CARS: A Containerized
Amazon Recommender System

Adam Cassell, Andrew Munoz, Brianna Blain-Castelli, Nikkolas Irwin
Feng Yan, Sergiu M. Dascalu, Frederick C Harris, Jr.

Computer Science and Engineering
University of Nevada, Reno
Reno, Nevada 89557, USA
acassell@nevada.unr.edu amunoz24 @nevada.unr.edu bblaincastelli@unr.edu nikkolasjirwin @nevada.unr.edu
fyan@unr.edu dascalus@cse.unr.edu fred.harris@cse.unr.edu

Abstract—With the big data boom, recommender systems
that make intelligent recommendations for users have been
playing an important role in today’s industry. However, existing
recommender systems often overlook scalability, flexibility, and
portability. They also commonly lack in-situ visualizations.
To solve these problems, we present CARS: A Containerized
Amazon Recommender System. CARS processes large Amazon
data sets for analysis and makes product recommendations.
However, its utility is not restricted to only prominent
organizations like Amazon. CARS achieves scalability by
taking advantage of industry-grade recommendation tools
irrespective of available hardware resources. CARS runs
in a completely isolated environment to promote flexibility
and remote collaboration. The demonstrated implementation
generates shopping recommendations from user ratings within
product review data sets. CARS processes this review data
using Apache Spark, a unified analytics engine for big data.
The system complements recommendations with data-driven
insights and interactive visualizations. In addition to these
features, CARS contains a robust set of command line options
to customize the results shown to the end-user, perform logging
of processed data, and provide performance monitoring through
Spark’s built-in web-interface. Highly portable and automated
analysis of purchase data helps organizations understand the
habits of their customers. CARS demonstrates the feasibility of
such a system for a wide variety of users.

Keywords: Big Data, Scalable Systems, Containerization,
Recommender System, Data Analysis, Data Visualization,
Collaborative Filtering, Alternating Least Squares, Apache
Spark, Performance Analysis.

I. INTRODUCTION

As companies continue to accumulate big data, it is im-
portant to use the collected data to enhance customer experi-
ences and help make data-driven decisions. Recommendation
systems are commonly found on e-commerce and entertain-
ment websites. These systems collect individual behavioral
data including purchases, ratings, and views. This data, once
gathered, is then processed and used to provide future recom-
mendations to users with similar interests.

For large organizations like Amazon and Netflix, the col-
lection of user data, processing of user data, and use of robust
recommender systems can be easily accomplished due to
large development teams and support infrastructure. However,

smaller organizations do not have such resources even though
they also want to benefit from these systems. Additionally, the
dynamic nature of web traffic makes it difficult for organiza-
tions to manage data at scale without building applications that
are designed for cloud environments.

CARS uses a containerized environment to provide an ac-
cessible, light-weight, portable and scalable recommendation
system. We prototype CARS on top of Conda, Docker, Python,
and Spark. Our extensive evaluation of CARS demonstrates
promising results. CARS allows review data to be processed in
a wide range of environments using minimal hardware that can
be scaled up to meet the needs of the end-user. The two fixed
constraints for CARS are the use of Docker and the physical
resources allocated to the container. Item recommendation
results and insightful aggregated statistics are provided to users
alongside interactive visualizations which provide fine-grained
analysis.

The rest of this paper is organized as follows: Section
discusses the project background and provides examples and
information on related work. Section |III] describes the imple-
mentation of CARS. Section evaluates the individual vi-
sualizations and analysis. Section [V]lists concluding thoughts
and future work.

II. BACKGROUND AND RELATED WORK

According to Spark the Definitive Guide, recommender
systems are “one of the best use cases for big data” [1]]. Such
a system can analyze users’ explicit preferences or implicit
preferences to make predictions on a user’s future behavior.
There are many use cases for recommender systems across
a variety of domains. Entertainment platforms often use such
systems to help users discover new content that they may like.
For example, Netflix leverages Apache Spark to implement
the movie recommendation system that many consumers are
familiar with. Amazon, likewise, uses a similar implementa-
tion on its item catalog to drive shopping recommendations
based on user preferences and interests. A previous user study
shows the significance of these recommender systems on
user shopping trends at Amazon when “’[a]ll participants used
one or more recommender feature[s]” [2]. User-data-driven

recommendations have become core components of many
large-scale products. It follows that making these processes
accessible to a wider variety of systems will bring more
effective experiences to even more domains.

