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Abstract—Data acquisition is an integral part in any intelligent
system to ensure the data captured can be processed to a
meaningful deduction. It is common for the researchers to use
the third-party hardware to collect raw data but integrating the
processes into a research workflow is always a challenge. This is
especially so for individuals working with sensors, such as elec-
troencephalogram (EEG) headsets, as the amount of consumer
support that these devices receive from their vendors does not
cover the rigors of human-centered research. Researchers are
forced to utilize services and functions offered by vendors that
may not be tailored to their specific need. In this paper, we
present a proposed methodology that is supported by a prototype
to show the feasibility of consolidating the processes included
in EEG-based user studies, as well as the data analysis that
follows. The system presented utilizes a web application in order
to facilitate the experimental data collection, record timings, and
execute device calibrations. This interface is tied to an institution
service-based pipeline that is not only capable of EEG data
capturing, but able to produce data products for later analysis.
It is envisaged that such an approach can be the first step in
automating EEG data acquisition and its subsequent analytics.

Index Terms—data acquisition, electroencephalogram (EEG),
automated data processing, software development, affective com-
puting, user study software, data stream, lab streaming layer,
self-assessment manikin (SAM), emotiv

I. INTRODUCTION

In an institutional setting, it is not unusual for researchers to
outsource hardware for usage within a research project. Data
acquisition within research project generally involve using
various sensors and devices that are available off the shelf.
However, in fields dealing with EEG-based user studies, such
as Affective Computing or Brain-Computer Interfaces (BCI),
the integration of hardware alongside the study procedures can
be rather challenging. To elaborate, the rigors of conducting
an IRB-certified user study and publishing the results require
a decent variety of dependent variables and tasks to keep
track of. Meanwhile, the base consumer support of these
hardware devices does not normally provide any aid outside of
operating their proprietary device(s)/software. Moreover, many

of these vendors will purposely hide additional services behind
paywalls, making it unsustainable for many research projects.

In lieu of this, many researchers often adopt a stance
of improvisation when it comes to conducting their studies.
It is uncommon within academia to prioritize the develop-
ment of generalized tools to support research workflow, over
conducting the actual research itself. It is not unusual for
these researchers to either create a temporary script, manually
track these variables, or adopt even more tools in order to
provide additional coverage of their tasks. As a result, a good
number of user study methodologies tend to be inconsistent
and no small amount of confusion exists within their research
community.

To address these issues, we developed the Generalized
EEG Data Acquisition and Processing System (GEDAPS), a
software prototype developed from the proposed methodology
to facilitate, execute, and support EEG-based user studies
within an institutional environment. GEDAPS provides an all-
in-one platform in which user studies can be be hosted and
also analyzed for validation purposes. GEDAPS utilizes a
responsive web interface in order for researchers to setup and
conduct their study, while it autonomously tracks configurable
dependent variables, such as task time, overall time, and error
rate. In the backend, the proposed solution GEDAPS utilizes a
service-based backend, coupled with the Lab Streaming Layer
(LSL), in order to autonomously label brain activity, transform
data, and even provide machine learning solutions in order to
generate data products from the EEG headset.

The remainder of this paper is structured as follows: Sec-
tion II introduces a brief background of the topics covered and
some related works, Section III goes into the software design
of the GEDAPS system, Section IV contains the details behind
the GEDAPS prototype, Section V includes a discussion about
the GEDAPS’ benefits within an institutional environment, and
finally, Section VI finishes the paper off with the conclusion
and future work.



Fig. 1. A diagram showing the whole system regarding the data flow and interactions with the research and participant.

II. BACKGROUND & RELATED WORK

A. Infrastructure for EEG-Based Studies

The major contributions that this paper provides is two-
fold. The first contribution is the software prototype and
methodology that automates the delivery of user study specific
routines, autonomously gathers the EEG data from a headset,
and gathers dependent variable data normally handled by a
facilitator. Secondly, researchers are provided an analytical
support module that allows for creation of data products
through machine learning by utilizing the already recorded
experimental data. Looking briefly into the background of
similar software at an institutional level will yield a rather light
load, as there has not been much movement in that direction.
However, the idea of creating systemic improvements to EEG-
based studies is not an original idea.

