Estimation and Enhancement of Real-Time Software
Reliability through Mutation Analysis *

Robert M. Geist
A. Jefferson Offutt
Frederick C. Harris, Jr.

Department of Computer Science
Clemson University
Clemson, South Carolina
USA 29634-1906
phone: 803-656-2258
fax: 803-656-0145

email: rmg@cs.clemson.edu

Abstract

A simulation-based method for obtaining numerical estimates of the reliability of N-version,
real-time software is proposed. An extended stochastic Petri net is used to represent the syn-
chronization structure of N versions of the software, where dependencies among versions are
modeled through correlated sampling of module execution times. The distributions of execution
times are derived from automatically generated test cases that are based on mutation testing.
Since these test cases are designed to reveal software faults, the associated execution times
and reliability estimates are likely to be conservative. Experimental results using specifications
for NASA’s planetary lander control software suggest that mutation-based testing could hold
greater potential for enhancing reliability than the desirable but perhaps unachievable goal of
independence among N versions. Nevertheless, some support for N-version enhancement of high
quality, mutation-tested code is also offered. Experimental results on data diversity, in which
retry with a mutation-directed variation in input is attempted after system failure, suggest that
mutation analysis could also be valuable in the design of fault-tolerant software systems.

keywords: software reliability, Petri nets, correlated sampling, mutation analysis, constraint-
based test data generation, data diversity

*This work was partially supported by NASA Langley Research Center under grant NAG-1-1024.

1 Introduction

The use of multi-version software to improve computer system reliability remains a topic of vigorous
debate [2, 15, 17, 18]. One cause for concern is easily seen in considering a simple model of majority
voting: if each of three voters independently votes “yes” (meaning a correct vote) with probability
p, then the probability of a majority “yes” decision is 3p* — 2p3, which is larger than p when p is
larger than 1/2. However, if the votes are perfectly correlated, then the probability of a majority
“yes” decision is just p itself, and there is no improvement.

Thus the issue is readily identified as “version correlation,” but the meaning of this phrase
in the software development environment can be elusive. A substantial clarification was provided
by Eckhardt and Lee [12] and by Littlewood and Miller [19]. Using Littlewood’s notation [19],
we let random variable X represent an input to any of a collection P of programs designed to
perform the same task, and let O(z) be the probability that a randomly chosen program from
P fails on specific input . The expected value of the random variable ©(X), E[O(X)], is then
the probability that a randomly chosen program fails on a randomly chosen input. The key ob-
servation from [12, 19] is that independently developed programs do not necessarily fail indepen-
dently. The probability that two independently chosen programs from P both fail on the same
randomly chosen input is easily seen to be E[@(X)?], but the probability of both failing on inde-
pendently chosen inputs is E[@(X)]?, and these terms differ by the variance, V[©(X)]. Similarly,
if ©4(z) is the probability that a randomly selected program from development methodology A
fails on input z, and Op(z) the same for methodology B, then the probability that both indepen-
dently selected programs fail on the same randomly chosen input is E[O4(X)Opg(X)], which differs
from independent failures, £[O4(X)]E[Op(X)], unless the covariance, COV[04(X),0p(X)] =
E[04(X)0p(X)] - E[04(X)|E[Op(X)], is zero. A zero covariance is clearly equivalent to a zero
correlation, p[@4(X),0p(X)] = COV[04(X),05(X)]//V[04(X)]V[Op(X)], and thus it is this
correlation that deserves attention.

A second major concern, which precludes lending precise quantification to software reliability,
is the unknown operational distribution on the input space. Testing based on random (uniform)
sampling from the input space is often carried out, but reliability estimates based thereon are
usually regarded as optimistic. A complementary technique for obtaining non-trivial, conservative
estimates has been missing.

In this paper we address both concerns. We propose a method for estimating the reliability of
multi-version, real-time software that incorporates non-zero correlation as an independent model
parameter. In section 2 we develop an Extended Stochastic Petri Net [11] as a representation of
the synchronization structure of N software versions, where dependencies among version perfor-
mances are captured through correlated sampling of module execution times. The execution time
distributions are estimated by executing the modules on test case sets that are automatically gen-
erated from the module source code. This automated test case generation is based on mutation
testing and is described in section 3. Since the test cases generated in this way are designed to
reveal faults, they can be regarded as “stressful input,” and thus we suggest that the execution
time profile and the derived reliability estimate should be regarded as conservative. In section 4
we describe the results (MTTF) of applying the proposed method to a 5-version implementation
of the accelerometer sensor processing module in NASA’s planetary lander control software.