One way to implement a recommender system is by using
a content-based approach, which uses detailed information
about specific items or user attributes to drive predictions. This
includes features such as textual content, genre, item category,
and other relevant metadata [3]. Conversely, collaborative
filtering relies on the historical preferences of users (i.e. the
actions they take). This approach is especially useful for
“complex and hard to represent concepts, such as taste and
quality” [4].

There are two types of user preferences: explicit rating and
implicit rating. The former describes direct ratings given by
users, such as a five-star rating or numeric scale. The latter
is characterized by indirect indications, such as page clicks,
image views, purchase records, and other passively traceable
statistics. CARS uses explicit rating for user preferences.

One of the most widely-used algorithms for collaborative
filtering is Alternating Least Squares (ALS), which supports
explicit or implicit user feedback. Spark natively supports ALS
and includes multiple variants of scalable ALS implemen-
tations in its MLIib library. MLIlib was used for the CARS
recommender system due to its convenience and performance
benefits. ALS finds a k-dimensional feature vector for every
user and item such that the dot product of each item’s feature
vector with each user’s feature vector estimates the user’s
rating for that item [1]]. This resulting feature vector then drives
the recommendations.

A set of Amazon’s review data is made freely available
by researchers at UCSD [5]. This data set is divided into
separate subsets of data which include the five-core data sets,
raw review data, user review data, and ratings only data.
As stated previously, the CARS project utilized the five-
core data sets for its implementation. This Amazon data set
has also been the subject of multiple related works. In the
paper Estimating Reactions And Recommending Products With
Generative Models Of Reviews, Ni et al. use the Amazon data
set to generate predicted review text using natural language
inference techniques [6]].

Another paper, Justifying Recommendations using
Distantly-Labeled Reviews and Fined-grained Aspects
by Ni et al., uses Amazon clothing data to extract meaningful
justifications that are pertinent to customers’ decision-making
processes [7]. An additional work, titled Large Scale Parallel
Collaborative Filtering for the Netflix Prize by Zhou et al.
[8]], uses Netflix data to demonstrate an ALS implementation
with weighted regularization for ratings prediction. It is also
worth noting that both papers, [6] and [7], were written by
the researchers who made the Amazon review data set freely
available.

III. APPROACH

The implementation of CARS starts with Conda. First,
dependencies are installed and then the application is isolated

into a Docker container equipped with Jupyter Notebook.
Then, the recommender system and interactive visualizations
are added. After completing the features above, a command
line parser is integrated to provide the end-user with additional
options when executing CARS with a given data set.

CARS uses Conda, “an open source package management
system and environment management system that runs on
Windows, macOS and Linux” [9]], to facilitate cross-platform
package management, dependency management, and isolation
through a virtual environment. By using Conda, CARS auto-
mates the process of installing and running the application in
a consistent and reproducible manner. Through Conda, CARS
users can also extend the existing application by installing new
packages without dependency conflicts.

Conda, and the application code for CARS are contained
within a Docker container. This container uses a custom image
that builds upon Project Jupyter’s minimal-notebook image.
Using this approach, CARS was guaranteed to have stable
Jupyter Notebook support along with custom configurations.
One of the configurations required by CARS was the ability
to store results regardless of the container’s lifecycle/state.

Relying on the container’s persistence layer would not be
sufficient for working with the Amazon review data sets since
any work performed while running CARS would be lost if
the CARS container’s lifecycle was interrupted. The solution
to this issue was to add a mount point to the custom Docker
image file and then configure the volume to store our files
as well as the data sets used for running our recommender
system.

While adding a Docker volume may not be a necessity for
end-users who have experience with Docker, CARS utilizes
this mechanism to bundle the data sets directly into CARS
so that the end-user can immediately begin working with the
data sets and further customizing the program for their specific
needs. To ensure that the Docker image size is not too large,
only a subset of the five-core data sets is bundled by default,
but more can be added to the Docker volume as needed.