Over the recent Covid-19 pandemic lockdown, the fields
that utilized EEGs in order to conduct research were deeply
affected. Considering that personnel were required to quar-
antine, this made research logistics a nightmare. The EEG
data collection requires intimate contact between researchers
and the test subjects. Such a situation may raise the risk of
Covid-19 virus transmission. Hence, many researchers have
stopped collecting EEG data or have dramatically changed
data gathering protocols during the past year[1]. In response
to these severe conditions, research conducted by Demazure
et. al. sought to remedy this issue by creating an online
framework and methodology so that EEG experimentation
could continue during the pandemic lockdown[2]. Similarly,
the work conducted by Desai et. al. introduced another solution
to the problem of the pandemic lockdown, Sans Tracas, a
web application that allowed users to connect their affective
devices and create or execute an experiment[3]. The San
Tracas software aligns the closest with one solution presented
within this paper. GEDAPS differs from these two solutions in
that it provides infrastructure for in-person EEG-based studies
and that it also provides post-processing services after the
study itself.

In a more common research setting, the approach that many
EEG researchers adopt consists of re-purposing similar soft-
ware and/or using scripting languages to achieve the needs of
their user study at the time [4], [5]. These setups could consist
of form gathering through web applications, such as Google

Forms[6], and manual inputing of data through spreadsheeting
software, such as Excel[7]. Depending on the complexity of
the experiment, researchers will often use scripting languages
or analytic toolkits, such as Python[8] or MATLAB[9]. While
not ineffective in the slightest, the lack of standards does
introduces an element of inconsistency and confusion within
the EEG research community.

B. Lab Streaming Layer

A key component utilized as part of the solution presented
in this paper would be the Lab Streaming Layer. To elaborate,
the Lab Streaming Layer network protocol is a standard of data
collection over networked instances that has been established
since 2013[10]. For this early prototype, we targeted the
Emotiv Epoch X, but will not be limited to just this platform
in the near future. Emotiv has since incorporated lsl into their
software in order to make it easier to acquire data from the
Emotiv headset and make it more portable for other platforms.
This network protocol allows for data to be collected for BCI
or brain-machine interface (BMI) applications. This network
protocol is open source and uses tcp to publish data to other
devices that may be listening for a stream.

In regards to EEGs, there has been a strong presence of
lsl usage alongside EEG-based research over the past few
years. In 2017, the work conducted by Alvarado-Dı́az et.
al. utilized pylsl, the python-adapted version of lsl, and an
EEG headset so that a user suffering from Amotrophy Lateral
Sclerosis may control an automatic wheelchair[11]. In 2021,
Pieper et. al. conducted a hearing study, utilizing a specialized
setup consisting of headphones, an EEG headset, and pylsl
coordinating between the two[12]. In more recent times, a
researcher by the name of Tim De Boer had created a link
between EEGs and video games through the usage of pylsl,
and was able to play the game Space Invaders[13].

III. SOFTWARE DESIGN

At the highest level, GEDAPS is designed as a service-
based platform run by institutional technicians to support
affiliated researchers conducting EEG-based research. The
three major components that compose GEDAPS consists of
the frontend web interface, the backend services that automates
data capturing through lsl, and finally, the analytical module



Fig. 2. Sequence diagram of the flow from the researcher starting the experiment and the experiment as a whole.

that pipes in the stored EEG data in order to perform analytical
operations, such as valence and arousal classification.

The GEDAPS system communicates to each of these com-
ponents through a series of HTTP requests. These requests are
invoked autonomously during key events within the experi-
mental phase, in order to reduce the workload of a researcher.
The key events in question are related to the procedures
found within a typical EEG user study, such as the moment
that a task is started or completed, the moment when the
baseline configuration phase is happening, or the moment that
a resting phase has been initiated. Fig. 1 illustrates a condensed
representation of the workflow through the system during an
experiment. In this representation, a participant will wear an
EEG headset, which in the case of the current prototype is the
Emotiv Epoch X headset. The EEG headset captures the brain
signals and begins to stream it towards the flask backend, with
aid from the lsl integration. During this time, the key events
within the experiment is inserted within the data stream. From
there, a curated data format, in the form of multiple CSVs,
JSON, or a multi-sheet xlsx file, is generated. After a full
experiment has concluded, the researcher may use the frontend
to download the data file from the backend. Otherwise, the data
is stored securely in a relational database tied to the backend
for potential use in the future.

