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Abstract—Time series data are significant to scientific, social,
economic, and other areas, such as the prediction of weather
changes being instrumental for administrative decision-making.
In recent years, deep learning methods have achieved great
success in time series prediction when compared with classic
machine learning methods. However, because time series data
can dynamically change and the correlations between the target
variable and other features can also vary, making predictions
using time series data is often challenging. To further improve
existing machine learning and deep learning models for time
series prediction, we propose a framework to integrate machine
learning models with anomaly detection algorithms. The extreme
events are highlighted so the machine learning models can process
them appropriately. We conducted extensive experiments on real-
world datasets ranging in size from a few hundred to more than
ten thousand records. The experimental results demonstrate that
our proposed framework significantly improves machine learning
model accuracy and mitigates the accuracy descending rate when
the predicting horizon (i.e., the number of timestamps ahead)
increases.

Index Terms—Neural Networks, Recurrent Neural Network,
Time Series Prediction, Time Series Analysis

I. INTRODUCTION

Regression analysis of time series data is important as the
research results are widely used in different domains to solve
real-world problems. For example, Fischer et al. [1] applied
long short-term memory networks (LSTM) for financial time
series prediction and found out that LSTM is inherently
suitable for this domain. Kratzert et al. [2] utilized LSTM in
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streamflow forecasting and conclude that physical constraints
can be beneficial to the LSTM model. Wu et al. [3] leveraged
genetic algorithm and linear regression models to accurately
predict nitrate, which is very important for animals and plants.
However, it is challenging to predict time-series data with
machine learning models if the input data includes extreme
events [4], [5]. Extreme events can be defined as unusual
events, such as hurricanes, equipment failures, and stock
market crashes. They are at the tail part of data distribution
and less likely to happen. In this paper, we propose a data
regression framework to help a machine learning model learn
the differences between normal events and extreme events to
achieve better performance.

Extreme events, such as hurricanes and earthquakes, are
unusual but can be very important. Because the data distri-
butions of normal events and extreme events can be different
and change over time, the prediction of time series data (such
as of stream flows) with extreme events can be challenging [6].
A single machine learning model may not be able to accurately
predict differently distributed data. Because of this, the “slid-
ing window” concept has been proposed and widely used to
load the data inside of the window and make predictions [7].
However, the “sliding window” may not be enough based on
our experimental results (see Baseline vs. Percentile vs. Mask
in Table I, Table II, and Table III), especially when a model
is used to forecast values for long periods of time ahead.
Our proposed framework consists of two regression pipelines
(extreme event split and mask matrix) to help machine learning
models learn which are extreme events and which are normal



events within a sliding window. For the extreme event split
pipeline, we propose to split time series data within a sliding
window into extreme and normal events and implement two
machine learning models to predict them, respectively. For
the mask matrix pipeline, a mask matrix is created to mark
extreme events and their weights. As shown later in the paper,
the experimental results show that the proposed framework
can enhance machine learning model prediction performance
for time series datasets.

The contributions of this paper are:
• A framework is proposed to combine machine learning

models with extreme event detection algorithms using
extreme event split and mask matrix regression pipelines.
The accuracy is improved based on our experimental
results and the accuracy descending rate is smaller com-
pared to machine learning models which are not using
the proposed framework.

• We compare extreme event split and mask matrix
pipelines and discuss the reasons that these two pipelines
can enhance machine learning model predictions.

• The modular design of the proposed framework allows
users to flexibly choose the appropriate sub-module con-
tent according to specific problems. For instance, the
machine learning models and extreme event detection
algorithms can be selected according to the characteristics
of the data.

The rest of this paper is organized as follows: Section II
describes the problem that we are trying to solve. Section III
presents well-known and related work and discusses what can
possibly be improved. Section IV introduces the proposed
framework and illustrates how the two pipelines can be ap-
plied. Section V presents the experimental results, highlights
the advantages of our proposed framework, and discusses
which pipeline should be selected under different scenarios.
Conclusions are presented in Section VI.

II. PROBLEM DESCRIPTION

Let X ∈ RN denote a vector that includes N records of a
single variable and xi denote the single variable collected at
timestamp i. Meanwhile, xi−1, xi−2, · · · , xi−l−1, xi−l denote
variables collected at 1, 2, · · · , l − 1, l timestamps before
timestamp i, considered as a total of l lags and used as
extra features to predict x at timestamp i+ t denoted as
x̂i+t. Univariate time series data prediction is defined with
the following equation:

x̂i+t = f(xi, xi−1, xi−2, · · · , xi−l−1, xi−l) (1)

where f is a regression model, xi, xi−1, xi−2, · · · , xi−l−1,
xi−l are the features used for prediction, and x̂i+t is the
predicted value. In the above, t is the horizon, i.e., the number
of steps ahead of i.