The data visualizations were designed to serve as key
insight into the Amazon review data and user preferences. The
visualizations that were created include:

o Items Over Time

e Summary Statistics

o Helpful Reviews

o Prediction Performance

These data visualizations provide insight into some of the
basic statistics of the review data, trends over time, and
several interesting relationships. The prediction performance
plots explore how well the ALS algorithm handles the data and
produces its recommendations. Each of the data visualizations
mentioned will be explained in further detail in Section

IV. EVALUATION

We evaluate CARS in this section, including review data
analysis and recommendation performance. Corresponding
visualizations serve to highlight different aspects of the data,
such as relationships or changes over a period of time. All

140

120

100

80

60

Review Count

40

20

Jun 2012 Jul 2012 Aug 2012

Popularity Over Time for the Most Popular Item

Sep 2012

Review Date

A UAN

Oct 2012 Nov 2012 Dec 2012

Fig. 1. Time series plot showing review count over time for the most popular item.

visualizations depicted and shown throughout this section
utilize the five-core Video Games data set as the primary basis.
The five-core data sets is simply a collection of products and
reviewers that each have a minimum of at least five reviews.
This helped with processing and running the data sets locally.

A. Items Over Time

It is possible to infer an item’s popularity over time using
review data. For any data set provided, CARS selects the
most popular item of that category as a case study for such
analysis. The result is a time-series line plot, which can be
seen in Figure [T} displaying the number of daily reviews for
that particular item.

It is worthwhile to observe how an item’s popularity changes
over time as potential indicators of product success. In this
example, this particular video game received a large amount of
reviews (over 100) on the first day of release. After that, how-
ever, popularity rapidly dropped after those initial few days
and weeks (down to more modest single-digit daily numbers).
This visual suggests that the item had high public interest
before and at the time of release. This pattern intuitively makes
sense for something like a video game or movie. There is built-
up demand followed by the item quickly becoming outdated
compared to other new releases. Contrast this with an item of
another category, such as medical. Popularity for a medical
item, such as a box of bandages, is likely to have much more
steady popularity as it is a common good. Marketers could
use these insights to best plan their advertising strategies.
Advertising campaigns could either take advantage of the

existing popularity patterns, or attempt to change them to
better reach certain goals.

B. Summary Statistics

It is important to evaluate the distribution of the data set
when considering any downstream analysis. Table [I] shows
the Amazon data set schema and a subset of the video
games data. Summary statistics are provided in the form of
a summary table as well as a ratings distribution histogram.
The summary table, as seen in Table |m communicates the
mean, standard deviation, count, minimum/maximum values,
and quartile ranges of all rating values in the data set. The
ratings distribution displayed in Figure 2] shows how many
occurrences of each rating (discrete values between one and
five) exist in the data set.

The histogram is useful for understanding how the ratings
are distributed for each data set. In this case, it is evident that
video game ratings overwhelmingly trend positive, with the
highest occurring ratings being five stars, followed by four
star ratings.

C. Helpful Review Data

A valuable metric for analyzing user reviews is review “up-
votes’. Users can express how ’helpful’ they find a particular
review by voting on it. This in turn helps shoppers decide
which reviews to give more credence to, thus revealing the
most influential reviews. CARS visualizes this metric for the
most-reviewed item of the data set, as well as for the data

TABLE I
STRUCTURE AND EXAMPLE DATA OF THE VIDEO GAME REVIEW DATA SET.

(psix— Ratg Review Text | Rovien Time | Raiower > | Riower ame | ummary | vere | vt

0700026657 5 This game is a bit hard to get the hang 10 17, 2015

but when you do it's great.

0700026657 4 07 27, 2015

I played it a while but it was alright. The
steam was a bit of trouble. The more th
move these game to steam the more of
hard time I have activating and playing
game. But in spite of that it was fun, I li
it. Now I am looking forward to anno 22
really want to play my way to the moon

0700026657 3
0700026657 2

02 23, 2015
02 20, 2015

ok game.

found the game a bit too complicated, n
what I expected after having played 16(
1503, and 1701

0700026657 5 great game, I love it and have played it 12 25, 2014

since its arrived

TABLE II
SUMMARY STATISTICS OF THE VIDEO GAME REVIEW DATA SET.

count 497577

mean 4.220456331381876
std 1.1854244331373522
min 1

25% 4

50% 5

75% 5

max D)

Ratings Distribution

300k

250k

200k

150k

Review Count

100k

50k

1 2 3 4 5

Ratings

Fig. 2. Histogram visualizing the ratings distribution of the video game review
data set.

