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Abstract—In many smart city projects, a common choice to
capture spatial information is the inclusion of LiDAR data, but
this decision will often invoke severe growing pains within the
existing infrastructure. In this paper, we introduce a data pipeline
that orchestrates Apache NiFi (NiFi), Apache MiNiFi (MiNiFi),
and several other tools as an automated solution in order to relay
and archive LiDAR data captured by deployed edge devices. The
LiDAR sensors utilized within this workflow are Velodyne Ultra
Pucks sensors that capture at a rate of 10 frames per second
and produces 6-7 GB packet capture (PCAP) files per hour. By
both compressing the file after capturing it and compressing the
file in real-time, we discovered that gzip produced a file of 5
GB and saved about 5 minutes in transmission time to NiFi,
as well as saving considerable CPU time when compressing the
file in real-time. Alternatively, we chose XZ as the compression
algorithm for the ingestion of LiDAR data onto an institution
compute cluster due to its high compression ratio. In order to
evaluate the capabilities of our system design, the features of
this data pipeline were compared against existing third-party
services, namely Globus and RSync.

Index Terms—nifi, minifi, iot, data transfer, big data, smart
city, PCAP, LiDAR, data pipeline, edge computing

I. INTRODUCTION

As cities begin employing more and more complex sensing
devices to either conduct traffic analysis or provide a measure
of infrastructure, creating a system for data transferal becomes
a crucial challenge. For smart city projects, spatial information
such as Light Detection and Ranging (LiDAR) is especially
a concern. Due to the massive amount of data generated by
LiDAR point clouds, data collection and transferal from edge
device to central repository tends to suffer from bottle-necking
issues, such as low throughput networking, high latency, and
packet-loss. These constraints must be considered as most
cities in the United States may have difficulty placing fiber
optic infrastructure in their cities [1].

As part of ongoing smart city developments in the city of
Reno, Nevada, the work presented within this paper involves
a 100 mbps fiber network provided by the City of Reno.
While this network was deployed to specifically address the
Cyberinfrastructure needs within the city of Reno, this called
for the development of a Software Data Pipeline (SDP) that
could enable reliable data transformation, transferal, and log-
ging between edge computers and the fog computing network.

In this work, we developed the before-mentioned SDP,
which uses NiFi/MiNiFi to facilitate the movement of LiDAR
data generated at edge computing location placed around the
city of Reno. This data is relayed to the fog computing
network located on the University of Nevada, Reno (UNR)
and then finally piped towards its final destination, UNR’s
Pronghorn High Performance Computing Cluster (HPC) for
archival storage. The software on the edge environments use
Docker Compose with MiNiFi to hook into the NiFi-based
data pipeline in which the LiDAR point-clouds are compressed
and then transmitted off. The software within the UNR Data
Center uses Kubernetes to scale up NiFi hosts and receive the
LiDAR point clouds which are then processed for storage.

The presented solution does offer insights to those interested
in establishing a scalable pipeline for spatial data collection
within smart city infrastructure [2]. With the increasing interest
in smart city development, our approach fulfills a template so
that other cities with similar network infrastructure may easily
incorporate LiDAR data collection as part of their normal
workflow. Due to the versatility of LiDAR data, LiDAR collec-
tion presents more opportunities for cities to better utilize big
data methodologies for effective planning or the establishment
of new data-driven solutions [3], [4].

As a form of evaluation for this SDP, we conducted an
analysis of different compression algorithms, compared our
approach with the present network bandwidth, and finally
performed a feature comparison with major established third-
party services, RSync [5] and Globus [6]. In addition, our
solution has been tested by gathering the bandwidth usage,
resource usage on edge devices, and recording time for
message transfer. To elaborate, this involved testing different
compression methods in terms of resource usage, average
CPU usage, average memory usage, total duration time, and
size of messages. As part of the feature comparison, RSync
and Globus will be compared against our solution for basic
functionality of data transmit and receive, load balancing,
parallel streaming support, the customization of data flow, and
file verification.

The remaining of this paper is structured as follows: Sec-
tion II presents background information of the technologies
explored and used by our approach, Section III describes



the design of the software data pipeline with considerations
and expected requirements of the data pipeline, Section IV
details the resulting implementation of the planned design and
data flow, and Section V presents the overall performance
evaluation of the software data pipeline with benchmarks
and comparisons of other methods, and Section VI discusses
possible uses of the data pipeline and outlines future work to
extend its functionality.