The multivariate time series data prediction problem is
defined as predicting the value of the target variable at a
certain timestamp or horizon forward from historical mul-
tivariate data. Let X ∈ RM×N denote multivariate time

series data of dimension M × N , where the columns of
X are sets of variables collected at certain timestamps and
the rows of X are sets of variables collected at the same
timestamp. For instance, xij denotes the value of variable
j collected at timestamp i, Xi is a vector of N variables
collected at timestamp i and can be defined as the vector
of {xi1, xi2, xi3, · · · , xiN−1, xiN}. yi denotes the predicted
value of the target variable at timestamp i. Given sequences
of historical multivariate data and target variable of length l,
{Xi, Xi−1, · · · , Xi−l} and {yi, yi−1, ..., yi−l}, the framework
is aimed to forecast the value of target variable y at timestamp
i+ t, as the following equation shows:

ŷi+t = f((Xi, yi), (Xi−1, yi−1), ..., (Xi−l, yi−l)) (2)

In this paper, our proposed framework aims to enhance the
model f with the extreme event split pipeline and the mask
matrix pipeline. These are described in detail in Section IV.

III. RELATED WORK

In recent years, deep learning has achieved great success in
the fields of computer vision and natural language processing.
Inspired by this, deep learning was introduced to the time
series prediction problem and showed excellent performance
against conventional methods. Karim et al. [8] modified
the Long Short Term Memory Fully Convolutional Network
by augmenting the convolutional block with a squeeze-and-
excitation block. Qiu et al. [9] utilized the ensemble method
of deep learning belief networks (DBN) for time series
forecasting and aggregated the outputs from various DBNs
with a support vector regression model. Wu et al. [10]
proposed a graph neural network based multivariate time
series forecasting model, which treats the variables as nodes
in the graph trained as a whole to capture the spatial and
temporal dependencies within the multivariate time series.
Siami et al. [11] introduced an LSTM model that outperformed
various AutoRegressive Integrated Moving Average (ARIMA)
variations on predicting time series data. It showed the great
potential of artificial recurrent neural networks in the task
of time series data prediction. Sagheer et al. [12] suggested
that LSTM units and recent deep Recurrent Neural Networks
(RNN) networks fall short when predicting highly nonlinear
time series data during large horizons. Hence, they proposed
a pre-trained LSTM based stacked autoencoder and conducted
unsupervised learning to replace the traditional random weight
initialization operation for RNN. Yamak et al. [13] investigated
the performance of LSTM and Gated Recurrent Unit (GRU)
and their experiment showed that the ARIMA model can
outperform them occasionally on some datasets. The authors
concluded that both LSTM and GRU have their vulnerabil-
ities and limitations and need fine-tune hyperparameters in
implementation to fully exploit their performance. Saini [14]
demonstrated the effectiveness of GRU and LSTM compared
to vanilla RNN and Support Vector Regression (SVR) in
predicting short-term agriculture loads. It is worth mentioning
that although GRU and LSTM had similar performances,
the GRU model converged on the results quicker due to its



simpler neural network architecture. Generally, deep learning
methods can obtain the underlying patterns of the time series
through data, without having to develop a model and manually
designing features for specific problems, making them good
for generalization.

Besides deep learning, traditional machine learning models,
such as support vector machine [15], linear regression [16],
and statistical methods, such as autoregressive models [17], are
also commonly used for time series data prediction problems.
To our best knowledge, there are very few publications about
how to leverage extreme event information to enhance time-
series data prediction.

However, what researchers often overlook is that extreme
events can mislead a machine learning model because of
different distributions. Therefore, extreme events should be
either analyzed and processed or removed [18]. In our pro-
posed framework, either pipeline requires that extreme events
be detected and labeled. Many research papers have been
published on anomaly event detection and can be applied in
our proposed framework. For instance, Siffer et al. [19] utilized
the Extreme Value Theory and proposed the SPOT method to
detect anomalies in univariate time series. In this paper, SPOT
and a simple percentile based split method was investigated.
The SPOT method doesn’t assume the distribution of the data
and can automatically set thresholds in the sliding window.
Meanwhile, the percentile method is a simple way to set the
threshold directly based on the predefined percentile.