We expect the real benefit of the optimistic and conservative pair of reliability estimates pro-
vided by random testing and our proposed method will be in gauging the relative merits of tech-
niques designed to enhance reliability. One such technique, providing programmers with mutation-
generated 1/0 pairs, is examined in section 5. A second technique, a mutation-directed variation on
Ammann and Knight’s data diversity [1], is discussed in section 6. Conclusions follow in section 7.

2 The Synchronization Model

We consider a program module to be a self-contained piece of software, typically a subroutine,
function, or small program. Thus, our results impact unit testing, rather than integration testing.

The restriction to the real-time software environment allows us to focus reliability estimation
on execution time profiles. A module fails if it fails to produce the correct output within a tightly
specified time interval. Even well-tested programs may fail to meet timing constraints on some
input, which has a major impact on system reliability. In our model, we combine timing failures,
where the output is not produced in time, and functional failures, where the output is incorrect, by
considering a functional failure to be an infinite-time response, which necessarily violates the timing
constraint. We recognize that this is a simplification in the representation of functional failures,
and that we are no longer able to distinguish among the different types of functional failures.
However, as shown later, the two classes of failures, timing and functional, can be separated when
necessary for analysis. We then define module exzecution time to be the time until a correct answer
is produced. Thus a distribution of module execution times will have points at +oc that represent
functional failures.

We represent the synchronization of our N-version software system in terms of these execution
time distributions. This will allow us to represent correlation between modules as an independent
model parameter.

We specify the concurrent operation of the N-versions, the timer, and the voting mechanism by
a special type of Extended Stochastic Petri Net [11]. A Petri net is a directed bipartite graph whose
two vertex sets are called places and transitions. Places are traditionally represented by circles and
transitions by rectangles. Places may contain one or more tokens, represented by small discs. An
example is shown in figure 1. The semantics attached to such nets are rules for simulation:

2

Figure 1: Simple Petri Net.

e If every input place to a transition contains one or more tokens, the transition is enabled; the
transition of figure 1 is enabled.

e Enabled transitions may fire, that is, remove one token from each input place and add one
token to each output place.

e If firing an enabled transition would disable a concurrently enabled transition (conflict), the
firing transition is chosen at random.

Petri nets and their extensions [20, 21, 22] have been used by many authors in systems performance
modeling [3, 10, 14] and reliability modeling [23, 26].

We augment Petri nets with two extensions. The first extension we need is non-zero firing
time distributions. Specifically, we attach to each transition a distribution of firing times. When
a transition is enabled, we randomly select a firing time from the attached distribution. After

the selected time elapses, the transition fires if it is still enabled. In our model, the firing time
distributions of transitions representing program versions will be empirical execution time profiles
obtained by executing the programs on automatically selected test cases.

The second extension we require is correlated firing. Since the correlation of interest is the
degree to which all programs perform relatively well or relatively poorly on a given input, rather
than any linear relationship among their real execution times, we implement this correlated firing as
a correlation of firing lime distribution percentiles. If two programs are to be highly correlated, we
wish to choose an execution time from the same relative location in each distribution. Since these
distributions contain points at +oo representing functional failures, two programs with correlation
1 will then exhibit the same functional behavior during the same execution, i.e. both will succeed
or both fail.

In this implementation transitions are grouped. (One group will contain N transitions repre-
senting the program versions.) When transition ¢ becomes enabled, it locates all other concurrently
enabled transitions in its group. If there are none, a random number r; € [0, 1] is used to select a
firing time in the standard way, that is, firing time = Fi_l('ri), where F; is the distribution function
for transition ¢. However, if there are other enabled transitions in i’s group, one of these, call it
J, is selected at random. The most recent value r; € [0, 1] that was used to select a time from j’s
distribution is used together with a group correlation factor, K, to determine the new selection
value r; € [0,1]. With probability K we let r; = r;, and with probability 1 — K we select r; at
random from [0, 1].

The relationship between the selection values r; and r; is easily expressed. If R; is a random
variable with uniform (0,1) density, fr,, and R; is a random variable whose dependence on R; is
as described, then the conditional density of R; is

frr;(rilrj) = K6(ri — 1) + (1 = K)fR;(ri)
where ¢ denotes the unit impulse function (see [24]). We then have

ER|R;=1;] = Krj+(1-K)/2,
E[RR;] = K[3+(1-K)/4,
VIR] = 1/12,
VIR;] 1/12,
COVIR.Rj] = K/12,

and thus the correlation of R; and R; is
ol B = K.