II. BACKGROUND AND RELATED WORKS

With the increasing interest in both cloud and fog com-
puting, different approaches have been explored to facilitate
streams of data that require high throughput, intense bandwidth
usage, and consistent access across different network scenar-
ios. In general, the very nature of these data streams present
certain difficulties to system architects when designing the
software facilitating the stream and may require advanced big
data techniques. In response to this, Software Data Pipelines
(SDPs) are often presented as solutions to abstracting data
streams by utilizing either custom software or preexisting
suites of third-party tools. One such SDP takes a different
approach than our solution, in that this data pipeline explored
a combination of MQTT and Apache Kafka for processing
data streams originating from industrial IoT devices [7],
[8]. Another similar approach involved the usage of NiFi
and MiNiFi to process different types of spatial information
captured from Twitter streams and provide an accompanying
sentiment analysis service [9], [10].

As mentioned, a major portion of our solution relies on NiFi
and MiNiFi. Together NiFi and MiNiFi are an especially viable
solution for SDPs that enables APIs to build data transformers,
loggers, and other data flow measures. NiFi is composed of
components called ”Processors” and the data passed between
these processors, dubbed ”Flow Files”, which contain the data
being transferred and additional metadata pertaining to the
transfer. These processors used in a NiFi pipeline allow one
to create, remove, modify, or inspect the contents of a flow
file. Additionally, NiFi/MiNiFi allows users to create their
own processors, which opens the door for greater control
and manipulation of the data within a pipeline. NiFi operates
with data producers and data consumers, dubbed ”Agents”
and, alongside the flow files and processors, represent the
abstract building blocks to a SDP within NiFi. However, NiFi
in itself has the capability of over-bloating a system with tools
that are not necessary for remote systems with constrained
resources. While NiFi offers the full-suite of tools for building
data pipelines, MiNiFi addresses the previous concerns by
providing a bare-bones version made to run on resource-
constrained edge devices and relay back information to a NiFi-
based pipeline. This makes NiFi and MiNiFi ideal to be used
for scenarios in which a SDP would be developed to collect
spatial information and then process that data within a fog or
cloud based environment.

As part of the work presented in this paper, we used
NiFi [11] and MiNiFi [12] to create a SDP that allows for
the collection and storage of LiDAR data being gathered

from sensors installed within in the Virginia St. University
corridor of Reno, Nevada. These LiDAR sensors are a series of
Velodyne Ultra Pucks, and each are capable of creating a 360
degree point cloud of the intersections [13]. Each intersection
within this space has two LiDAR sensors installed diagonally
northeast and southwest in order to establish a consistent setup.
The Ultra Puck sensors each produce approximately 300,000
points per second which equates to about 6 GBs of data
produced per hour. To account for this big data problem in
near real-time, researchers started using Apache Cassandra and
Spark to compute digital terrain maps or other data stream
processing frameworks [14], [15]. However, our approach
would be more similar to a system developed by Michael et
al. where the authors created a method for handling different
bandwidths to a compute server [16]. However, our system
does not perform any computation with the underlying data
from the LiDAR.

As part of our evaluation of the work presented in this
paper, Globus was chosen as a suitable system to compare
the features of our SDP against, due to its popularity within
the domain. Globus is a PaaS (Platform as a Service) created
by the University of Chicago, now operating as a non-profit
service, used to store and transmit data. The platform allows
developers to use either a software development kit or REST
APIs to create Flows within Globus. Flows are the basic-
building blocks to generate SDPs within the Globus system,
with Action Providers allowing users to extend the data
pipeline. Action Providers open the door for some customiza-
tion of the basic data pipeline used to transfer files in Globus.
Globus provides a wide berth of features that include the
ability to not only send and receive data, but the ability to
load balance, transmit data in parallel streams, and validate
incoming/outgoing files.

In the same lines as Globus, RSync was also chosen as
a system for comparison, due to its incredible popularity and
usage within the domain. RSync is a command-line utility that
prioritizes performance over usability in order to transfer files
between a source and destination host, while offering features
for advanced customization of an data pipeline built using the
technology. This utility, while offering limited functionality,
still possesses the ability to robustly send and receive data,
as well as provide a decent measure of file verification. This
makes it ideal for creating data pipelines that continuously
stream a directory from the source host to the destination host.
However, if the needs of a data pipeline were to evolve to
include different data processing, logging, or transformation
measures, this would entail stringing multiple RSync applica-
tions together to create a more customized data pipeline.

