
Microservice-Based System for Environmental
Science Software Applications

Vinh Le, Connor Scully-Allison, Mitchell Martinez
Sergiu M. Dascalu, Frederick C Harris, Jr., Scotty Strachan, Eric Fritzinger

Computer Science and Engineering
University of Nevada, Reno
Reno, Nevada 89557, USA

vle@unr.edu, cscullyallison@email.arizona.edu, mitchell.martinez@nevada.unr.edu
dascalus@cse.unr.edu, fred.harris@cse.unr.edu, strachan@unr.edu,landale3@gmail.com

Abstract—When an environmental research project grows,
technical concerns over system scalability, data exposure, and
third-party application support are overlooked. This paper
presents a system, the Microservice-based Envirosensing Support
Applications (MESA), that provides a scalable environment and
data infrastructure solutions for the NSF-funded Solar Energy-
Water-Environment Nexus project. MESA can be broken into
4 major parts: a suite of microservices exposed over an API,
an overarching service discovery, a series of tables replicated
from an existing monolith, and the applications that MESA lends
its support. In order to evaluate the capability of MESA, the
features of this system were compared against three other existing
microservice-based research systems. MESA features were more
robust than two of the other systems, but was found lacking when
compared to the last, as it does not lender support to advanced
techniques like HPC or Machine Learning.

Index Terms—Microservice, Distributed System, Data Manage-
ment, Containerization, Data Analysis, Data Visualization, User
Interface, Web Framework, Web-based Systems

I. INTRODUCTION

When it comes to environmental research projects, a com-
mon approach to data storage is spinning up a monolithic
system consisting of one or more databases, interwoven code,
and a small suite of sensors streaming in data at specific
intervals. However, as data begins to accumulate and more
sensors are deployed as the project begins to grow, problems
emerge from this ad hoc approach.

Querying speeds, management, access, and analytics all
become affected by the increase in data volume. Usually in
modern software engineering practices, this implies that it
is time for a system reconstruction. Although appropriate,
these overhauls exact a heavy toll in time and resources,
commodities not readily available for most small-to-midsize
environmental research projects.

To address these problems, this paper presents the
Microservice-based Envirosensing Support Applications
(MESA), a distributed support system build using a
Microservice Architecture style that is tailored for the use
in environmental research projects. As part of this research,
MESA was implemented to support the NSF Track 1 Solar
Energy-Water-Environmental Nexus project and it’s data hub,
the Nevada Research Data Center (NRDC) [4].

We evaluate the comparative merits of MESA against simi-
lar systems with a feature comparison. Using common features
expected from software like this as a benchmark, MESA is
shown to possess more functionality than two of the other
systems. However, MESA is slightly deficient when compared
to the last system due to the lack of infrastructure for Machine
Learning and High Performance Computing. We address these
deficiencies by indicating that these are key areas of future
work further on.

The remainder of this paper is structured as follows: Section
2 presents the background of the NRDC and the three systems
being compared against MESA, Section 3 provides details of
the software specifications of MESA, Section 4 describes the
various implementations of MESA’s microservices, Section 5
provides a discussion on the feature comparison and other
considerations, and Section 6 wraps up the paper with the
conclusion, and planned future work.

II. BACKGROUND AND RELATED WORKS

A. Nevada Research Data Center
The Nevada Research Data Center (NRDC) is the central

data hub of the Solar Energy-Water-Environmental Nexus
project, where environmental sensor data from various re-
search teams is collected and stored [4]. Unfortunately, the
NRDC is the descendant of an older monolithic system and
inherited its predecessor’s rigidly interconnected approach [3].
Due to its interwoven nature, the NRDC system has great
trouble even maintaining itself. As an example, the NRDC
could miss several hundred data entries, which is especially
disconcerting for the scientists who are expected to conduct
research on the data. Furthermore, the NRDC has virtually no
means to actively monitor its services’ health which makes it
hard for to tell if a functionality was even online. Fortunately,
this paper is not the first time this problem was recognized, and
there was prior work by the authors of this paper on proposing
a more distributed reformation of the NRDC [11, 9].

B. Microservice Architecture
The term “Microservice” was traced back to a Microsoft

Service Edge Conference presentation in 2005 by Dr. Peter
Rodgers. Dr. Rogers referred to the concept of granular web



services that remained independent of each other as “Micro-
Web-Services” [13]. These granular web services could then
be mapped to a specific functionality and the inter-switching
of them created a new option for modularity within the sys-
tem. The eventual orchestration of these microservices would
eventually lead to a functioning system architecture. However,
the architecture has a failing in the form of it being incredibly
difficult to implement. In order to deploy a microservice-based
implementation, it would require the actual construction of
such a system by using the concepts as a guideline. Very few
software and packages exist out there that would streamline
the process of creating a microservice-based system.

