
THURSDAY: A Web Platform to Support AutoML
CHASE CARTHEN, CHRISTOPHER LEWIS, VINH LE, ALIREZA TAVAKKOLI, FREDERICK C. HARRIS, JR.,
and SERGIU DASCALU, University of Nevada, Reno, USA

THURSDAY is a web platform that aids users in building machine learning
models by providing easily accessible tools to either create models manu-
ally, or through the use of automated machine learning (AutoML) libraries
like AutoKeras. As part of THURSDAY’s key innovations, users are given
the opportunity to configure and run multiple machine learning models.
The results of these model executions can then be compared with built-in
performance metrics. Finally, THURSDAY allows users to analyze hyper-
parameter changes, as well as the changes created by AutoML libraries, in
order to provide a vital tool that aids in the revision of existing models. To
meet the high volume demands of machine learning, THURDAY adopted a
microservice-based design pattern that supports containerization, orchestra-
tion, and scalabability. In this paper, the design, implementation, and impact
of the THURSDAY system is explored in detail. In order to evaluate the
capability of THURSDAY, its core functionality is compared against similar
platforms that provide machine learning support.

CCS Concepts: • Human-centered computing→ User interface toolkits;
Information visualization; Visualization toolkits; • Software and its engi-
neering→ Formal software verification.

Additional Key Words and Phrases: automl, visualization, deep learning,
human computer interaction, neural networks

ACM Reference Format:
Chase Carthen, Christopher Lewis, Vinh Le, Alireza Tavakkoli, Frederick
C. Harris, Jr., and Sergiu Dascalu. 2022. THURSDAY: A Web Platform to
Support AutoML. 1, 1 (April 2022), 6 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
The inclusion of machine learning (ML) in research projects often
presents itself as a steep risk for new researchers, due to the sheer
amount of time it requires to learn and configure a workflow. Find-
ing the optimal ML model and the parameters associated to that
model can steal away a significant amount of time, even for pro-
fessionals and those savvy with ML. Researchers employing ML in
their workflowmay soon find that they spend more time on learning
ML and contending with parameter tuning than the actual research
of their domain.

Interestingly, many researchers have identified this gap between
learning/configuring ML and utilizing it in their domain research.
It is through this need that the sub-field of Automated Machine
Learning (AutoML) emerged. AutoML’s express purpose is to bridge

Authors’ address: Chase Carthen, chase@nevada.unr.edu; Christopher Lewis,
christopher_le1@nevada.unr.edu; Vinh Le, vle@unr.edu; Alireza Tavakkoli, tavakkol@
unr.edu; Frederick C. Harris, Jr., fred.harris@cse.unr.edu; Sergiu Dascalu, dascalus@
cse.unr.edu, University of Nevada, Reno, 1664 North Virginia Street, Reno, USA, 89557.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/4-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

this research gap by developing tools to automate the process of
searching for optimal models and identify why the tuning of certain
parameters produce more effective results. THURSDAY is designed
with this purpose in mind and operates as a means to integrate
AutoML tools into a usable platformwith powerful tools and services
to cater to researchers seeking a potential ML component in their
domain research.
THURSDAY itself is a platform consisting of several powerful

ML tools designed to ease the burden of researchers. One such tool
is a customized visualization designed with AutoML in mind. This
visualization provides a visual breakdown of differences betweenML
models generated from AutoML libraries, but although it supports
more than one type of model, it is aimed primarily at deep learning
models. The visualization presents differences between models, and
these differences includemetrics such as the loss, accuracy, precision,
recall, computation time, and memory usage. Along with comparing
models generated from AutoML libraries, users are able to create a
machine learning model themselves and compare it against other
models. This functionality is included so that the user may explore
any form of model that may be of interest. These functionalities
require that THURSDAY’s software be robust enough that it can
scale to accommodate multiple users.
In execution, THURSDAY is a full stack application designed so

that it can be placed on clustering infrastructures, like Kubernetes.
At the time of this deployment, THURSDAY is deployed and config-
ured with Kubernetes in mind. THURSDAY’s various subsystems
and component are all designed and implemented with Docker con-
tainers as its primary source of containerization. This is done so
that a certain degree of scalability can be ensured as development
continues. To allow THURSDAY to be used by almost anyone, this
scalability is core to the implementation of THURSDAY, as not every
user has a powerful enough machine to develop using AutoML or
ML libraries. A database is used to keep track of previous models
and datasets used by THURSDAY. This paper covers only the use
case of THURSDAY with one AutoML library, AutoKeras [12]. The
design and implementation of this software is further discussed later
in the paper.