IV. PROPOSED FRAMEWORK

In this section, we describe the framework for the multivari-
ate time series prediction. As shown in Fig. 1, our proposed
framework consists primarily of two data regression pipelines:
extreme event split (upper path) and mask matrix (lower path).

A. Lags and Data Transformation

Using lags and transforming data are used in this paper
to further improve the time-series machine learning model
prediction accuracy.

1) Lags: For time series data, variables can have a high cor-
relation with their historical record. Based on this assumption,
we can leverage lagged selected variables at earlier timestamps
as extra features, i.e., using X and the variables at earlier
timestamps as model inputs. For example the temperature at
timestamp t is always highly correlated with temperature at
timestamp t − 1, t − 2, and t − 3. We can use Yt−1, Yt−2,
Yt−3 as extra features for temperature predictions.

2) Data Transformation: Different machine learning mod-
els can have different requirements about the dataset. For
example, the input data follows normal distribution or the
machine learning models are very sensitive to the scale of data.
To fulfill these requirements, data transformation methods
should be applied.

In this paper, we utilized MinMaxScaler() from the
scikit-learn package [20] to scale the original variables to
between 0 and 1. After obtaining the prediction results from
the framework, the predictions are not on the same scale

as the true values since we scaled the original data. Hence,
we applied the inverse operation of MinMaxScaler() .
Subsequently, the output of the back transformation operation
is in the original scale. Therefore, we have the final prediction
values.

B. Regression Pipelines: Extreme Event Split and Mask Matrix

The data distribution of a time series dataset can vary. This
is commonly seen in climate data problems, such as under-
ground water level, precipitation, and temperature forecasting.
So, the forecasting strategy should be altered when the data
distribution is changed. To handle the challenge of different
data distributions, we propose two pipelines in this paper:
extreme event split and mask matrix.

1) Extreme Event Split: Because data distributions of a time
series dataset can change, a single machine learning model
trained based on the whole time series dataset without data
distribution variation information can be less accurate when
compared with multiple machine learning models trained with
different data segments. Accordingly, we propose to apply
the “sliding window” concept and split data into normal and
extreme events. The “sliding window” concept is commonly
used for time series data predictions described as Algorithm 1.

Algorithm 1 Sliding window anomaly detection

Input: Target variable y, Target variable size N , Window
size w, Anomaly detection method fs.
Sliding window:
i = 1
while i ≤ (N − w + 1) do
vi = fs(yi, yi+1, yi+2, · · · , yi+w−1)
i = i+ 1

end while
Output: Label vector v. (The vector consists of 0 and 1 to
identify anomalies)

Although data distribution may vary for the whole dataset.
However, a data segment within the window can have a stable
data distribution. The window can move forward with new
data records added and old data records removed from the
window, i.e., the data segment. The window size w can be
decided by repeated patterns in the data and calculated using
the autocorrelation formula [21].

Inside a window, we can further split the data into normal
and extreme events. Normal events are the major part based on
the data distribution inside the window (e.g., between the 20th
percentile and 80th percentile of the data). The extreme events
are usually very high or low values according to the data dis-
tribution (e.g., below 20th percentile or above 80th percentile).
To split data into normal and extreme events, thresholds should
be dynamically generated, and then classify the samples into
normal and extreme categories. In this paper, the following
two methods are experimented with and discussed:

• Percentile split is based on predefined percentiles hyper-
parameters (e.g., 95 percentile and 5 percentile) within



Fig. 1: Illustration of the proposed framework consists of two data regression pipelines: extreme event split and mask matrix.
(1) A selected anomaly detection method first detects the extreme events in the data and creates a label vector from the target
variable. Afterward, the data and label vector are used as input for both pipelines. (2) The extreme event split pipeline divides
the data into two parts according to the label vector, then predicts normal and extreme events separately. Finally, the predictions
of the two models are combined according to their order in the original data. (3) The mask matrix pipeline creates a mask
matrix based on the input data and label vector and concatenates the mask matrix with the input data. Then machine learning
model takes masked data as input to generate predictions.

the sliding window. It will calculate the threshold value
of predefined percentiles within the sliding window as the
thresholds. The values above the upper threshold or below
the lower threshold will be labeled as extreme events.
Concurrently, the values in between will be labeled as
normal events. When the window slides over the times-
tamps of the dataset step by step, the thresholds will also
be updated synchronously.