III. DESIGN OF THE DATA PIPELINE

The data pipeline was designed with the consideration that
the raw LiDAR data would be stored into some archive where
researchers may use the data for post analysis. In order to
ensure that this process was possible, we had to make sure
that the software pipeline that we choose is both scalable and
conserves resources, such as bandwidth, CPU, and storage.



Fig. 1. High level diagram of the proposed pipeline architecture showing the flow of the PCAP from the edge to Pronghorn.

The data pipeline consists of several different components
running on three different hosts. These three different hosts
are: the edge computers at the street side, the UNR data center
serving as the centralized hub, and the UNR Pronghorn HPC
Cluster. Below are some requirements that we had in mind in
designing this data pipeline:

• The data pipeline shall automate the process of sending
LiDAR data as compressed files with set name schema.

• The data pipeline shall compress data in order to mini-
mize the amount of network bandwidth and storage used
at the edge and on pronghorn storage.

• The data pipeline shall report the amount of time taken
in order to save.

• The data pipeline shall use compression algorithms to
minimize the amount of CPU used at the edge and
maximize the amount of compression at the pronghorn
storage.

• The data shall be archived on the Pronghorn HPC Cluster,
• The data pipeline shall be scalable and easily orches-

trated.
We designed the data pipeline to keep these requirements in

mind. We decided to choose a store and forward approach as
our requirements included only archival. The store and forward
approach required us to take into consideration how much
space was available on the device and how much bandwidth
was available on the network. In this case, the design was
based on a 100 mbps network. This network limited how
much data could be sent as it was shared across six different
intersections from the edge to the the data center so we had
to figure out ways cut down on bandwidth by compressing
the data. Even with an expansion of network bandwidth
capabilities, we still wanted to constrain how much data is
sent and have some form of quality of service in place in
order to allow further applications to also run on our pipeline.

Fig. 1 shows the overall pipeline that we designed along
with the software used to make it possible, together with the
reporting of time and size of data along the pipeline. Data

is generated by a Velodyne Ultra Puck sensor emitting UDP
packets that are then acquired by an edge computer connected
to a city street light. The UDP packets are captured using
tcpdump and stored into a PCAP file. The PCAP file with gzip
at this point is either compressed at a later date or compressed
in real-time, then sent from the edge to the data center. At the
data center, the compressed PCAP file is uncompressed from
a gzip file to a XZ file and then sent to Pronghorn for archival
storage.

At the edge, Docker Compose was used to orchestrate
the setup of tcpdump and MiNiFi. Docker Compose was
chosen as the setup of this infrastructure because it could be
easily replicated on any machine that has Docker Compose
installed. Docker Compose allows for rapid modification of the
configurations of MiNiFi and tcpdump to try different versions
of the software and different configurations without changing
the underlying operating system. It also handles the setup of
networking between any software that is used.

At the data center, Kubernetes was used to orchestrate the
setup of NiFi and all the components that it needs to run
in a cluster setup. Kubernetes was chosen because it can
setup or scale many different types of software across multiple
machines with ease. The cluster version of NiFi was selected
to allow for the load balancing features to be used and enabled
NiFi to scale for other future projects.

IV. IMPLEMENTATION OF THE DATA PIPELINE

At the edge, our setup included a Cincoze DS-1200 with
Ubuntu 18.04 installed, with a total 16 GB for RAM and Intel
CPU i7-8700T. At the data center, our configuration consisted
of an 8-node kubernetes cluster spread across two four-unit
machines. Those machines were a SuperMicro SYS-6029TP-
HTR and X11DPT-PS. The Kubernetes cluster was setup to
handle the workflow of this project and other projects on
campus. Additionally, a Supermicro X11DPH-T with 20 TB of
allocated storage was put in place to serve as an intermediate
storage for the 8-node Kubernetes cluster. This intermediate



Fig. 2. Screenshot of NiFi showing a portion of the data flow from the edge to the data center.

storage was used as a staging area before sending it off to
Pronghorn. All 9 of these machines sit in the same rack at the
data center located on the UNR campus. Each machine also
used Ubuntu 18.04 for the operating system. We used Rancher
RKE 1.0 for the Kubernetes distribution.