In regards to the workflow between the researcher and
the system, when the researcher conducts an experiment, the
frontend generates an internal signal to the backend to start its
autonomous recording. The backend then starts the process of
streaming data and creating special labels, as mentioned above.
During this time, the researcher and/or the facilitator will
be guiding the participant along the user study. During EEG
experiments, physical activities involving the participants are
discouraged as to reduce the noise and inaccuracies within the

headset. As such, a researcher and/or facilitator will either be
navigating the participant through a type of media or utilizing
the built-in autonomous experimentation feature that generates
timed media interactions. As soon as all tasks in an experiment
are completed, the frontend will signal to the backend to stop
and the backend then generates and stores the file. To better
illustrate these events, Fig. 2 shows the interactions between
the researcher, the frontend, and the backend.

IV. SOFTWARE PROTOTYPE

A. Frontend

The frontend for the GEDAPS prototype was designed
and implemented with Angular[14] alongside Angular Mate-
rial [15] to design custom components. For the purposes of this
prototype, we targeted primarily affective computing, although
the process remains largely the same for BCI. The two main
types of user study supported by the current prototype consists
of user perception tests to generate labelling data and EEG-
based user studies whom use that labelling data. These modes
were chosen primarily to represent the common types of user
studies involving EEGs within affective computing and BCI.
These modes are controlled based on form input and content
is rendered dynamically by drawing from the backend JSON
responses, as shown in Fig. 3.

For the user perception tests, we designed the frontend
to display the self assessment manikin (SAM) so that users
can rate their valence, arousal, and dominance [16]. We
chose the self assessment manikin due to the notoriety within
the affective computing field as the standard in which to
gather a participants valence, arousal, and dominance. Valence
represents the impact of the emotion ranging from positive to
the negative effect. Arousal denotes the activation state that
covers from active to passive. Finally, dominance epitomizes



Fig. 3. The GEDAPS prototype provides support to two major types of user studies: user perception and EEG data collection.

the degree of control exerted by a stimulus, which is denoted
by a range of big to small influence.

In regards to the EEG-based user studies, this mode utilizes
metadata set by the researcher to generate essentially an
autonomously operated and recorded media slide deck. The
media currently supported by this prototype consist of audio,
imagery, and video. During this time, the frontend syncs up
dependent variable collection with the stream of participant
EEG signals captured through the Emotiv Epoch X headset
in reaction to media content being presented. The JSON
configuration of this portion allows for different phases of the
experiment to be configured. To elaborate, the timed content
may shift between a customized video player, audio player,
and dynamically loaded imagery. Timers were especially vital
and were incorporated in order to allow for greater quality
control among each of the assigned tasks.

As it stands now, our frontend is currently served with
node.js, but it could be easily scaled up and ran on Kubernetes
or even containerized with docker. This will be covered further
in Section VI. Angular was chosen as it remains a dependable
industry standard and provides many of the needed user
interface features for this application. Angular is also known to
be rather effective at catering to feature-rich applications and
has a more complete out-of-the-box solution than many of it’s
competitors. Considering the feature density of our design, we
found that it was appropriate to incorporate our backend with
Angular.

B. Backend

The GEDAPS prototype utilizes a REST API backend writ-
ten in Python, using the Flask micro framework, to generate
a series of request calls to operate the lsl bridge between the
backend and the EEG headset [17]. A high-level overview
can be viewed in Fig. 4, where it demonstrates the capturing

of data from Emotiv’s lab streaming layer. Pylsl was a key
component in the backend design and is used to connect
with the EEG signal streaming from Emotiv’s software [18].
The Flask backend handles recording the EEG signal and
other signals being sent by Emotiv by streaming them to a
specified data format. Starting and stopping the recording on
the backend is done through HTTP requests to a start or stop
URI route within this backend API. As the EEG datastream
is being captured by the backend, the backend also inserts
timestamps of each key event within the data file itself.

Key events are captured and registered by the backend
through an event route that accepts identifiable metadata as
parameters. These events can include anything, ranging from
a song starting, ending, or the pre and post calibration phase
of a EEG user study when baselines are being measured.
When the backend invokes the event route, it splices the event
into the generated data file along with a timestamp, similar
to the routes described above. As previously mentioned, the
backend API was designed so that it can tap into the captured
datastream originating from the Emotiv headset and insert
custom time-series data entries. This is done as an alternative
to inconsistent timings done manually by researcher or even
the latency-driven timings generated by the frontend interface.
All data pertaining to the operation of the headset is unified
into one source without any splicing of data from multiple
sources.