The rest of the paper is structured as follows: Section 2 describes
a general background of AutoML and the problems that THURS-
DAY is being designed to solve; Section 3 describes similar work
related to THURSDAY and this problem domain; Section 4 covers
how THURSDAY is designed and implemented; along with some
limitations; Section 5 does a comparison against existing AutoML
tools and other behavior when implemented; Section 6 describes the
core functionality and unique aspects of THURSDAY; and lastly Sec-
tion 7 outlines the future directions of THURSDAY and the overall
contributions it brings.

, Vol. 1, No. 1, Article . Publication date: April 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Chase Carthen, Christopher Lewis, Vinh Le, Alireza Tavakkoli, Frederick C. Harris, Jr., and Sergiu Dascalu

2 BACKGROUND
Within the AutoML field regarding deep learning, researchers have
been working on improving a number of topics. A few topics that
we want to highlight are: hyperparameter tuning, meta-learning,
neural architecture search, and explainable autoML. Hyperparam-
eter tuning refers to searching for the best set of parameters that
would lead to the best machine learning model. An example of a
hyperparameter would be the bias of a neuron in an artificial neural
network (ANN), or the number of folds to split a dataset into. Typi-
cally, hyperparameters are static in nature and must be specified by
the developer of the model.
The goal behind meta-learning is for a machine learning model

to retain what it has learned from one problem. Then, when the
machine learning model is trained for another problem, the retained
information from the past plays an active part of the new solution. In
more layman terms, meta-learning’s goal is for a machine learning
model to be able to apply past knowledge to new problems, and
continuing this process again and again onto future problem(s).
Neural architecture search (NAS) consists of searching for the

best neural network that will solve a problem in an automated
fashion. Methods of NAS can be broken down into three different
properties: search space, search strategy, and performance estima-
tion strategy [6]. Search space encompasses looking for the best
architecture for a given model that may constraints such as the
number of neural network layers or number of neurons in a neural
network. Search strategy is how the search space explored such as
random search, breadth first search, and other types of searchers.
Performance estimation strategy is how to explore the estimation
of a neural network.

Explainable AutoML (xAutoML) aims to make AutoML more ex-
plainable and improve its transparency. Major talking points within
xAutoML include subjects like hyperparameter importance, auto-
matic ablation studies, visualizing hyperparameter effects and sam-
pling process [8]. Hyperparameter importance refers to finding
which hyperparameters are important globally. Automatic abalation
studies refers to finding what configuration of an AutoML tool was
important after changes. Visualizing hyperparameters effects and
sampling process refers to visualizing the results caused by altering
the hyperparameters and the sampling process. In THURSDAY’s
case, this system would categorize as an implementation of the
xAutoML methodology, as it’s main purpose is to assist a user in
interpreting the changes made by AutoML libraries.
Typically, the pipeline of AutoML can be broken down as: data

preparation, feature engineering, model generation, and model eval-
uation [10]. The steps for the pipeline of AutoML are shown visu-
ally in Figure 1. Data preparation characterizes how data has to be
changed, details added, or even corrected in order for a machine
learning model to use the data. In order for a machine learning
model to learn a specific solution, it often requires some feature
within a dataset that can be designed by the user or discovered by
the model in the case of deep learning. This process is known as
feature engineering. In order for a task within machine learning to
be achieved, a model must be built. Model generation is often done
by hand and the model is chosen based on the type of problem that
is presented. The goal of AutoML is to automate this task of building

the model’s architecture in model generation. Training these models
can take time and would be inefficient if evaluated this way. There
are techniques for estimating how well the model performs without
fully training the model and this process is known as model evalua-
tion. The combination of model generation and model evaluation
encompasses encompasses NAS.

Fig. 1. The steps of building a machine learning model and the overall
pipeline of AutoML [10] from start to finish. Neural architecture search
encompasses both model generation and model evaluation.