NiFi, MiNiFi, and tcpdump were all placed into Docker
containers. Both NiFi and MiNiFI were configured with yaml
files to set the settings of the software and data pipeline. The
tcpdump container was designed and constructed in such a
way that the collection interval and the name of the file can
be changed to include descriptive labeling such as: intersection
names, what corner the LiDAR sensor is on, and the municipal
location of the sensor. In regards to the schedules we decided
to have the tcpdump container collect every hour and roll to
the next file to collect in another hour.

At five different intersections that make up the Virginia
St. Corridor, the two Ultra Puck sensors collect at a rate of
10 revolutions per second. This PCAP file after being fully
collected in an hour is moved into a directory where MiNiFi
will place the file into a queue to be sent off to NiFi. When
NiFI receives the file from the edge, it will place the file into
a storage server within the UNR data center. Inside of NiFi,
it will queue any files that land on the storage server and
start to process the PCAP file by compressing it into a XZ
file. Before it is compressed into XZ, it will check to see if
the file has already been compressed with gzip and if it has
been compressed, then it will decompress the file. After the
file has been compressed with XZ, it will finally transfer the
file off to Pronghorn. During this whole process to keep track
of time, we have NiFi send completion time statistics to a
Microsoft Teams channel setup between the Edge and NiFi,
as well as between the storage server at the UNR Data Center
and Pronghorn.

Fig. 2 shows a screenshot of NiFi a part of our workflow. A
user of NiFi can specify their workflow in the user interface.
NiFi was chosen due to the ease of use and being able to
specify data flows with a GUI. This particular screenshot

demonstrates where NiFi grabs data from MiNiFi and stores it
onto a storage chassis in the UNR data center, while statistics
about the whole process are sent off to Microsoft Teams.

Our approach to a data pipeline for transferring raw LiDar
utilizes NiFi’s and MiNiFi’s Site-to-Site protocol, which in
turn makes use of the RAW transport protocol setting. NiFi’s
Site-to-Site Protocol allows us to use any number of MiNiFi
instances to connect to our clustered instance of NiFi. This
allow us to scale MiNiFi running at multiple different inter-
sections. We designed the MiNiFi flow within NiFi and then
exported it for the deployment at the edge.

We compressed the PCAP file in two different ways at
the edge. The first method involved compressing the file
after is has been fully captured. The second method was
compressing the file in real-time. The first method is the easiest
to implement and provides a good comparison for the second
method. The second method was implemented because it saves
the time of compressing the file afterword, but at the cost of
extra computation being during recording. We tested the lz4,
bzip, xz, gzip, and zstd compression algorithms. We chose
gzip as the compression algorithm between the edge and data
center communication. For archival purposes, we chose xz as
the compression algorithm at Pronghorn.

V. RESULTS AND DISCUSSION

A subset of results were collected from Microsoft Teams
and used to find out how long the overall transfer time takes.
We found that NiFi and MiNiFi both send information at the
maximum network bandwidth supported by the 100 mbps net-
work. Table I shows that the file size of the compression shaves
off about 2 GB and saves about 3-4 minutes of transmission
time. Our results show that NiFi adds about 10-12 seconds
on transfer time overhead while under normal conditions.
This test was conducted to ensure that the implementation of
this software does indeed use the file network with no large
bottleneck on part by the software itself.

Both methods of compression from Section IV were com-
pared and measured using the ps command from Linux. Both



TABLE I
THE BANDWIDTH USAGE OF ORIGINAL AND COMPRESSED DATA.

Method Size Bandwidth Time
Original 7 GB 11 MB/sec 10-12 min.
Original with Compression 5 GB 11 MB/sec 7-8 min.

methods were ran on two different PCAP files that were
recorded for one hour. Table II demonstrates the results for the
first method where a file is compressed after being collected
from LiDAR sensors. Table III demonstrates the results for
the other method were the file is compressed as it is collected
from the LiDAR sensor. In Table III, the duration within the
table represents the amount of time the program actually ran
on the CPU, while the PCAP file was captured for one hour
as reported by the PS command. All compression algorithms
included in this experiment were used with their lowest and
fastest setting.

TABLE II
NON-REAL-TIME COMPARISON

Compress
Method

Average
CPU%

Average%
Mem.