C. DIMMER Smart City Platform

Although not environmental in nature, a similarly developed
research-oriented microservice-based system was created to
support a smart city project in Europe. This system, dubbed
DIMMER, collected sensor data, interfaced with a suite of
applications, and used a service discovery as part of their
DevOps [8]. DIMMER also featured an high performance
computing (HPC) resources as part of their platform. However,
because DIMMER both actively collects sensor data while
also providing support to various applications, this can create
significant network overhead for the researchers utilizing the
system.

D. Generic Service Infrastructure for PEIS

Sharing many similarities with MESA, a microservice-based
environmental research system, the Public Environmental In-
formation System (PEIS), was established as part of a nation-
wide environmental research project to provide infrastructure
and application support to various client applications, such as
sensor networks, web applications, and mobile devices [2].
As part of PEIS’ design, the system also provides support to
advanced research tools such as HPC and Machine Learning.
On top of this, PEIS also features modern tool integration,
in the form of containerization, continuous integration, and a
service discovery. The approach adopted by PEIS during the
implementation of PEIS involved the complete refactoring and
rebuilding of a sensor collection system. During an ongoing
environmental research project, such decisions could prove to
be too expensive in time, money, and data lost.

E. OceanTEA: Exploring Ocean-Derived Climate Data

On a similar research scale, a support system, dubbed
OceanTEA, was designed to aid researchers with processing
data from a ocean monitoring system designed by the Univer-
sity of Kiel in Germany [7]. This system uses microservices to
structurize the data presented to researchers based on specified
criteria. OceanTEA then presents this information through an
intuitive and responsive web interface. However, the design
of OceanTEA gives off the impression that the system is
tailored only towards to the structuring and presenting of data
to researchers, rather than providing the groundwork for other
future tool development.

Fig. 1: A high-level view of the MESA system.

III. SOFTWARE SPECIFICATION

A. High Level Design
MESA as a system has four major components, as shown

in Figure 1. At the center of MESA is the Service Discov-
ery, which serves as a both registry and monitor for all of
the microservices. The Service Discovery does not actively
entangle itself with any services, aside from scheduled tests,
and provides to the user necessary metadata regarding location
and health. The next and most crucial portion of MESA are
the microservices. The microservices run independent of one
another and execute specific programs and tasks for the MESA
system. These are often shuffled into servers associated with
their specific functionality. Their functionalities are then made
available on those servers via reverse-proxy to an application
through their respective HTTP APIs. Moving on to the next
component, the tables of the database are not only utilized
as a general data abstraction between client applications, but
are also called and used in certain microservices to perform
complex calculations or data management operations. Finally,
the last component is the multiple applications that interface
with MESA. These applications are not limited only to web
applications, but also include mobile phone apps and can even
be separate systems.

B. Technology Utilized
The MESA system was developed using several common

web technologies compatible with the database manager used

2



Fig. 2: Sample data visualization on the Lysimeter Data
Display.

by the NRDC. The programming languages utilized include C#
and Python, and the tools utilized were WCF and Flask. Win-
dows Communication Foundation (WCF) is a toolset devel-
oped in the .NET Framework that specializes in implementing
and deploying service-oriented architectures (SOA) [10]. Flask
is a python-based micro-framework that supports the develop-
ment of web services [1]. Database management for the NRDC
is handled through Microsoft SQL Server (MSSQL). For its
service discovery, MESA uses Consul [5]. Containerization
is handled through Docker and Continuous Integration is
managed with Jenkins.

IV. USE CASES

A. SEPHAS Lysimeter Visualization
The SEPHAS Lysimeter Visualization, as shown in Figure 2,

is a web application developed to better visualize the environ-
mental data gathered over the span of several years by the
SEPHAS facility in Las Vegas [6]. The microservice support
from MESA played a non-vital but significant role in the
visualization of the lysimeter data. By using powerful frontend
visualization libraries such as D3.js, the data file could be
loaded and visualized.

However, this would cause almost unbearable lag times
between actions issued by the user on the visualization.
Although the visualization can operate without the need for
a microservice, the usage of a microservice in this case was
able to cut down virtually all of the lag time between the user
actions and the visualization library. The Data Visualization
microservice was utilized to handle all of the data loading
and transformation operation, so the web client only needed
to query the microservice for all of its needs. Once the client
contacts the microservice, the service will then return limited
amounts of data to only preserve the shape of the visualization.
However, once the user explored further into the visualization,
the microservice would then alter the range and the amount of
data presented to match what the user viewed. This allowed
the client to levy all of its intensive actions onto the server
and provide an accurate, responsive, and swift visualization.