In order to know if an AutoML framework or library is producing
an effective machine learning model, a set of metrics are needed to
validate whether a model is better performing than another model.
These metrics are dependent on the type of output the model has,
which could be classification or regression. These metrics can in-
clude mean squared error, training loss, accuracy, precision, and
recall [5]. In practice, metrics for validation determine whether the
changes to the data or machine learning models produce better
performance in an AutoML library. THURSDAY visualizes these
types of metrics dynamically based on the AutoML library that it
interfaces with and what metrics that library displays natively. The
visualization of these metrics, with a representation of the machine
learning models, can help inform a user of what produces a better
result for a given problem.

3 RELATED WORK
While it remains a relatively new field, there are existing libraries
for AutoML, including: Auto-WEKA [13], Auto-Sklearn [7], Auto-
PyTorch [21], and Auto-Keras [12]. Both Auto-PyTorch and Auto-
Keras support deep learning and have been built specifically to
do AutoML with Neural Architecture Search and Hyperparameter
Tuning. Auto-sklearn and Auto-WEKA supports algorithm selec-
tion in terms of machine learning and Hyperparameter Tuning.
Researchers have also been working on getting AutoML to run in a
scalable environment such as Katib in Kubernetes [20]. Even major
tech companies, like Microsoft, Google, and Amazon have started
to support AutoML through various tools [1]. For the sake of eval-
uating THURSDAY’s capabilities, the tools that evaluated here in
depth are Katib, CAVE, and ATMSeer [3, 19, 20].

Katib is a platform and system that runs inside Kubernetes [20]. It
is specialized for doing hyperparameter and NAS inside Kubernetes.
Users can specify themachine learningmodel andAutoMLworkflow
they want to run. While Katib is highly scalable and has a database
for keeping track of models and metrics, it does not keep track of
multiple users like ATMSeer and THURSDAY. Katib implemented
its own functionality for doing AutoML unlike THURSDAY that is

, Vol. 1, No. 1, Article . Publication date: April 2022.

THURSDAY: A Web Platform to Support AutoML • 3

Fig. 2. The high level diagram of THURSDAY.

relying upon AutoML libraries like Auto-Keras. Katib is similar to
THURSDAY in that they are both microservice oriented and both
have functionality for performing NAS and hyperparameter tuning.

ConfigurationAssessment, Visualization and Evaluation, or CAVE [3],
was created with the express goal of helping researchers understand
how different configurations of an algorithm impact the results of
the solution, but in an automated fashion. This tool fits within the
AutoML field, because hyperparameters are a large part of the con-
figuration process in machine learning. The authors of CAVE, in
their paper, focused on showcasing it with an SAT solver. This tool
is very similar to THURSDAY in that it does performance analysis,
feature importance, parameter importance, and configurator impor-
tance. Where THURSDAY differs in comparison to CAVE, is that
THURSDAY supports and even encourages deep learning models
and is designed as a portal for multiple users.
ATMSeer [19] is a visualization tool built on top of Auto Tune

Models (ATM), an AutoML System built for multiple users [18]. ATM
is novel because it supports multiple users, as most AutoML systems
operate as standalone applications. ATM uses a MySQL database
and Amazon S3 to contain information about models, datasets, con-
figurations, and output from runs. ATMSeer is able to interface with
ATM’s various functionalities, like being able to pause a model being
trained and look at different metrics. THURSDAY relates to both
in that it uses an SQL database to store models and are user-facing
portals. However, THURSDAY differs in that it is more focused to-
wards the deep learning side of machine learning, and it uses a
suite of existing AutoML libraries, unlike ATMSeer and ATM that
implement their own code base.
THURSDAY is very similar to ATMSeer, in that it is built for

multiple users and visualize results from training models. CAVE is
comparable to THURSDAY, but isn’t built as a system for multiple
users. Katib is a general AutoML platform built on Kubernetes,

that allows users to run models in a generic fashion with yaml
declaration, but isn’t built specifically for helping find what changes
made by AutoML are particularly relevant. THURSDAY is built
specifically to be scalable and for multiple users, like ATM and
Katib, while also helping users find what changes made by AutoML
are relevant, like CAVE and ATMSeer.