The backend API unified the data streams and the labels
generated by the experiment. This in turn made it so that
the extraction of meaningful data from the EEG recordings
significantly easier. Another benefit behind this design is that
the backend API follows a more generic approach and allows
for other EEG headsets outside of Emotiv to be used, assuming
that lsl streaming is supported. Finally, the organized key
events recorded from the backend API eliminated the tedious



Fig. 4. High level diagram of data being recorded and capture from Emotiv’s lab streaming layer in a Flask Backend.

task of data pre-processing and allowed for near 1:1 insertion
into analytical processes, such as feature extraction.

C. Analytical Module

The Analytical Module is currently a standalone module
separate from the frontend and backend, as it is very much
in the early stages of development. This module analyzes
the EEG data captured from the backend and correlates the
data to the appropriate key events thanks to labels generated
during the experimentation phase. A main feature of this
module involves the pre-processing of the experimental data
by resolving unwanted artifacts within the recording. This
could entail removing eye blinks, normalizing the data into a
appropriate range, or identifying erroneous signals generated
from involuntary movement. After the pre-processing of the
EEG data, the module then uses AutoML in the form of
TPOT to extract a data product [19]. In the case of the current
prototype setting, this data product is the classification of both
valence and arousal within a participant.

V. DISCUSSION

GEDAPS, at a core concept, seeks to elevate the tedious
processes involved within EEG-related user studies. By estab-
lishing an infrastructure solution for these types of studies,
we wanted to enable an opportunity for past user studies to
be edited and reproduced with ease. To continue along with
the idea of alleviation, the usage of lsl within GEDAPS sets
the foundation for a more generalized integration platform for
EEG headsets or other wearable bio-metric devices. At the
researcher level, GEDAPS brings to the table an institutional
resource for researchers to design, facilitate, and execute
experiments, especially as more features are added in the
future.

In the beginning, the design of this software system was
created in mind so that it can be easily ported to an institution’s
infrastructure or a research cluster accessible to researchers.
An institution’s infrastructure resources would be an ideal
location to store sensitive data, such as the data gathered
within a IRB user study. Especially considering that EEG

readings are specific to a individual, the choice becomes even
more obvious that an institution should be securing this data.
Ideally, an institution’s technical staff could set up an internal
resource specifically meant for storing personal EEG data for
it’s affiliated researchers. In that situation, a researcher would
only need to utilize this software platform to facilitate their
experiment and store their results. The design of the GEDAPS
software and the prototype described in this paper is a strong
first step in this direction.

The execution of this system will not be without it’s own
set of challenges. Designing and implementing the GEDAPS
system will require the allocation of it’s own set of computing
resources. This could be especially difficult, depending on
the budgeting available for the institution. Additionally, the
institution will have to also budget for the establishment of an
administrator to oversee the daily operation and evolution of
this system. On the system side, the integration of additional
devices could prove challenging due to potential software or
hardware incompatibilities

VI. CONCLUSIONS & FUTURE WORK

This paper presented a methodology and prototype, dubbed
GEDAPS, designed to address the issue of logistics and infras-
tructure within EEG-related user studies. Ultimately, GEDAPS
is currently tailored to support two types of user studies:
user perception or labelling studies and EEG data collection.
GEDAPS utilized both the lab streaming layer network proto-
col and a custom backend API in order capture EEG data
and insert labels pertaining to user study tasks. GEDAPS’
frontend is designed to be adaptive, the interface is designed
so that content of page is dynamically constructed based on
the metadata surrounding the experiment itself. The last major
feature of GEDAPS was the creation of an analytical module
that automates the generation of data products surrounding the
curated EEG data.

In the near future, we plan to expand on GEDAPS by
deploying it onto an internal institution Kubernetes cluster
and running EEG user studies as case studies. Additionally,
there are plans to incorporate other EEG headsets and bio-



metric devices, such as a headset from openBCI and the
Emotibit [20], [21]. With these new devices, we would work
towards unifying the data coming from each data set into
a data model that would represent the different types of
channels or sensors coming from each device. Also, we plan to
evaluate the user perception and effectiveness of our software
in comparison with other existing methodologies with a user
study.

The analytical module at present is separate from the system
as a standalone module. A future endeavor would be to
incorporate this module formally into the system to allow for
machine learning models to be trained on the data within the
current pipeline. Finally, the selection of available machine
learning solutions were limited due to time constraints. We
plan to expand this selection by incorporating more advanced
solutions, such as AutoKeras or AutoPyTorch to support Deep
Learning[22], [23].
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