A graphical Petri net simulation tool that includes arbitrary firing time distributions and cor-
related firing, called XPSC, has been developed at Clemson University and was used in this study.

Our multiversion software model is shown in figure 2 with its initial token assignment. The
distribution attached to each transition represented by a thin rectangle is instantaneous, i.e. time
0 with probability 1. The firing time attached to the {¢mer transition is a deterministic parameter
to the model, T'. Execution of the 5-version software is represented by transitions ezecy, ..., execs.
Any exec; that completes (returns correct output) deposits a token in place count, which causes
one of the correct transitions to fire. When the temer completes, a vote is taken and a token is
either deposited in place success (if at least three exec;s have fired) or in place failure (if two or
fewer exec;s have fired). Place failure represents system failure. A token in place success causes

start

A

|emecl | |execz | |e:vec;3 | |exeC4 | |€£L‘€C5 |

lcorrect 2correct 3correct 4correct 5Scorrect

restar

Figure 2: Multi-version Software Model.

a special restart transition to fire, which reinitializes the net but not the system clock (a process
regeneration point). Restart transitions are also available in XPSC.

The group of ezec; transitions is a correlated group with correlation factor K, another parameter
of the model. Thus a long (or short) firing time for an ezec;, representing difficult (or trivial) input,
can cause all others to select relatively long (or short) firing times if the correlation is high.

Our measure of interest is the mean time to reach system failure state. We note that if all
correlations are zero, we can compute MTTF analytically. If F;(7"),¢ =1, 2, ..., 5, is the distribution
function of exzec; evaluated at the fixed timeout interval 7', then the probability that we reach place
success on the first pass is

=TI A" (1= BT

where the sum is taken over {(ni,...,ns)|n; € {0,1},5"n; > 3}. The number of passes before
failure is geometrically distributed with parameter p, so that MTTF = 7°/(1 — p). This provides

a convenient check on the XPSC simulation results, which should converge to this value as the
correlation K approaches 0.

It is important to observe that the case K = 1, where we sample from precisely the same
relative performance levels, corresponds to the “natural” synchronization of the ezec; versions on
identical inputs only if these exec; versions exhibit a natural high correlation of performance on all
the inputs giving rise to the exec; distributions. Such structure allows us to use whatever natural
correlation exists among versions and still treat correlation as an independent model parameter.

The distributions used for the exec; transitions in the study were measured execution times
of five independently developed implementations of the accelerometer sensor processing module of
NASA’s planetary lander control software, described in section 4. The input cases on which each
module was executed were generated by an automated system that is based on mutation testing.

3 Mutation Testing

Generating test cases that are effective at finding faults is a technically difficult task. One important
criterion for generating test data is relative adequacy as defined by DeMillo et al [7]:

Definition. If P is a program to implement function F and II is a collection of programs, then
test set T is adequate for P relative to Il if P(t)=F(t) V teT,and ¥V Q € II, Q # F = 3 t€T such
that Q(t)£F(t).

In other words, a test set is adequate if it distinguishes the program being tested from a set
of incorrect programs. Mutation testing [7] is a testing technique based on relative adequacy. It can
be regarded as a software analogue of the hardware fault-injection experiment. Mutation testing
systems apply a collection of mutation operators to the test program, each of which produces a set
of executable variations, called mutants, of the original program.

Test cases are used to cause the mutants to generate incorrect output. Mutant programs
that have been shown to be incorrect by a test case are considered “dead” and are not executed
against subsequent test cases. Some mutants are functionally equivalent to the original program
and cannot be killed. The mutation score of a test set is then the percentage of non-equivalent
mutants that are dead. If the total number of mutants is M, the number of dead mutants is D, and
the number of equivalent mutants is F, the mutation score is calculated as:

D

MS(P,T) = -5

This mutation score is a close approximation of the adequacy of a set of test data; a test set is
relative adequate if its score is 100% (all mutants were killed). The goal of mutation testing is to
find test data to kill all mutants. The assumption is that such test data will provide a strong test
of the original program.

The effectiveness of this approach is based upon a fundamental premise: if the software
contains a fault, it is likely that there is a mutant that can only be killed by a test case that also
reveals the fault. Mutation-adequate tests have been shown experimentally [4, 13] and analytically
[5] to be high quality tests.

The most recent mutation system is Mothra [6], which allows a tester to examine remaining
live mutants and design tests that kill them. The mutation operators used by Mothra [16] represent
more than 10 years of refinement through several mutation systems. These operators explicitly
require that the test data meet statement and (extended) branch coverage criteria, extremal values
criteria, and domain perturbation; the mutation operators also directly model many types of faults.