4 IMPLEMENTATION

4.1 Requirements and Use Cases
THURSDAY’s requirements were generated from use cases. Require-
ments and use cases were all created based on two main factors:
usability and visualization. Requirements and use cases involving
usability allow the user to do some action inside of the system.
Requirements and use cases involving visualization allow the user
to see data THURSDAY generates, or actions that THURSDAY is
currently executing.

THURSDAY had the usability requirements that allowed the user
to: load tensorflow and labeled datasets; limit the number of lay-
ers and size of the models; allow the model parameters to be con-
figurable; allow the user to set the number of epochs, validation
techniques, and number of layers; allow an in-training model to be
stopped or started; save and load a model, and the code associate
with it; specify a time and epoch limit for run duration; allow an
AutoML library to be used and configured; and store, display, and
evaluate past models.

THURSDAY had the visual requirements that allowed the user to
visualize: different colored graphs for each model; a model’s epoch,
accuracy, and what validation techniques were used on it; a model’s
running accuracy and error rate; the current status of the model
(running, running duration, finished, and error status messages);
and previous models and their evaluations.

, Vol. 1, No. 1, Article . Publication date: April 2022.

4 • Chase Carthen, Christopher Lewis, Vinh Le, Alireza Tavakkoli, Frederick C. Harris, Jr., and Sergiu Dascalu

Figure 2 demonstrates THURSDAY’s system at a high level. The
back end consists of several subsystems that handles the configura-
tion, datasets, andmodels brought into the system. AML/AutoML in-
terface handles connecting to different machine libraries associated
to THURSDAY in the Back End. A dataset interface handles fetching
external datasets for THURSDAY. THURSDAY’s frontend consists of
a user interface that uses a model interface, result interface, dataset
interface, and a configuration interface. These interfaces on the fron-
tend allow the system to take in a user’s specifications and make
changes in the backend. The implementation of these requirements
and ideas behind this figure required the front-end and back-end of
THURSDAY to run in concert with one another and update when
data is generated.

4.2 Back End
THURSDAY’s back end currently uses AutoKeras [12] as the AutoML
framework that is being used to compare ML models. THURSDAY
uses a Postgresql [17] database to store both the ML model being
worked with and results from training a model. Flask [15] is imple-
mented as a connection between the front end, the database, and
the AutoML framework. Each object in the back end is also con-
tainerized using Docker [11]. This includes the AutoML framework
functions, the Postgresql database, and the Flask code that opens up
end points for a web interface to access. These containers are then
orchestrated with Docker-Compose [11], though Kubernetes [2]
is being considered as a replacement when doing future work for
THURSDAY. Using this system, THURSDAY is able to expose the
back end to the front end in a controlled way that also allows further
scalability in the future. Another result of containerizing THURS-
DAY is that, once hosted, it allows multiple users to use THURSDAY
independently from one another. Once this hosting takes place,
users won’t need to use their own machine for machine learning.

4.3 Front End
THURSDAY’s front end uses Angular [9] to connect to the back
end’s exposed endpoints, created in Flask. The UI is created using
Angular [9], Bootstrap [4], and Plotly.js [16]. Figure 3 shows the
evaluation tab from the front end UI. This figure also shows a graph
that is made in Plotly.js off of selected results from the back end. A
more detailed example can be seen in Figure 4. Figure 3 also shows
bootstrap in the form of navigation tabs at the top bar of the screen,
dropdown menus for data selection, and a button for refreshing the
graph. The front end is also containerized using Docker. When all
of the containers are orchestrated together using Docker-Compose
or Kubernetes, this is called a pod. This pod represents one total
application for one single user. Any of these containers in a pod
can be swapped out for either updated containers, or to be replaced
entirely with whatever the user might want at a time. For example,
if we found a better replacement for our Postgresql database, we
could create a similar container to the Postgresql database container
and then have an automated script pull all of the data out of each
Postgresql database for each pod. This data would then need to be
put into the new container so that users don’t lose data, but the
actual swap between the databases would be almost instant after
the data was moved in each individual pod.

Fig. 3. A graph of the MNIST dataset in THURSDAY’s user interface.

(a)

(b)

Fig. 4. For both figures 4(a) and 4(b) a model was ran for 10 epochs with
AutoKeras. On figure 4(a) is the training loss and on figure 4(b) is the
validation loss for each epoch.