• SPOT [19] is an anomaly detection approach proposed
in 2017 for univariate time series data based on extreme
value theory. It can label extreme and normal events based
on dynamically updated thresholds and does not make
any assumptions on the distribution of data.

These two methods can be used to scan the target variable
(i.e., Y ) and help machine learning models distinguish extreme
and normal events by splitting historical data into extreme
event groups and normal event groups.

Both the percentile split and SPOT are threshold-based al-
gorithms. Therefore, given an original multivariate time series
data D, the anomaly detection algorithms, can be leveraged to
split the original dataset as the following equation shows:

[Dnorm, Dext] = fs(D) (3)

Where fs denotes the extreme event split method used to
generate label vector, then using the label vector separate data
into normal and extreme events. Dnorm and Dext are the
normal event sub-dataset and the extreme event sub-dataset
of dataset D. Each sub-dataset includes the target variable y

and features X . To preprocess both sub-datasets, we perform
data transformation (scaling with max and min of variables
before split) and create lags for each sub-dataset as described
in IV-A, defined as follows:

[Xnorm, Xext] = fpreprocessing(Dnorm, Dext) (4)

Where fpreprocessing denotes the preprocessing operation. It’s
worth mentioning that the Xnorm and Xext include lags
created from both the feature variables and the target variable.
Then Xnorm and Xext are then used as inputs to the models.

Two machine learning models, normal model fnorm for
normal event predictions and extreme model and fext for
extreme event predictions, are trained based on the two sub-
datasets, respectively. The predictions can be denoted with the
following equation:

Ŷ = fconcat(fnorm(Xnorm), fext(Xext)) (5)

where fnorm and fext are the normal model and the extreme
model, respectively. After the predictions were generated by
both models, we concatenate the normal predictions and
extreme predictions by fconcat according to the order of events
in the original data D. Therefore, Ŷ will be the predictions
including both normal and extreme events. Finally, we conduct
the inverse operation of MinMaxScaler() to transform the
predictions in the original scale.

2) Mask Matrix: We further propose the mask matrix
pipeline. Instead of dividing the dataset into two sub-datasets
and train two models. Mask matrix pipeline creates a mask



matrix that can be used to label and quantify the extent of
extreme events in the historical data. Prediction results can
be more accurate with one machine learning model and the
mask matrix. The original multivariate time series data with
m variables collected in a total of n samples can be defined
as a matrix, denoted as follows:

Dn,m =


y1,1 x1,2 · · · x1,m−1 x1,m
y2,1 x2,2 · · · x2,m−1 x2,m

...
...

. . .
...

...
yn,1 xn,2 · · · xn,m−1 xn,m


where yi,j are values in target variables, xi,j are values in
related feature variables. Then selected anomaly detection
method fs in Algorithm 1 and apply it to the original
multivariate time series data Dn,m. For extreme events, by
calculating the percentile of the value in the variable at the
current timestamp, we can get the corresponding mask value
in the mask matrix. The mask matrix is defined as follows:

Mn,m =


m1,1 m1,2 · · · m1,m−1 m1,m

m2,1 m2,2 · · · m2,m−1 m2,m

...
...

. . .
...

...
mn,1 mn,2 · · · mn,m−1 mn,m


where mi,j are used as extreme weights. If an observed value
is an extreme event, then mi,j should be the percentile value of
the corresponding variable at timestamp i. Otherwise, mi,j will
be assigned to zero. Then we preprocess data Dn,m, defined
as follows:

X = fpreprocessing(Dn,m) (6)

As for mask matrix Mn,m, We only need to create lags because
their scales are already consistent, defined as follows:

M = flag(Mn,m) (7)

where flag is the operation creates lags that described in IV-A.
Noting that the data Xand the mask matrix M are in the same
shape, the element in the mask matrix M represents the mask
value of the element at the same position in the data X matrix.

The objective is to predict target variables based on histor-
ical data and a mask matrix M defined as follows:

Ŷ = f(X,α ∗M) (8)

where preprocessed data X and mask matrix M are the inputs
for the framework, Ŷ denotes the predicted target variable, and
α is the weight to control mask matrix impacts. The same, we
conduct inverse operation of MinMaxScaler() to transform
the predictions in the original scale.

V. EXPERIMENT RESULTS

In this section, we conduct experiments on 10 datasets
including extreme events collected from 3 sites with a sample
size from several hundred to over ten thousand records. The
results show that our proposed framework effectively alleviates
the descending of accuracy with the increase of horizon.

