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Abstract—One of the most significant reliable and renewable
energy sources is wave energy which has the most energy density
among the renewable energy sources. Significant Wave Height
(SWH) plays a major role in wave energy and hence this
study aims to predict wave height using time series of wave
characteristics as input to various machine learning approaches
and analyze these approaches under several scenarios. Two
different machine learning algorithms will be implemented to
forecast SWH. In the first approach, the SWH will be forecasted
directly using a Long Short Term Memory (LSTM) network and
in the second approach an LSTM and an Ensemble Empirical
Mode Decomposition (EEMD) method are proposed for SWH
prediction. For this purpose, the elements of wave height will be
initially decomposed and used for training an LSTM network
to calculate the time series of SWH. Also, the calibration and
verification of the modeled wave characteristics will be done
using real data acquired from buoys. The results imply that the
EEMD approach provides more accurate results and calculating
the wave height through the decomposition and prediction of
its main wave components can deliver more accurate outcomes
considering various error indices. Also, it can be inferred from
the results that the accuracy of the predictions will decrease as
the forecasting time horizon increases.

Index Terms—Deep learning optimization, Ensemble empirical
mode decomposition, Long short term memory network, Neural
network in coastal engineering, Ocean wave decomposition,
Ocean wave height forecasting, Regression algorithms, Time
series analysis, Wave characteristics prediction, Wave energy
prediction

I. INTRODUCTION

Fossil fuel combustion has been shown to have negative
effects on our living environment and is one of the main drivers
of global climate change. As such, the world is trying to move
on from pollutional energy sources to clean and renewable
ones [1]. Renewable energy resources including wind, solar,
and ocean energy (i.e. thermal, tidal, waves, and currents) are
among the common types of renewable energy sources that
are employed by industries throughout the world.

Ocean waves provide energy densities which are signifi-
cantly greater than wind and solar resources [2]. This energy
density and its renewable property has triggered a surge of
efforts in the world to try to harness ocean wave energy.
Because of this, wave energy prediction plays a crucial role
in planning placement of wave energy converter. The most
crucial element of wave energy is Significant Wave Height

(SWH) and its prediction plays a significant role to plan for a
proper energy converter.

Waves are generally generated because of winds and the
fluctuations in wave periods and heights are derived from the
continuous shifts and changes in various wind’s features [3].
Also, wave conditions are varied over monthly, seasonal,
and annual timescales [4]. Through analyzing ocean wave
characteristics obtained from buoy or satellite measurements
in various locations, and employing deep-water numerical
models, the average wave energy can be determined in those
locations [5] [6].

The rest of this paper is structured as follows: Section II
covers the related work, Section III presents the employed
methodology, Section IV presents the results, provides discus-
sion about them and compares the results of the two developed
frameworks, and finally Section V draws conclusions and
presents ideas for future work.

II. RELATED WORK

Researchers have investigated solutions to accurately predict
the oceanographic parameters altering wave power and height.
The implemented approaches have included a wide range
of methods namely statistical methods, numerical methods,
empirical models, and hybrid approaches [7]. Of these, the
empirical methods are easy and quick to use but cannot
provide proper accuracy with results unless being utilized
over large horizons [3]. Numerical models can become handy
to achieve increased accuracy and wider applicability [3].
For instance, numerical forecasting studies have been made
to the Persian Gulf [8] and China Sea datasets [9]. Finite
element methods have also been vastly used for the prediction
purposes. However, these models suffer from some inherent
uncertainties in real-world cases. [10]. Besides, in most cases
the accuracy of numerical models is highly dependent on mesh
sizes which also directly affects the computational time [11].
Soft computing methods analyze data structure to find po-
tential relations to predict outcomes. To be more specific,
knowing the inputs and desired outputs, supervised learning
neural networks can be developed using back propagation
algorithm and these methods are one of the most significant
tools which use approximation to determine patterns and
relations within the provided data [12] [13]. Using a back



propagation neural network, [14] predicted the ocean wave
height. Their method could provide the anticipated outcomes
quickly while reaching a certain accuracy.

In another study, it was concluded that the machine learning-
based method could present better results when compared to
physics-based models. However, the accuracy decreased as the
prediction period increased [15]. Also, [16] and [17] investi-
gated SWH prediction based on an artificial neural network. In
their studies, classical time series models and neural network
models were applied to observed SWHs along the Indian coast.
The outcomes implied that the neural network could predict
short-term outcomes with more accuracy whereas the results
of the neural network model for long-term predictions were
similar to classical models.