5 EVALUATION
This section describes what features were implemented within
THURSDAY and how it currently compares with existing software
out there. It also describes what is left to implement into THURSDAY,
to make a complete and feature rich application.

, Vol. 1, No. 1, Article . Publication date: April 2022.

THURSDAY: A Web Platform to Support AutoML • 5

Feature ATMSeer CAVE Katib THURSDAY
Platform/Language TypeScript Python Kubernetes Docker
Multitenancy Yes No Yes *Yes
Run AutoML Libraries No Yes Yes Yes
Fault Tolerant Yes No Yes *Yes
Metric Storage Yes No Yes Yes
Metric Collection Yes Yes Yes Yes
Scalable Yes No Yes Yes
Configurable Yes Yes Yes Yes
Visualization Yes Yes No Yes
Make a Custom Model Yes Yes Yes *Yes
Uploading data Yes No Yes *Yes
Deep Learning Models No No Yes Yes
Compare Libraries No No No Yes

Table 1. A feature comparison of THURSDAY to ATMSeer, CAVE, Katib, and THURSDAY. * are planned for implementation.

Fig. 5. Example of how model runs can be configured in the user interface
of THURSDAY.

5.1 Features Implemented
Core functionality for THURSDAY has already been implemented.
These features include:

• The front end and back end THURSDAY are implemented
and connected together.

• The front end can display data from the database for previous
model runs such as loss, accuracy, precision, recall for both
training and validation datasets.

• The back end stores machine learning models and configura-
tions sent down by the user.

• The front end can start and display AutoML jobs on a select
set of datasets from TFDS.

• AutoKeras has been integrated with the back end.
• We have dockerized and orchestrated all services for this
project into Docker-Compose.

Essentially, we have implemented sufficient functionality for the
whole workflow of THURSDAY to work. For example, a user can
pick the MNIST dataset with any number of parameters as shown
in Figure 5. See the results within some time like those shown in
Figure 3. AutoKeras was chosen as it seems to be the easiest library
to work with given the documentation made available for it. The
datasets provided by TFDS were chosen because Google provides

easy access to the datasets, and the API to interface with them
is intuitive. The readily available documentation for Angular and
Bootstrap made it possible for us to build a good and functional user
interface. Flask made it quick and efficient to set-up endpoints to
be observed by the front end. Plotly allowed for models runs to be
easily visualized within a webbrowser and certainly made it easy to
include it in this paper in Figure 4.
With these implemented functionalities, more functions can be

implemented with ease. These features include: being able to visual-
ize models stored in the database, using existing models to evaluate
against other datasets, allowing users to create custom models, and
the ability to upload custom datasets. Adding these new functional-
ities will allow expanding on different areas that can be explored.
For example, if a researcher finds that a particular model generated
by an AutoML library produces an interesting result, they can try
creating that model in the custom interface and tweak some aspect
of it. The plans for the future work are discussed further in Section 7.

5.2 Software Comparison
THURSDAY, as specified in Section 3, is comparable to CAVE, Katib,
and ATMSeer in its functionality. A comparison of the functionality
with these software packages can be seen in Table 1. The features
being compared are as follows: the major platform or language;
whether the software has multiple users or multitenancy; can run
AutoML libraries; is fault tolerant; can store metrics in some data-
base; can collect metrics; is scalable; is configurable; has visualiza-
tion for different metrics; users can upload data or models; and has
the capability to work with deep learning models. Both ATMSeer
and Katib hold most of the functionality that THURSDAY provides.
Katib is able to work with many different machine learning libraries
and could use an AutoML library like AutoKeras, but it would be
counter productive as Katib itself is a system built to do AutoML
with existing machine learning libraries. Katib is very similar to
ATM and AutoKeras. Also, Katib is not built to be a visualization
tool to compare machine learning libraries. ATMSeer, being a visu-
alization tool, allows for the user to create custom models and is
built on top of the ATM AutoML system. ATMSeer, however, does

, Vol. 1, No. 1, Article . Publication date: April 2022.