B. NRDC Quality Assurance Application
The NRDC Quality Assurance (QA) Application, or QA

App for short, is an application developed by the Cyberin-

Fig. 3: The NRDC QA Application navigating through a site
entry.

frastructure component of the Nexus project to handle meta-
data [12]. As part of the project, Nexus technicians often
trek out to research sites for maintenance, installation, and
configuration of sensor tower equipment. Technicians would
have to manually write down entries on a notebook and then
transcribe those notes into a database sometime after. The QA
App was developed for the express reason of alleviating the
troubles faced by Nexus technicians. The application narrows
down metadata on research sites specific to the user and allows
them to alter entries or add new ones right at the tower. Since
there is limited internet access at these towers, this application
stores the changes locally and syncs them to the database when
appropriate internet connection is made available.

The microservices play a vital role as server backend for the
QA application. The QA application upon initial activation
calls upon each of the eight microservices to store a local
copy of the relevant data entries within the metadata database.
It is here where the microservices converts data from the
NRDC and presents it to the QA application. When changes
are made in the application and the sync button is pressed,
the application then uses the eight microservices alongside
the Conflict Management microservice to verify and submit
the changes to the database. Should the Conflict Management
microservice return a merge issue, the response from the
microservice is parsed and then used to generate a merging
interface. Additionally, the Imagery microservice is called
when an entry features an image and handles the storage
and retrieval of that image into the database. The Imagery
microservice is also called when the a entry is viewed by the

3



user, where it retrieves a preview image instead of the original.

C. Conflict Management

Fig. 4: The conflict management functionality on the NRDC
QA Application.

The Conflict Management microservice was created to re-
solve conflicts that result from multiple users enacting changes
on the NRDC database with an application. Conflict Man-
agement was developed largely for the metadata application
uploading multiple entries at one time. The main process
operates in a similar manner as most version control software.
When the submission of a data entry whose modification date
is earlier than what is listed inside the database, a conflict is
flagged. Much like version control software, the user is given
the option to continue with their flagged copy or merge their
version with the current canon. Once a selection is chosen,
the microservices locates the database table in which the data
resides and overwrites the entry with the selection made. This
is then repeated for each of the multiple entries being uploaded
by the application during that one transaction.

Calling the Conflict Management microservice requires
sending a POST request consisting of a list of entries to submit
to the database. Also inside the JSON, metadata is given to
locate the entry’s associated database table. The microservice
then goes through each of the submissions and compares
the modification dates. Should a conflicting modification date
be found, the microservice appends that entry to a flagged
list. Meanwhile, the passing submissions are added to their
respective database tables via the appropriate microservices.

At this point, the microservice will return a response detailing
specific information about the conflict, and a copy of both
what was sent and what currently exists within the database.
The response returned provides the necessary information for
a front end to create a conflict resolution interface. Once a
finalized choice has been made, a POST request to another
URI within the microservice allows for the overwriting or
updating of what currently exists within that database entry.

D. Near Real-time Autonomous Quality Control

Fig. 5: The main visualization component of the NRAQC
system.

Occasionally, sensor readings received by the NRDC from
the remote research sites show signs of erroneous data. This
can be missing values, values outside possible bounds, or even
repeats of past values. To address these problems, the Near
Real-time Autonomous Quality Control (NRAQC) System was
developed for the NRDC [14]. NRAQC tests incoming data
points logged autonomously at a research site to see if they
meet the criteria of an invalid measurement. The system,
with aid of user specified configurations, flags all invalid
measurements with metadata that specifies the nature of the
invalidity. The service provided by NRAQC is necessary for
the production and distribution of a quality data product. A
sample of NRAQC’s data visualization is shown in Figure 5.

Much like the QA Application, the microservices play the
vital role of server backend for the NRAQC system. NRAQC
utilizes an intuitive web interface as the main client, but splits
its main features into microservices that support it. These
features includes the handling of differing data sources, enable
autonomous flagging of measurements, interfacing with the
client, enabling a data visualization, and formatting the results
based on the user specifications. While the microservices deal
with the computationally and memory intensive portions of
NRAQC, they do not govern the entire system itself. The
NRAQC client presents a number of features to the user
and when the user selects a task, the NRAQC client then
communicates with the microservices via HTTP.

