We compares our method with four state-of-the-art imputa-
tion methods: MAGIC [18], scImpute [14], SAVER [13], and
Drlmpute [16]. Each of these methods represents a distinct

strategy to single-cell data imputation: MAGIC is a Markov-
based technique, DrImpute integrates clustering result from
other software, while scImpute and SAVER use statistical
models. Table I shows the 10 datasets used in our data analysis.
The processed datasets were downloaded from Hemberg lab’s
website (https://hemberg-lab.github.io/scRNA.seq.datasets). In
each dataset, the cell sub-populations are known. We used this
information a posteriori to assess how the imputation methods
improve the identification of cell populations, and how they
enhance the visualization of transcriptome landscapes.

For each dataset, we used the above methods to impute the
data. The quality of the imputed data is assessed using two
downstream analyses, clustering and visualization. For cluster-
ing, we partitioned the data using k-means and compared the
obtained partitioning against the true cell types using Adjusted
Rand index (ARI) [37]. For visualization, we used UMAP
[38] to generate the 2D representation and then calculated the
silhouette index (SI) [39] of the 2D representation. ST measures
the cohesion among cells of the same type, as well as the
separation between different cell types.

A. scIRN improves the identification of sub-populations

Given a dataset, we used the five methods to impute the
data. After imputation, we have 6 matrices: the raw data
and five imputed matrices (from MAGIC, scImpute, SAVER,
DrImpute, and scIRN). To assess how separable the cell types
in each matrix is, we reduced the number of dimensions using
PCA and then clustered the data using k-means. The accuracy
of cluster assignments is measured by ARI.

Figure 2 shows the ARI values for the raw and imputed data.
Existing methods improve cluster analysis in some datasets
but decreases the ARI values in some others. For example,
MAGIC has higher ARIs than the raw data for the Deng,
Usoskin, Muraro, Klein, Romanov, and Baron but has lower
ARIs in the remaining 4 datasets. scIRN is the only method
able to improve the clustering performance compared to raw
data in every dataset. Moreover, scIRN has the highest ARIs in
all but Usoskin datasets. The average ARI of scIRN-imputed
data is 0.77, which is higher than those obtained from raw data
and data imputed by MAGIC, scImpute, SAVER, DrImpute
(0.44, 0.41, 0.46, 0.43, 0.58, respectively).
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Fig. 2. Adjusted Rand index (ARI) obtained from clustering on raw data and data imputed by MAGIC, SAVER, scImpute, DrImpute, and scIRN. The x-axis
shows the names of the datasets while the y-axis shows ARI value of each method. scIRN outperforms other methods in all datasets except Usoskin.
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Fig. 3. Normalized mutual information (NMI) obtained from clustering on raw data and data imputed by MAGIC, SAVER, scImpute, DrImpute, and scIRN.
The x-axis shows the names of the datasets while the y-axis shows NMI value of each method. scIRN outperforms other methods in all datasets.
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Fig. 4. Jaccard index (JI) obtained from clustering on raw data and data imputed by MAGIC, SAVER, scImpute, DrImpute, and scIRN. The x-axis shows
the names of the datasets while the y-axis shows JI value of each method. scIRN outperforms other methods in all datasets except Usoskin.
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Fig. 6. Transcriptome landscape of the Usoskin dataset. The scatter plot shows the first two principal components calculated by UMAP. Different colors
represent different cell types. The 2D representation generated by scIRN has a clear structure, where cells from different groups are separated from one other.

For a more comprehensive analysis, we also report the
assessment using normalized mutual information (NMI) and
Jaccard index (JI) in Figures 3 and 4, respectively. Regardless
of the assessment metrics, scIRN outperforms other methods
by having the highest NMI (10/10 datasets) and JI (9/10
datasets) values. These results demonstrate that cluster analysis
using scIRN-imputed data leads to a better accuracy than using
the raw data or data imputed by other imputation methods.

B. scIRN improves transcriptome landscape visualization

In this section, we demonstrate that scIRN improves the
visualization of the single-cell data. We used UMAP [38]
to generate the transcriptome landscapes from raw and data
imputed by MAGIC, scImpute, SAVER, Drlmpute, and scIRN.
We performed data visualization and calculated the silhouette
index for each of the 10 datasets. Figure 5 shows the SI
values obtained for the raw data and data imputed by the five

imputation methods. The figure shows that scIRN can improve
the quality of data visualization in all datasets. scIRN also
has the highest SI in each of these datasets. These results
demonstrate that data imputation using scIRN would lead
to a much better visualization of transcriptome landscapes
compared to using raw data or data imputed by other methods.

Figure 6 shows the transcriptome landscapes of the Usoskin
dataset. Using scIRN imputed data, UMAP was able to
generate a clear representation, where cells from different
groups are well-separated. When using data imputed by other
methods, cells are usually mixed together. scIRN outperformed
other imputation methods by having the highest SI value (0.67
compared to 0.28, -0.09, 0.14, 0.26, 0.5 of raw data, MAGIC,
scImpute, SAVER, and DrImpute, respectively).

Figure 7 shows the transcriptome landscapes of the Klein
dataset. The 2D representation of scIRN-imputed data is the
only one that has four separable groups, corresponding to the



Klein Cell Types « dO d2

Raw (SI = 0.35)

MAGIC (SI = 0.32)

' W

d4

d7

sclmpute (SI =0.5)
Q

A~ .

N

SAVER (S| = 0.58)

o ®
=

—

Drimpute (SI = 0.61)

scIRN (S = 0.89)

@

i

-

Fig. 7. Transcriptomics landscape of the Klein dataset. The scatter plot shows the first two principal components calculated by UMAP for raw and imputed
data. The 2D representation generated from scIRN has a clear structure, where cells from different groups are separate from each other.

four real cell types. The landscapes generated using raw and
data imputed by other methods have different cell types mixed
together. The data imputed by scIRN has the highest SI value
(0.89 compared to 0.61 of the second best).

IV. CONCLUSION

In this article, we introduce a new method, scIRN, to recover
the missing data caused by dropout events in scRNA-seq.
We assess the performance of our approach using 10 single-
cell datasets in a comparison with four current state-of-the-
art imputation methods. Our analysis shows that scIRN out-
performs existing approaches in improving the identification
of cell sub-populations. scIRN also improves the quality of
transcriptome landscapes generated by UMAP. A potential
improvement of this research is to investigate the scalability
of scIRN by analyzing datasets with higher number of cells.
Another direction is to investigate the imputation method in
other research applications, including pseudo-time trajectory
inference and supervised learning. For future work, we will
combine scIRN with current methods to improve the quality of
downstream data analysis in the context of gene networks [40—
47] and multi-omics integration [48-53].
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