6 • Chase Carthen, Christopher Lewis, Vinh Le, Alireza Tavakkoli, Frederick C. Harris, Jr., and Sergiu Dascalu

not provide the functionality to compare machine learning libraries
against themselves or to run them. ATM was designed as a system
that works separately from other AutoML libraries and does not
seem to perform generation from deep learning based networks.

6 CONCLUSION
In this paper, we discussed how THURSDAY is implemented and
what other tools or systems it is related to. THURSDAY is imple-
mented as a full stack application that has a back end and a front
end. The back end is comprised of a database and some web ser-
vices that can send information from the database and start the
generation of machine learning models with AutoML libraries. The
front end allows for the user to interface with the back end to do
things such as configuring the generation of machine models from
an AutoML library, or visualizing results from a previous model
with one dataset.

THURSDAY is a unique and modernized example of software
engineering due to the inclusion of containerized elements with
Docker, orchestrated containers with Docker-Compose, and the
inclusion of Flask and Angular for abstracted user functions and
front end design. THURSDAY is also very modular due to this con-
tainerization, so implementing other AutoML libraries and other
datasets will be considerably easier than most other applications
that aren’t containerized. THURSDAY also has the possibility to
scale and be used by many users due to the containerization and
orchestration done by Docker and Docker-Compose.

7 FUTURE WORK
The core functionality of this project has been implemented, but
there is still a lot that the authors wish to add to make this work
truly impactful in the machine learning field. We would like to ex-
pand on the number of available AutoML libraries that THURSDAY
currently uses. Some AutoML libraries that may be added in the
future include Auto-PyTorch, Auto-WEKA, and Auto-Sklearn. Like
ATMSeer, we would like to have the functionality for multiple users
where users can upload their own models and data. For example we
could include a visualizer, similar to Netron [14], so that the user
can see what a model looks like, or alternatively, use it to build a
model for comparing against other models in the system.
To further improve THURSDAY at a system level we are plan-

ning to integrate THURSDAY into a Kubernetes cluster, similar to
Katib, and test it with ongoing projects at the University of BLIND
REVIEW along with preexisting datasets. Since THURSDAY is al-
ready containerized with Docker it will be trivial to integrate with
some modifications. At the University of BLIND REVIEW there is a
dataset being generated with lidar sensors along a local street, this
tool could be used to build a set of classification models for this data.
We also want to compare how similar configurations within AutoML
libraries perform on existing datasets versus existing known imple-
mentations. This is to give a more empirical analysis on AutoML
models versus traditionally made models.

ACKNOWLEDGMENT
This material is based in part upon work supported by the National
Science Foundation under grant numbers Grant1 and Grant2. Any

opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES
[1] altexsoft. 2022. Comparing Machine Learning as a Service: Ama-

zon, Microsoft Azure, Google Cloud AI, IBM Watson. https:
//www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-
service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/

[2] The Kubernetes Authors. 2022. Production-Grade, Container Orchestration. https:
//kubernetes.io/

[3] André Biedenkapp, Joshua Marben, Marius Lindauer, and Frank Hutter. 2019.
CAVE: Configuration Assessment, Visualization and Evaluation. In Learning
and Intelligent Optimization, Roberto Battiti, Mauro Brunato, Ilias Kotsireas, and
Panos M. Pardalos (Eds.). Springer International Publishing, Cham, 115–130.

[4] bootstrap. 2022. Bootstrap: The Most Popular HTML, CSS, and JS library in the
world. https://getbootstrap.com/

[5] Sibanjan Das and Umit Mert Cakmak. 2018. Hands-on Automated Machine Learn-
ing: A beginner’s Guide to Building Automated Machine Learning Systems using
AutoML and python. Packt Publishing, Livery Place 3 Livery Street Birmingham
B3 2PB, UK. https://www.packtpub.com/product/hands-on-automated-machine-
learning/9781788629898

[6] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. Journal of Machine Learning Research 20, 55 (2019), 1–21.
http://jmlr.org/papers/v20/18-598.html

[7] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning.
InAdvances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 10010 North
Torrey Pines Road, La Jolla, CA 92037, 2962–2970. https://papers.nips.cc/paper/
5872-efficient-and-robust-automated-machine-learning.pdf

[8] Freiburg-Hannover. 2022. Hyperparameter optimization. https://www.automl.
org/

[9] Google. 2022. Angular: TheModernWeb Developer’s Platform. https://angular.io/
[10] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the state-

of-the-art. Knowledge-Based Systems 212 (2021), 106622. https://doi.org/10.1016/
j.knosys.2020.106622

[11] Docker inc. 2022. Empowering App Development for Developers. https://www.
docker.com/

[12] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural
Architecture Search System. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. ACM, Association for
Computing Machinery, New York, NY, USA, 1946–1956.