Considering soft computing’s limited forecasting capability,
it couldn’t gain the trust to be widely applied in operational
forecasting marine systems [18]. Hence, in recent years, ma-
chine learning, especially deep learning has been applied in
marine and meteorological forecasting [19]. One of the mostly
applied regression prediction neural network algorithms is a
Recurrent Neural Network (RNN) [19]. RNNs are a type of
Artificial Neural Network that use internal memories to model
temporal dynamic behavior. They can be a good fit to properly
learn from non-linear time series and hence, they have been
implemented in analyzing many time series problems [20].
Accordingly, they can be a good framework for forecasting
systems.

The problem with RNNs is that they suffer from the issue
of vanishing gradient and as a result, errors cannot be back
propagated to a previous neuron in a faraway layer [16].
A solution to this problem is the LSTM network. In these
networks, long and short-term memory components take the
place of the hidden neurons containing activation functions.
Consequently, the network can store values of data in any
length of time and the problem with vanishing gradients in
RNNs is solved. An example of the LSTMs’ efficiency was
demonstrated by [21] to conduct predictions using a hybrid
Simulating Waves Nearshore (SWAN) LSTM framework. This
developed framework enhanced the accuracy of predictions
by nearly 65% when compared to SWAN model simulations.
Another study used various datasets to compare the wave
model from the European Centre for Medium-range Weather
Forecasts (ECMWF) with LSTM and multi-layer perceptron
models [22].

The measured marine wave data used as input for neu-
ral networks, are consisted from several components having
different properties including various frequencies and periods
which all form non-stationary time series. Accordingly, in this
study an LSTM framework is developed and is used to predict
the SWH time series for various time forecasting windows. In
the next step, the developed framework is integrated with a
decomposition method and is employed for the same predic-
tion as previous step. Afterwards, the performance of the two
developed frameworks are compared.

III. METHODOLOGY AND IMPLEMENTATION

Figure 1 shows the flow chart of the wave height prediction
models used in this study. As it is depicted, the buoy data is
first processed to find the missing records in the time series
dataset, and linear interpolation is employed to prepare the
training set. In this study, two LSTM model structures are

Fig. 1. Flow chart of the LSTM and EEMD-LSTM wave height models

developed to predict the wave heights for various lead times.
The first LSTM model uses a sequence of wave heights as its
input. As it is shown in the Figure 2, for the second model,
an EEMD is used as a time-frequency data analysis method
which divides wave height time series into a number of com-
ponents, called intrinsic mode functions (IMFs). These IMFs
correspond to various frequencies and a residue. To be more
specific, EEMD has the ability to adaptively analyse a signal
regardless of any prior assumption about the composition of it.
To do that, it outlines IMFs consecutively through interpolating
between peak values.

In this study, the underlying abilities of EEMD are utilized
since the nonlinear nature of the waves can be more efficiently
processed by neural networks through decomposing the waves.
The decomposed components will be independently learned by
the LSTM. The reversibility ability in wavelet decomposition
is a beneficial asset for analysing the results here and hence the
LSTM outcomes can be merged to create the final prediction
results as it is depicted in the Figure 2.

A three-layer LSTM framework is developed where each
of the decomposed waves in the EEMD model as well as the
waves in the Non-EEMD one are trained for 100 epochs with
a batch size of 64. The dataset includes more than 25,000
wave records that were measured using buoy with one hour



Fig. 2. EEMD-LSTM wave height framework

intervals between the records. This data was then normalized
between 0 and 1 for this study. Also, 85% of these data is
used for training and verification of the frameworks and the
rest is dedicated for testing purposes.

IV. COMPARISONS AND RESULTS

In order to quantitatively evaluate the results and measure
the performance of the models, their error indices are calcu-
lated and compared. These indices are derived for the two
developed LSTM model structures separately and for various
prediction scenarios. The employed error indices are bias, root
mean square error (RMSE), scatter index (SI), mean absolute
error (MAE), mean absolute percentage error (MAPE), and
correlation coefficient (CC):
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where n is the total number of data and xi and yi represent
the observed and predicted values, respectively. The term x̄ is
the mean value for buoy measured data and ȳ is the one for
predicted data. Also, it should be noted that the calibration of
the model was carried out using Mean Square Error (MSE)
index.

Table I shows the comparison of error indices associated
with the two models for testing data. It can be inferred that the
two models predictions are in good match with ground truth
wave data. Also, the EEMD-LSTM framework could succeed
to reach a decrease of 0.12 in RMSE error value comparing to
the one for LSTM framework since the two frameworks were
devised to minimize the RMSE index. The RSME value of the
two models is mentioned in the Table I. Additionally, it can be
noted in Fig. 3 - Fig. 6 that the EEMD-LSTM framework has
successfully reconstructed the decomposed wave components
into one final wave height time series after processing the
components by LSTM network.