A. Datasets and Implementation Details

Datasets and Metrics: To investigate the effectiveness of
the proposed framework, we utilized two datasets collected
from research sites located in North Carolina and one dataset
collected in Vermont. The first dataset named EmerladIsle was
collected from Carteret County. There are 375 data records
are collected from 4 underground wells from 2017-2018 with
a sampling frequency of one day. These wells were spread
all throughout the Emerald Isle and Atlantic Beach in North
Carolina. The second dataset named aquifers was collected
from three surficial aquifers in Dublin, Littlefield, and Mag-
nolia at Robeson and Bladen County also in North Carolina
with a sampling frequency of one day, with a total of 4578
samples. The third dataset named Streamflow was collected
from the Mad River and two of its tributaries [22], Shepard
Brook and Mill Brook, located in the Lake Champlain basin
in central Vermont. The Mad River watershed has a distinct
seasonal variation. Summer months feature warm temperatures
and frequent, fast-moving, convective, rainstorms that produce
moderate rainfall. Discharge data is the target variable for
prediction and was available from the USGS Geological Mad
River gauging station (No. 04288000) for the Mad River, and
by developing stage-discharge relationships for the Mill Brook
and Shepard Brook sites. Rainfall and soil moisture data were
collected from a network of tipping bucket rain gauges and
a single meteorological station equipped with soil moisture
sensors at multiple depths.

Three metrics were chosen to evaluate accuracy including,
Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and coefficient of determination (R2). For RMSE,
MAE, lower values are better. For R2, the value is between 0
and 1 and higher values are better.

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (9)

MAE =
1

N

N∑
i=1

|ŷi − yi| (10)

R2 =

{ N∑
i=1

(yi − ŷi)(ŷi − ¯̂
Y )( N∑

i=1

(yi − Ȳ )2
) 1

2
( N∑

i=1

(ŷi − ¯̂
Y )2

) 1
2

}2

(11)

where ŷi and yi represent the predicted and observed values
respectively; Ȳ is the mean of the observed values and ¯̂

Y is
the mean of predicted values for the entire evaluation period.

Model implementations: To demonstrate the effectiveness
of the proposed framework, we set GRU as the baseline model
for comparison. The GRU model is composed of one GRU
layer and one dense layer, the activation function in both layers
is set to linear. The Mean Absolute Error was selected as the
loss function along with the Adam optimizer, and the learning
rate is set to 1× 10−3.



TABLE I: EmeraldIsle Site Daily Underground Water Level Forecasting Comparison

Dataset Well 13 Well 16 Well 19 Well 28
Horizon Horizon Horizon Horizon

Method Metrics 2 6 12 2 6 12 2 6 12 2 6 12
Baseline R2 0.678 0.193 -0.101 0.762 0.260 -0.058 0.688 0.211 -0.148 0.583 -0.02 -0.062

RMSE 0.002 0.006 0.010 0.002 0.006 0.009 0.003 0.007 0.011 0.004 0.010 0.012
MAE 0.028 0.053 0.074 0.027 0.055 0.075 0.030 0.063 0.083 0.034 0.069 0.082

SPOT R2 0.665 0.219 -0.098 0.690 0.230 -0.164 0.635 0.234 -0.092 0.438 -0.278 -0.325
RMSE 0.049 0.078 0.095 0.045 0.076 0.095 0.054 0.083 0.103 0.069 0.106 0.115
MAE 0.030 0.054 0.073 0.032 0.058 0.077 0.032 0.064 0.084 0.039 0.074 0.085

Percentile R2 0.853 0.553 0.079 0.795 0.431 -0.050 0.724 0.463 0.140 0.683 0.439 -0.318
RMSE 0.034 0.055 0.088 0.036 0.060 0.091 0.048 0.066 0.087 0.054 0.069 0.116
MAE 0.024 0.040 0.066 0.027 0.045 0.070 0.034 0.049 0.064 0.036 0.049 0.084

Mask R2 0.676 0.543 0.240 0.737 0.380 0.042 0.649 0.294 0.168 0.543 0.265 0.005
RMSE 0.051 0.060 0.079 0.044 0.067 0.082 0.054 0.081 0.088 0.068 0.081 0.100
MAE 0.033 0.046 0.061 0.032 0.053 0.066 0.035 0.064 0.068 0.041 0.063 0.075

aSample of a Table footnote.