V. DISCUSSION

In the environmental field, microservice architecture is often
used to drive software with narrow goals. Multiple microser-
vices are usually developed and used to create web-based

4



TABLE I: Feature-based comparison table

Feature Description MESA DIMMER OceanTEA PEIS
Requires refactoring entire system x x x
Support multiple applications x x x
Oriented toward environmental
research x x x

Service Discovery features x x x
Supports multiple databases x x x
Uses Containerization x x x
Uses Continuous Integration x x
Capable of High Performance
Computing solutions x x

Machine Learning Capabilities x

support for a singular application, such as the ones described
in OceanTEA. For research outside the earth sciences, the mi-
croservice architecture is often used as platform for providing
an abstract data layer between an application and the data
source of the project, as described in the DIMMER Smart
City Platform. Interestingly enough, both research inside and
outside the Earth sciences share a common trend of refactoring
systems into microservice architectures when the problem
involves an existing monolith. This approach usually involves
the decomposition of a monolith into requirements that are
mapped to microservices in the hopes of enabling scalability.
This conversion can especially be seen in the PEIS system
mentioned above.

While both of the described trends showcase two valid and
intended use cases of the Microservice Architecture, the com-
plete refactoring of a system from monolithic to microservice-
based brings about serious concerns. In environmental research
projects, especially projects ranging from a single university
to an entire state, monolithic system designs are common due
to unexpected growth in a project or from a sheer lack in
pooled technical knowledge. Many of these projects simply
do not have the resources or people to simply halt progress
and perform an entire system overhaul. Additionally, many
environmental projects often autonomously collect data from
sensor networks and shutting down these systems, even briefly,
can cause detrimental effects on the research produced by the
overall project.

It is through these concerns that brings to light the novelty of
MESA as a microservice-based system. MESA is designed as
a scalable application development platform to support critical
systems, especially monoliths, without having the need to
tear down the existing system. MESA connects to a regularly
updated replication of the main NRDC database that houses
copies of the incoming data, so it does not interfere with the
monolith whom autonomously gathers data at set intervals.
To clarify, this approach does not eliminate the option of full
system migration, and provides the means to lessen the burden
of the demands placed on developers until a solution is decided
upon and implemented. Should a full migration be decided,
MESA can be utilized to shoulder the burdens of inactive
systems and can eventually become decommissioned once the
migration is complete.

A feature comparison, shown in table I, was created to
measure MESA’s capabilities against the previously described

microservice systems. MESA brings forward a unique contri-
bution to Environmental Research in that it does not require a
complete system refactoring in order to be used. Additionally,
the MESA system carries with it many of the modern software
features and industry practices that are present in microservice
development. It is through these features that MESA is able to
offer more functionality than two similar systems: OceanTEA
and DIMMER. OceanTEA, although a very effective system in
environmental data gathering, does not offer platform support,
a service discovery, or the continuous integration features that
MESA does. Similarly so with DIMMER, it does not provide
as much features as MESA, lacking in areas like supporting
multiple databases, containerization, and continuous integra-
tion features. However, MESA still is outperformed by mi-
croservice systems used by the larger environmental projects,
like PEIS who is able to support advance features such as HPC
or Machine Learning. Overall, MESA’s abundance of features
makes it a solid alternative to a development platform for small
to medium scale environmental projects.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusion
The system described in this paper, the Microservice-based

Envirosensing Support Architecture, focuses on creating an
alternative approach to cyberinfrastructure for environmental
research projects without enforcing a costly system refac-
toring. The central idea of this system is to create an ap-
plications platform centralized around a regularly replicated
data source without having to tear down a monolith. The
option to completely refactor a system and break apart an
active monolith is expensive and requires a massive amount
of technical knowledge and time to execute. This application
platform was created by using a series of microservices that
break up business requirements into independent web services.
The microservices answer to a central service discovery and
are generally mapped to a feature within a client application.

MESA is a relevant and beneficial system to environmental
research projects due to its ability to provide platform support
to a field that is often limited by the technical aspects of soft-
ware development. While the idea of switching to a distributed
architecture, like microservices, can be attractive to growing
environmental projects, the reality of the matter comes down
to whether the project has the time to halt progress while
development is made and if there are adequate resources
available to achieve this result. So oftentimes, environmental

5



scientists are forced to choose between two extremes: a limited
older system or an expensive new system. MESA brings to the
Earth sciences a third choice that can bridge the gap between
the previous two while incorporating industry practices, such
as containerization and continuous integration.

B. Future Work
Work is currently underway to make the readings gathered

by the sensor towers to be more readily available and accessi-
ble as datasets for machine learning. This is a larger focus for
MESA, while HPC services are currently being provided by
a collaboration with the state of Nevada and Switch, a global
leader in data center technologies.