A1HP7NVNPFMA4N Ambrosia075 but when you do it's true null
great.

A1JGAP0185Y]I6 travis But in spite of that it false null
was fun, I liked it

ALYJWEXHQBWK2B Vincent G. Mezera Three Stars true null

A2204E1TH211HT Grandma KR Two Stars true null

A2RF5B5H74]LPE jon love this game true null

set as a whole. This evaluation section focuses on the former
visualization for the most popular item.

To explore the ratings and votes associated with each of
the item’s reviews, a scatter plot is provided in Figure [3
The purpose of this plot is mostly investigative. The x-axis
represents every single reviewer for the item, and the dual
y-axes represent ratings and votes, respectively. The intended
usage is for the to pan and zoom around this plot to analyze
items of interest. This plot, like many others generated by
CARS, includes Plotly interactivity for these purposes.
This particular visualization implements WebGL to more
efficiently render hundreds of thousands of interactive points
if necessitated by the data set.

Using this visual, it is evident that most users up-voted the
reviews that gave one-star ratings. This implies a generally
negative shopper consensus. Very few shoppers up-voted the
five-star reviews, which is notable. There is a stark contrast
between this item’s vote distribution and the general ratings
distribution for the video game category as a whole (See
Section [IV-B). A logical conclusion from this discrepancy
follows: This item seems to be far more poorly received than
most of its competitors. Yet, it was still far more popular than
the other games sold on Amazon. It is up to the seller to
determine whether this constitutes a success.

D. Prediction Performance

The previous visualizations pertained to general analysis of
the data set. The following outputs instead demonstrate the
performance of the ALS algorithm used for the recommender
system in CARS. Before ALS can generate it’s list of item
recommendations per user, rating predictions must first be
computed. These are the rating values that the algorithm
predicts each user would assign to each item. These predicted
ratings form the basis of the eventual recommendation group-
ings presented as final output. Thus, the accuracy of these
predictions is critical and can be visualized to assess ALS
performance.

Ratings and Votes Concentrations for the Most Popular Item

5 W @ 0 N WWOW NN T SWES = ? WSS ® Ratings
600 ® \otes
4 SO0 20NN O O AROES B0 0 NS SRS @ 08 40 R 0 EN . . N e a8 - L] 500
» s 400
g]
'_f::, 3 LA L L J 00 RO ® 0 N EES B & VW o L J S0 S NIEND DS L L B] LN 300 46
) >
=4
e
200
2 L] .. WO U © WES 00 W WO CEIID CEN NS We o ® somwasm e e e -
e 100
. .
. e . "y e ® ° ‘
| eees s conmdatrunteunsatiinaieshethndincenditeainitet

PP BP>ER>BERDDDDDD >
AR I N B R L N S R R T E R LEE
NE§m§v<ODO®XDm<1O§nDNr§HXIE‘—hggujc<x1:\|meU_|
l_Cw<m\lo-h—<\aommm3'UNu1'nNZC'ﬂou1\loI-thm s=sNXgreo&®o
O TIUuZNYWARO X RTINSV OZEXO0O0Ad S XTradCcnzd835390w
AN XS QRTITMNLAZIOARAIMOSTZNNTUOULZCNScwagdXyorxFow2lluxg
£225320003220555522R0dR Q0 NISERQLZ8 2520
quC—lv mem_<—|oz—|wZX§CHmmE\lmmnc‘_on '<O:DOIICJ>H
RO IO XK E SRS e mO L A0 R3S EmRANSCoaar PO 0TSRX0=02
ERE <20l 0Qa9x2850u0 3530200282t aeaIer35EQs
EzuIzcNaILIdm SO w Adogsez =gy¥<cgdgaed
cC=s0 ~Nm cCSxSe c Xww = WomX "o =
PRENSERRURBICEGAN SE3558LRR0T TETERN 28y Lz

Reviewer IDs

Fig. 3. Ratings and votes concentration for the most popular item in the video game review data set.

TABLE III

RECOMMENDATION RESULTS COMPUTED BY ALS ALGORITHM.

Reviewer ID

ASIN, Rating

extensibility, dependability, portability, and scalability for sys-
tems deployed on varying hardware resources. In addition to
these features, CARS supports a variety of visualizations on
individual product and aggregated data.