TABLE II: Aquifer Site Daily Underground Water Level Forecasting Comparison

Dataset Dublin Littlefield Magonia
Horizon Horizon Horizon

Method Metrics 2 6 12 20 2 6 12 20 2 6 12 20
Baseline R2 0.913 0.802 0.672 0.543 0.820 0.612 0.452 0.302 0.946 0.800 0.655 0.502

RMSE 0.095 0.222 0.378 0.538 0.121 0.263 0.372 0.481 0.126 0.453 0.814 1.251
MAE 0.158 0.313 0.452 0.569 0.174 0.319 0.441 0.532 0.205 0.461 0.674 0.874

SPOT R2 0.906 0.758 0.618 0.502 0.806 0.577 0.413 0.255 0.938 0.811 0.614 0.456
RMSE 0.335 0.533 0.670 0.784 0.349 0.523 0.624 0.707 0.379 0.673 0.989 1.187
MAE 0.201 0.350 0.469 0.589 0.199 0.333 0.456 0.546 0.237 0.465 0.724 0.893

Percentile R2 0.910 0.809 0.692 0.580 0.813 0.627 0.462 0.330 0.942 0.863 0.777 0.651
RMSE 0.328 0.464 0.585 0.700 0.340 0.476 0.587 0.665 0.376 0.573 0.716 0.898
MAE 0.245 0.458 0.397 0.506 0.176 0.291 0.392 0.463 0.213 0.401 0.531 0.633

Mask R2 0.927 0.836 0.735 0.616 0.863 0.707 0.583 0.457 0.955 0.855 0.742 0.635
RMSE 0.283 0.429 0.558 0.684 0.290 0.439 0.528 0.609 0.322 0.579 0.780 0.931
MAE 0.157 0.280 0.420 0.520 0.158 0.289 0.360 0.433 0.173 0.395 0.568 0.688

In order to test the effectiveness of the proposed framework,
we compared the results of the framework working with SPOT
and Percentile extreme event labeling algorithms. For SPOT,
we utilized the Github code from Alban Siffer [23]. The
percentile split algorithm was implemented by calculating a
threshold percentile of the targeted variable in the sliding
window. The size of the sliding window and the threshold
percentile are required as the framework input. The window
size can be decided based on data patterns and can be esti-
mated using the auto-correlation formula [21]. Then extreme
events can be labeled according to whether they are within the
threshold range.

For the extreme event split pipeline, we implemented the
normal model and extreme model to accommodate the differ-
ent distributions of the normal and extreme events. In order
to maintain consistency, we utilize the same GRU model with
baseline as the Normal model. For extreme events, to ensure
the fairness of comparison, we utilize the Gradient Boosting
for regression(GBR) machine learning model. By splitting the
data into normal and extreme and predicting separately, the
following results show that even if we choose GBR as the
extreme model, the prediction accuracy is still improved when
compared with using GRU alone.

For the mask matrix pipeline, we used an extreme event

labeling algorithm (i.e., SPOT or Percentile) to label each
timestamp and created the mask matrix in a column by column
manner. The mask matrix tells a machine learning model how
far away this variable at a certain timestamp is from the
threshold percentile. We utilize the same GRU model with
baseline. The results of baseline and the other methods are
presented next.

B. Experiment Results and Analysis

The experiment results are summarized in Table I, Table II,
and Table III. We tested our framework with 10 datasets
in total and evaluated the performance using R2, RMSE,
and MAE metrics. We selected horizons of 2, 6, 12, and
20 to investigate how the proposed framework performs on
different horizons. The results show that our framework can
effectively improve the baseline model on the time series data
prediction. We further tested our framework from horizon 1 to
horizon 20 and drew box plots of average descending rate in
Fig. 2, Fig. 3, and Fig. 4. The accuracy, i.e. R2, is decreasing
with the increase of horizon. However, the results show that
our proposed framework has an overall smaller descending
rate, which means the accuracy gap between baseline and our
framework enlarges larger as the horizon increases.