To prevent the interception of data and verify that the client
has clearance to interact with data, most modern RESTful-
based software practices token-based authentication. Unfortu-
nately, MESA does not utilize this industry-standard practice
as of yet. Currently, the services perform this actions without
verification and are highly susceptible to being intercepted.
This is due to MESA being a prototype to show a proof
of concept and security additions are considered secondary
features. In the future, a major enhancement to the MESA
system would be the application of modern security practices.

Although MESA uses containerization technology in the
form of Docker, MESA only has Docker containers operating
on approximately a third of the active microservices. Docker
has commonly been used for Linux environments and while
it does have Windows versions, it requires the deft hand of
a system administrator or a DevOps engineer. During the
development of MESA’s Windows-based microservices, this
task was deemed secondary as to allow more focus on support-
ing environmental research applications. However, recent talks
and advancements within the project have advised steering
toward a migration onto a Kubernetes environment to host the
Docker containers. This would allow MESA to achieve total
containerization of microservices in future iterations of the
project.

ACKNOWLEDGMENT

This material is based in part upon work supported by
the National Science Foundation under grant number IIA-
1301726. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] Ronacher Armin. Flask microframework. URL: http://
flask.pocoo.org/. [Online; accessed February 17, 2022].

[2] Eric Braun, Thorsten Schlachter, Clemens Düpmeier,
Karl-Uwe Stucky, and Wolfgang Suess. A generic
microservice architecture for environmental data man-
agement. In Environmental Software Systems. Com-
puter Science for Environmental Protection: 12th IFIP
WG 5.11 International Symposium, ISESS 2017, Zadar,
Croatia, May 10-12, 2017, Proceedings 12, pages 383–
394. Springer, 2017.

[3] Sergiu Dascalu, Frederick C Harris Jr, Michael McMa-
hon Jr, Eric Fritzinger, Scotty Strachan, and Richard
Kelley. An overview of the Nevada Climate Change
Portal. 7th International Congress on Environmental
Modelling and Software, 2014.

[4] Nevada EPSCoR. Solar Energy Water Environment
Nexus in Nevada. https://solarnexus.epscorspo.nevada.
edu/. [Online; accessed February 17, 2022].

[5] Hashicorp. Consul. https : / / www. consul . io/. [Online;
accessed February 17, 2022].

[6] Desert Research Institute. Scaling environmental pro-
cesses in heterogeneous arid soils (sephas). URL: https:
//www.dri.edu/sephas. [Online; accessed February 17,
2022].

[7] Arne Johanson, Sascha Flögel, Christian Dullo, and
Wilhelm Hasselbring. Oceantea: exploring ocean-
derived climate data using microservices. International
Workshop on Climate Informatics (CI 2016):24–29,
2016.

[8] Alexandr Krylovskiy, Marco Jahn, and Edoardo Patti.
Designing a smart city internet of things platform with
microservice architecture. In Future Internet of Things
and Cloud (FiCloud), 2015 3rd International Confer-
ence on, pages 25–30. IEEE, 2015.

[9] Vinh D Le, Melanie M Neff, Royal V Stewart, Richard
Kelley, Eric Fritzinger, Sergiu M Dascalu, and Freder-
ick C Harris. Microservice-based architecture for the
nrdc. In 2015 IEEE 13th International Conference
on Industrial Informatics (INDIN), pages 1659–1664.
IEEE, 2015.

[10] Microsoft. Windows communication foundation. URL:
https: / /docs.microsoft .com/en- us/dotnet / framework/
wcf/. [Online; accessed February 17, 2022].

[11] Rakhi Motwani, Mukesh Motwani, Frederick C Har-
ris Jr, and Sergiu Dascalu. Towards a scalable and
interoperable global environmental sensor network us-
ing service oriented architecture. In Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP),
2010 Sixth International Conference on, pages 151–156.
IEEE, 2010.

[12] Hannah Munoz, Connor Scully-Allison, Vinh Le, Fred-
erick C Harris Jr, and Sergiu Dascalu. A mobile quality
assurance application for the nrdc. Proceedings of the
ISCA 26th International Conference on Software En-
gineering and Data Engineering (SEDE 2017):61–66,
2017.

[13] Peter Rogers. Service-oriented development on
netkernel- patterns, processes & products to
reduce system complexity. URL: http : / / www .
cloudcomputingexpo . com / node / 80883. [Online;
accessed February 17, 2022].

[14] Connor Scully-Allison, Vinh Le, Frederick C Harris Jr,
and Sergiu Dascalu. Near real-time autonomous quality
control for streaming environmental sensor data. 22nd
International Conference on Knowledge-Based and In-
telligent Information & Engineering Systems, 2018.

6