148 14149,6.55188512802124 As our future work, CARS will be improved by incorpo-
463 5803,6.189663887023926 rating Ansible into the design so that our containerized appli-
471 17321,6.773868560791016 cation can be further automated to simplify the executions. In
496 11845,8.053912162780762 addition to automated Docker, CARS will continue to gain
833 16655,7.285752773284912 new data visualization features. The visualization wish list

To best visualize prediction accuracy, Figure [4] shows an
error distribution plot. Prediction error is calculated by sub-
tracting the true rating from the predicted rating for each
sample. The result is a prediction error sequence that can be
organized using a histogram. The resulting distribution is close
to Gaussian, which indicates the algorithm is satisfyingly ac-
curate. In Table [[TI} the final recommendation results outputted
by CARS are listed.

V. CONCLUSION AND FUTURE WORK

Recommender systems enhance user experiences by provid-
ing suggestions tailored towards users’ interests. Implementing
recommender systems and collecting enough user data to
generate accurate recommendations can be challenging. CARS
is designed to address these challenges and demonstrates the
feasibility of such a system for organizations of any size. Built
on top of Conda, Docker, Python, and Spark, CARS enables

includes sales rank, item popularity based on categories, and
comparative analysis based on different parameters.

ACKNOWLEDGEMENTS

This material is based in part upon work supported by
the National Science Foundation under grant numbers ITA-
1301726. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] B. Chambers and M. Zaharia, Spark: The Definitive Guide : Big Data
Processing Made Simple, pp. 1-11, 468-475. O’Reilly Media, 2018.

[2] J. Leino and K.-J. Riihd, “Case amazon: Ratings and reviews as part
of recommendations,” in Proceedings of the 2007 ACM Conference on
Recommender Systems, RecSys *07, (New York, NY, USA), p. 137-140,
Association for Computing Machinery, 2007.

[3] Shuyu Luo, “Introduction to Recommender System.” https:
//towardsdatascience.com/intro-to-recommender- system-collaborative
-filtering-64a238194a26, December 2018. Last Accessed (2020-03-24).

https://towardsdatascience.com/intro-to-recommender-system-collaborative
https://towardsdatascience.com/intro-to-recommender-system-collaborative
-filtering-64a238194a26

ALS Prediction Error Distribution
100
80
4
c
3
S 60
C
o
=
S
©
£ a0
20 I I I
= -3 -2 -1 0 1 2 3
Error

Fig. 4. Error distribution plot demonstrating ALS prediction performance in CARS.

[4] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative
filtering recommendations,” in Proceedings of the 2000 ACM Conference
on Computer Supported Cooperative Work, CSCW °00, (New York, NY,
USA), p. 241-250, Association for Computing Machinery, 2000.

[5] Jianmo Ni, “Amazon Review Data.” https://nijianmo.github.io/amazon/
index.html, 2018. Accessed on 2020-03-24.

[6] J. Ni, Z. C. Lipton, S. Vikram, and J. McAuley, “Estimating reactions
and recommending products with generative models of reviews,” in
Proceedings of the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), (Taipei, Taiwan),
pp. 783-791, Asian Federation of Natural Language Processing, Nov.
2017.

[71 J. Ni, J. Li, and J. McAuley, “Justifying recommendations using
distantly-labeled reviews and fine-grained aspects,” in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-1IJCNLP), (Hong Kong, China), pp. 188—
197, Association for Computational Linguistics, Nov. 2019.

[8] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in Algorithmic Aspects in
Information and Management (R. Fleischer and J. Xu, eds.), (Berlin,
Heidelberg), pp. 337-348, Springer Berlin Heidelberg, 2008.

[91 Anaconda, Inc., “Conda.” https://docs.conda.io/en/latest/, 2017. Ac-
cessed on 2020-05-14.

[10] Plotly, “Take data science and Al out of the lab. Free the data. Share
the knowledge..” https://plotly.com, 2020. Last Accessed (2020-03-24).

https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html
https://docs.conda.io/en/latest/
https://plotly.com

	Introduction
	Background And Related Work
	Approach
	Evaluation
	Items Over Time
	Summary Statistics
	Helpful Review Data
	Prediction Performance

	Conclusion and Future Work
	References
	References