Baseline. Table I shows the results of four datasets collected
from Emerald Isle. The four datasets include daily data col-
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Fig. 2: EmeraldIsle Site

(a) R2 Dublin (b) R2 LittleField (c) R2 Magonia

(d) Descending Rate Dublin (e) Descending Rate LittleField (f) Descending Rate Magonia

Fig. 3: Aquifers Site



TABLE III: Streamflow Site Hourly Streamflow Forecasting Comparison

Dataset Mill Mad Shepard
Horizon Horizon Horizon

Method Metrics 2 6 12 20 2 6 12 20 2 6 12 20
Baseline R2 0.889 0.643 0.404 0.172 0.880 0.687 0.375 0.143 0.806 0.476 0.302 0.062

RMSE 0.357 0.977 1.451 1.998 8.718 31.597 61.532 79.882 0.117 0.329 0.440 0.575
MAE 0.205 0.379 0.517 0.607 1.235 1.973 2.803 3.321 0.090 0.196 0.230 0.286

SPOT R2 0.892 0.596 0.345 0.180 0.879 0.678 0.371 0.123 0.829 0.378 0.225 0.015
RMSE 0.467 0.844 1.177 1.292 2.714 4.693 6.655 7.753 0.288 0.521 0.609 0.671
MAE 0.189 0.330 0.545 0.608 1.085 1.987 3.001 3.670 0.072 0.188 0.247 0.313

Percentile R2 0.903 0.727 0.616 0.584 0.828 0.604 0.456 0.338 0.863 0.338 0.380 0.203
RMSE 0.461 0.760 0.912 0.942 3.179 4.902 5.981 6.413 0.268 0.544 0.548 0.576
MAE 0.202 0.356 0.452 0.458 1.421 1.941 2.502 2.601 0.092 0.203 0.213 0.226

Mask R2 0.904 0.774 0.670 0.579 0.857 0.663 0.624 0.502 0.836 0.636 0.566 0.487
RMSE 0.457 0.774 0.842 0.939 3.043 4.838 5.108 5.970 0.285 0.434 0.489 0.526
MAE 0.248 0.294 0.366 0.451 1.236 2.410 1.974 2.681 0.097 0.149 0.194 0.222

(a) R2 Mill (b) R2 Mad (c) R2 Shepard

(d) Descending Rate Mill (e) Descending Rate Mad (f) Descending Rate Shepard

Fig. 4: Streamflow Site

lected from 2007 to 2008. Baseline achieved an average R2

of 0.678 for horizon 2. However, the accuracy of the baseline
drops rapidly as the horizon increases. The average R2 of
horizon 6 is 0.161, 76.3% lower than horizon 2. When the
horizon was 12, the baseline model achieves an R2 lower than
zero on all datasets in Table I.

In Table II, Baseline achieved very promising prediction
accuracy with an average R2 of 0.893 when the horizon was
2. This number decreased to 0.738, 0.593, and 0.449, when the
horizon was 6, 12, 20, they are respectively 17.4%, 33.6%, and
49.7% lower than when the horizon was 2. The performance
on horizons 12 and 20 are still very promising, mainly because
this site has 4,578 samples, which enabled the models to be
better trained.

For the Streamflow site, there are more than ten thousand

samples. However, the R2 Baseline drops rapidly. In Table III,
the Baseline has an average R2 of 0.858 on horizon 2, and
drops to 0.602, 0.360, and 0.126 for horizon 6, 12, and 20.
Considering that this site was collected hourly when we want
to predict a day into the future (horizon 24), the accuracy of
the Baseline will be terrible.

Extreme Event Split. After analyzing the experimental
results, both the extreme event split and mask matrix pipelines
show promise for improving machine learning model predic-
tions. Although the Mask Matrix framework achieved better
performance in datasets with a larger sample size, the Extreme
Event Split framework still performed with the best accuracy
in some circumstances. It is worth mentioning that, the im-
provement of accuracy varied based upon the extreme event
split method selected.



Based on the experimental results in Table I, Table II, and
Table III, it can be seen that the Extreme Event Pipeline
with SPOT split algorithm leads to comparable accuracy with
baseline, in some cases even worse. From Figure 3 we notice
that SPOT failed to distinguish the data properly, which leads
to lower R2 in all datasets. The descending rate displayed
in Fig. 4 boxplot shows that SPOT even has the highest
descending rate in Dublin and Magonia.

One possible explanation is, SPOT was developed for de-
tecting the peak of time series data. This method naturally
only detects the most extreme cases, which results in the
total number of samples in extreme events being too small
to meet the needs of training machine learning models. In this
experiment, the extreme event model used is GBR (In Fig. 1
this is the upper Blue Box inside the Orange Box). Simply
separating the extreme cases will not necessarily improve the
effectiveness of the framework, and choosing the inappropriate
split method will even limit the performance of the framework.