As depicted in Fig. 3, both LSTM models achieved good
performances, demonstrating the capability of LSTM network
components to learn and simulate the underlying relationships
exist between various wave height input elements. Addition-
ally, the EEMD based method could impressively establish
relationships between the various decomposed waves and
performed much better than the Non-EEMD LSTM algorithm.



Fig. 3. EEMD LSTM Model - 1hour forecasting window

This accuracy improvement of EEMD over the Non-EEMD
LSTM framework can be seen easier in the error indices
presented in Table I.

TABLE I
ERROR INDICES OF PREDICTION RESULTS FOR THE TWO ALGORITHMS -

PREDICTION WINDOW OF 1 HOURS

Method RMSE MAE MAPE CC SI Bias
EEMD-LSTM 0.07 0.04 12.85 0.97 0.12 -0.005

LSTM 0.20 0.12 32.51 0.86 0.32 0.02

To analyse the frameworks’ capability in various scenarios
and the efficiency of the EEMD implementation for longer
forecasting windows the frameworks were again trained and
tested for 6, 8 and 12 hours prediction windows shown in
Figs. 4, 5, and 6. The networks’ performance can also be seen
from the error indices of Tables II, III, and IV.

TABLE II
ERROR INDICES OF PREDICTION RESULTS FOR THE TWO ALGORITHMS -

PREDICTION WINDOW OF 6 HOURS

Method RMSE MAE MAPE CC SI Bias
EEMD-LSTM 0.14 0.11 29.66 0.91 0.25 -0.004

LSTM 0.37 0.24 73.26 0.72 0.58 0.35

TABLE III
ERROR INDICES OF PREDICTION RESULTS FOR THE TWO ALGORITHMS -

PREDICTION WINDOW OF 8 HOURS

Method RMSE MAE MAPE CC SI Bias
EEMD-LSTM 0.19 0.13 38.28 0.87 0.31 -0.008

LSTM 0.41 0.29 86.3 0.39 0.63 0.67

From Tables I-IV it can be inferred that the EEMD-LSTM
framework has always outperformed the Non EEMD-LSTM
framework. In other words, the implementation of the EEMD
algorithm helps the framework to significantly enhance the re-
sults. For instance, in the case of the 6 hour prediction window,
although the implemented LSTM framework has provided
good results, the implementation of EEMD decomposition

TABLE IV
ERROR INDICES OF PREDICTION RESULTS FOR THE TWO ALGORITHMS -

PREDICTION WINDOW OF 12 HOURS

Method RMSE MAE MAPE CC SI Bias
EEMD-LSTM 0.25 0.18 56.24 0.77 0.40 -0.018

LSTM 0.46 0.33 104.7 0.25 0.74 0.05

method has helped the framework to increase its accuracy by
62%. A similar case can be inferred for the other prediction
windows according to the provided tables and error indices.
Also, various error indices of different prediction windows
indicate the decrease of the two framework accuracy as the
prediction horizon increases. This is shown in Figs. 3 - 6.

These figures also present the comparison of measured
wave heights recorded by buoys along with the models’
prediction. The LSTM network outputs follow the approximate
waveform of the targets, however they fail to correctly predict
several local peaks. In contrast, the proposed EEMD-LSTM
framework showed its ability to take care of local peaks thanks
to decomposing frequency domain of the training data in an
explicit way. This decomposing feature makes the framework
capable enough to gain a better insight to the characteristics
of the data. This feature is more apparent when the window
prediction time goes up as seen in Figs. 5 and 6.

V. CONCLUSIONS AND FUTURE WORK

In this study, two LSTM frameworks were developed for
predicting Significant Wave Height (SWH) where one of
them is utilized with the EEMD method. It was shown that
the LSTM framework can demonstrate good performance.
It can explore relationships between various records of data
and establish waveform trends effectively. Additionally, by
integrating the EEMD as a decomposition method with an
LSTM neural network, the model can significantly outperform
the Non-EEMD LSTM prediction model by nearly 60%.

It can be inferred that the EEMD-LSTM model’s superiority
lies within the embedded decomposition asset that feeds the
network with more and segregated data elements for training.
Accordingly, the results highlight the underlying benefits of



Fig. 4. EEMD and LSTM Models - 6hour forecasting window

Fig. 5. EEMD and LSTM Models - 8hour forecasting window

Fig. 6. EEMD and LSTM Models - 12hour forecasting window



wavelet decomposition and reconstruction by EEMD. Besides,
it is revealed that LSTM and EEMD methods can be mixed and
matched together for SWH prediction purposes. While this is
currently a good asset, future work can involve the integration
of numerical simulation methods to make the EEMD-LSTM
framework more robust against longer prediction horizons and
different wave characteristics.
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