Total
Duration

Size
(GB)

Compression
Ratio

lz4 96.12 0.097 0:30.0 3.9 0.19
bzip2 99.49 0 14:32.0 3.2 0.33
xz 99.94 0.010 32:53.0 1.9 0.6
gzip 99.25 0 03:56.0 3.3 0.31
lzma 99.92 0.010 32:28.0 1.9 0.6
zstd 98.84 0 01:09.0 3.4 0.29
Original - - - 4.8 -

Comparing the two tables, both xz and lzma have the
best compression ratio, but take the most time in comparison
to the other compression algorithms. Examining the second
method in comparison to the first method, the second method
doesn’t nearly use as much CPU when a file is being recorded.
Looking at gzip and lz4 for the second method, both compress
the original file to 3.9 GB and 5.2 GB from 6.4 GB. Out of
these two compression algorithms gzip compresses better and
only at a slightly higher CPU usage. Based on these results, we
chose gzip to be the compression algorithm for the edge to data
center communication. XZ was chosen to be the compression
algorithm due to its high compression ratio for storage on
Pronghorn.

TABLE III
REAL-TIME COMPARISON

Compress
Method

Average
CPU%

Average%
Mem.

Total
Duration

Size
(GB)

Compression
Ratio

lz4 0 0 1:06.0 5.2 0.19
bzip 27.14 0 20:01.0 3.4 0.47
xz 0.010 0.010 38:01.0 2.5 0.61
gzip 0.0006 0 07:40.0 3.9 0.39
lzma 9.86 0 38:31.0 2.5 0.61
zstd 1.94 0 03:49.0 4.4 0.31
Original - - - 6.4 -

Table IV shows a feature comparison across Globus, RSync,
and our approach with NiFi and MiNiFi. Globus makes use of
GridFTP to send data from one data source to another. Globus

TABLE IV
A FEATURE COMPARISON OF OUR APPROACH VS GLOBUS AND RSYNC.

Features Globus RSync Our Approach
Send/Receive Data X X X
Load Balancing X X
Send Data in Parallel Streams X
Customizable Data Flow X
File Verification X X X

is typically used for larger files and supports parallel network
streams when sending files. This allow for Globus to send
files much faster in comparison to RSync and our approach.
All three approaches support performing file verification or
some form of check summing, but our approach would have
to specifically implement it within the data flow of NiFi and
MiNiFi. Globus allows for universities to scale up their end
points and underneath the hood of their software uses cloud
software to handle sending data between two different data
sources. NiFi is able to be scaled up due to being able to be
clustered with the help of Zookeeper. RSync only supports a
straight end to end connection from one host to another host
and does not perform load balancing or scalability. The best
that could be used with RSync is starting up multiple instances
of RSync.

Both RSync and Globus are not able to support custom data
flows like NiFi or MiNiFi. As explained before NiFi allows
for the users to send their data to many different types of
options like a database, another NiFi, to a web service, and
many others. This flexibility allows for us to potentially send
the data to other sources for instance to cold storage or other
collaborators who want a live copy of the data. We could also
perform analytics on the data as it moves through NiFi. Both
Globus and RSync are good for sending data from one source
to another and have some analytics, but they lack the flexibility
that NiFi gives with creating data flows inside a user interface.
However, NiFi may take some time to setup and lacks some of
the ease of use of Globus’s user interface to send files within
their platform. RSync is readily available on Linux and can
be utilized by installing it as a package. While NiFi may take
some setup effort and require some specific configuration, the
ability to alter the data flow with a user interface makes it
easier to visualize the flow of the data.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we discovered that using NiFi and MiNiFi
produced a promising solution for transferring LiDAR data.
Additionally, XZ was found to be the best compression al-
gorithm for archiving onto the UNR’s HPC cluster due to its
high compression ratio. Furthermore, compressing the PCAP
file in real-time only used a minimal amount of CPU power
in comparison to recording the PCAP file and then compress-
ing it afterward. This compressing style shaved off about 5
minutes in transmission time and saved about 2 GB in file
size. Through our feature comparison, we discovered that our
approach covers a significant breadth of service among similar
systems, but still lacks certain advanced features, such as



enabling parallel streams. Additionally, under this evaluation,
we also found that our approach had greater flexibility and
ease of use due to the user interface provided by NiFi.

As part of our future work, we plan to expand this method
by exploring new avenues, such as sending the PCAP to a web
service to convert the raw data within the PCAP into point
cloud format. This would then be stored in a database with
NiFi. NiFi allows for us to quickly try out different quality
control (QC) and quality assurance (QA) implementations.
These implementations could be applied for example when the
file comes from the edge to the data center or when the file
is placed into the archive at the data center. Finally, we could
potentially adapt the approach presented in this paper with
additional devices integrated along the Virginia St. Corridor,
such as video cameras or various time-series sensors.
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