For the Percentile extreme event split framework, it achieved
a significant accuracy improvement on R2. In Table I, for
horizon 2, R2 was improved by 0.175, 0.031, 0.036, and 0.1,
respectively, and 0.086 on average. When the horizon increases
to 6, the average increment of R2 was 0.31. As for horizon
12, Percentile achieved 0.079 and 0.140 on Well 13 and Well
19, however, less than zero in Well 16 and Well 28. It is
worth mentioning that the percentile framework achieved the
best performance in most testing cases for horizons 2 and 6
on four datasets in the EmeraldIsle site according to the R2

and MAE metrics. By analyze Figure 2, the R2 of Percentile
framework drops faster when horizons are larger than 12 on
the Well 16 and Well 28 datasets. We can conclude that for
relatively small datasets, the percentile framework is a better
choice for small horizons.

In Table II, Percentile failed to outperform Baseline on
horizon 2. However, Percentile has an average increase of
0.028, 0.051, and 0.07 on the three datasets when the horizon
is 6, 12, and 20 on the R2 respectively. It is worth noting
that for the Magonia dataset, Percentile achieved the best
performance in all three metrics for horizons 12 and 20.

As for the Streamflow site, the percentile framework out-
performed Baseline on the Mill dataset. For Mad and Shepard
datasets, the percentile framework shows better R2 than Base-
line when the horizon is greater than 14.

Mask Matrix. In Table I, when the horizons are 2 and 6, the
Mask achieved comparable results in R2 and MAE and was
outperformed by the Percentile framework. However, when
the horizon is 12, the Mask achieved the best R2 performance
on all four datasets and the best MAE value on three out of
four datasets. In addition, Mask is the only one that achieved
greater than zero R2 on all four data sets when the horizon is
12.

In Table II, Mask achieved the best performance in R2 on
all horizons for Dublin and Littlefield. For Magonia, Mask
achieved the highest R2 on horizon 2, outperforming baseline
by 0.055, 0.087, and 0.133 on horizons 6, 12, and 20. From
Figure 3 we can see that the Mask outperformed Baseline in

all 3 datasets on all horizons, and has a lower descending rate
than Baseline. Meanwhile, Mask outperformed Percentile on
all horizons in Dublin and Littlefield.

In Table III Mask shows great performance on all 3 datasets.
For the Mill site, Mask achieved the best R2 on all horizons.
It also has a lower RMSE and MAE when the horizon is
larger than 6. On Mad and Shepard, Mask also achieved good
results when the horizon is larger than 6 in R2, RMSE, and
MAE. From the results, we can conclude that our proposed
mask framework has a lower descending rate in performance,
which makes our method more suitable for large horizons. It
is worth mentioning that the Streamflow site is collected at
a sampling frequency of 1 hour. Therefore, Mask has more
significance in practical applications on this data set.

Extreme Event Split VS Mask Matrix. Both extreme event
split and mask matrix pipelines are promising for improving
results when compared to the baseline model according to our
experimental results.

However, if most of the time series data are normal events
and there are very few extreme events the proposed framework
may not outperform the original machine learning model.
This is because the extreme event split pipeline will not
have enough data for extreme event machine learning model
training. The overall performance will drop. On the other hand,
the mask matrix pipeline will have a mask matrix with mainly
0s. We have tested machine learning models with all 0s in
the mask matrix and the accuracy will be very close to the
baseline model.

Which pipeline should be selected is another question.
Based on the experimental results in Table II and Table III,
the mask matrix pipeline requires can outperform the extreme
event split pipeline if abundant time series data are collected.
However, if limited data is available, the extreme event split
pipeline is better. This is because the mask matrix serves
as hints for machine learning models to learn the difference
between normal and extreme events from the historical data.
The learning requires a lot of historical data. The extreme
event split pipeline is a more straightforward method. A single
machine learning is not competent to learn the differences
between normal and extreme events. Therefore, this is handled
by an extreme event labeling algorithm and two machine
learning models.

VI. CONCLUSIONS

Time series data regression problems can be challenging if
the data has extreme events (e.g., greater than 90 percentile or
below 10 percentile). In this paper, we propose a time series
data regression framework to tackle this problem. The frame-
work includes two pipelines: extreme event split and mask
matrix to help machine learning models learn the differences
between normal events and extreme events. The experimental
results show that both the pipelines are promising to improve
a baseline machine learning model and decrease the accuracy
descending rate when the horizon grows.
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