[13] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-
Brown. 2017. Auto-WEKA 2.0: Automatic model selection and hyperparameter
optimization in WEKA. Journal of Machine Learning Research 18, 25 (2017), 1–5.
http://jmlr.org/papers/v18/16-261.html

[14] Lutzroeder. 2021. Lutzroeder/netron: Visualizer for Neural Network, Deep Learn-
ing, and Machine Learning Models. https://github.com/lutzroeder/netron

[15] Pallets. 2022. Welcome to Flask - Flask Documentation (2.1.x). https://flask.
palletsprojects.com/en/2.1.x/

[16] Plotly. 2022. Plotly: The Front End for ML and Data Science Models. https:
//plotly.com/

[17] PostgreSQL. 2022. PostgreSQL: The World’s Most Advanced Open Source Data-
base. https://www.postgresql.org/

[18] Thomas Swearingen, Will Drevo, Bennett Cyphers, Alfredo Cuesta-Infante, Arun
Ross, and Kalyan Veeramachaneni. 2017. ATM: A distributed, collaborative, scal-
able system for automated machine learning. In 2017 IEEE International Conference
on Big Data, BigData 2017, Boston, MA, USA, December 11-14, 2017. IEEE, Boston,
MA, USA, 151–162. https://doi.org/10.1109/BigData.2017.8257923

[19] Qianwen Wang, Yao Ming, Zhihua Jin, Qiaomu Shen, Dongyu Liu, Micah J. Smith,
Kalyan Veeramachaneni, and Huamin Qu. 2019. ATMSeer: Increasing Transparency
and Controllability in Automated Machine Learning. Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300911

[20] Jinan Zhou, Andrey Velichkevich, Kirill Prosvirov, Anubhav Garg, Yuji Oshima,
and Debo Dutta. 2019. Katib: A Distributed General AutoML Platform on Ku-
bernetes. In 2019 USENIX Conference on Operational Machine Learning (OpML
19). USENIX Association, Santa Clara, CA, 55–57. https://www.usenix.org/
conference/opml19/presentation/zhou

[21] Lucas Zimmer, Marius Lindauer, and Frank Hutter. 2021. Auto-Pytorch: Multi-
Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Transactions on
Pattern Analysis and Machine Intelligence 43, 9 (2021), 3079–3090. https://doi.org/
10.1109/TPAMI.2021.3067763

, Vol. 1, No. 1, Article . Publication date: April 2022.

https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://kubernetes.io/
https://kubernetes.io/
https://getbootstrap.com/
https://www.packtpub.com/product/hands-on-automated-machine-learning/9781788629898
https://www.packtpub.com/product/hands-on-automated-machine-learning/9781788629898
http://jmlr.org/papers/v20/18-598.html
https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
https://www.automl.org/
https://www.automl.org/
https://angular.io/
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://www.docker.com/
https://www.docker.com/
http://jmlr.org/papers/v18/16-261.html
https://github.com/lutzroeder/netron
https://flask.palletsprojects.com/en/2.1.x/
https://flask.palletsprojects.com/en/2.1.x/
https://plotly.com/
https://plotly.com/
https://www.postgresql.org/
https://doi.org/10.1109/BigData.2017.8257923
https://doi.org/10.1145/3290605.3300911
https://www.usenix.org/conference/opml19/presentation/zhou
https://www.usenix.org/conference/opml19/presentation/zhou
https://doi.org/10.1109/TPAMI.2021.3067763
https://doi.org/10.1109/TPAMI.2021.3067763

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Implementation
	4.1 Requirements and Use Cases
	4.2 Back End
	4.3 Front End

	5 Evaluation
	5.1 Features Implemented
	5.2 Software Comparison

	6 Conclusion
	7 Future Work
	References