Unfortunately, generating mutation-adequate tests can be a labor-intensive task. To solve
this problem, Offutt [9] devised an adequacy-based scheme for automatically generating test data

through a Constraint-Based Testing (CBT) system. In constraint-based testing, we represent the
conditions under which each mutant will die as mathematical constraints on the inputs, and then
generate a test case that satisfies the constraint system. An implementation of this technique,
Godzilla, has been integrated with Mothra.

The Godzilla system develops test data to detect the same classes of faults that the Mothra
software testing system models. Godzilla generates test data by posing the question, “What prop-
erties must the program inputs have to kill each mutant?” The inputs must cause the mutant
to have an incorrect program state after some execution of the mutated statement. Godzilla uses
the same syntactic information that Mothra uses to force the syntactic change represented by the
mutation into making a semantic difference during execution. Since faults are modeled as simple
faults on single statements, an initial condition is that the mutated statement must be reached
(reachability). A further condition is that once the mutated statement is executed, the test case
must cause the mutant to behave erroneously, i.e. the fault that is being injected must result in a
failure in the program’s output.

Godzilla describes these conditions on the test cases as mathematical systems of constraints.
The reachability condition is described by a system of constraints called a path expression. For
each statement in the program, the path expression contains a constraint system that describes
each execution path through the program that will reach that statement.

The condition that the test case must cause an erroneous state is described by a constraint
that is specific to the mutation operator. In general, this necessily constrainl requires that the
computation performed by the mutated statement create an incorrect intermediate program state.
Although an incorrect intermediate program state is necessary for fault detection, it is clearly not
sufficient to guarantee detection. In order to detect the fault, the test case must cause the mutant
to produce incorrect output, in which case the final state of the mutant differs from that of the
original program. Although deriving a test case that meets this sufficiency condition is certainly
desirable, it is impractical. Determining the sufficiency condition implies knowing the complete
path that the program will take, which is intractable. Thus, the partial solution of relying on the
necessity condition is used.

To generate the test cases, Godzilla solves the conjunction of the path expression constraint
with the necessity constraint to create a test case consisting of values for the input variables that
will make the constraints true. Godzilla consistently generates test cases that kill over 95% of the
mutants [8].

4 A Correlated Sampling Experiment

NASA’s planetary lander control software is designed as an N-version voting system. Five imple-
mentations (My, My, ..., M5) of the accelerometer sensor processing module for this system were
independently constructed and tested by programmers. A separate version, My, was written and
tested using Mothra. This version had 55 lines and 3778 non-equivalent mutants. Godzilla gener-
ated 30 test cases to kill all 3778 mutants. The correctness of My on the 30 cases was verified by
hand so that My was a correct, or “oracle” version of the modules. The average execution time
of each module M; on each test case was measured. When a module returned incorrect output
on a test case, its execution time was considered to be infinite. These empirical execution time
distributions were attached to the exec; transitions of the Petri net model described in section 2.
All exec; transitions were placed in a single group with correlation factor K.

Since the test data was generated using the Godzilla generator, the empirical execution time
distributions likely differ from those expected under normal conditions. These input sets attempt

to maximize the likelihood of the module failing to produce correct output. Thus a conservative
reliability estimate is suggested. Additionally, we do not allow for multiple correct answers (for
example, that differ by an inconsequential value). This is a limitation of our implementation
(specifically, of the Mothra system), not of the reliability model itself. Since this means that we
may label some correct answers incorrect, this limitation contributes to the conservativeness of the
reliability estimate.

The software used for this experiment was based on specifications provided by NASA [25].
These specifications are quite thorough with regard to what must be accomplished in each mod-
ule and what the parameters must be. The module selected has tight timing requirements and
reasonable computational complexity. The module specifications are summarized in figure 3. The
module takes input from the accelerometer sensor (A_Counter), removes its natural electrical and
temperature bias (steps 1 and 2), and produces accelerations in all three physical body directions.

Transforming accelerometer data (A_COUNTER) into vehicle accelerations (A_ACCELERATION) is a
time-dependent operation that must execute as quickly as possible. The function requires the following
steps:

1. A_.GAIN := A_GAIN0 + (G1 * ATMOSPHERIC_TEMP) + (G2 * ATMOSPHERIC_TEMP?)
2. A_ACCELERATION_M := A_BIAS + A_GAIN * A_.COUNTER

3. Shift A.SSTATUS and A_ACCELERATION right by 1 column.

4. ALACCELERATION := ALPHA_MATRIX * A_ACCELERATION_M

For each row of A_STATUS and A_ACCELERATION: If any of the previous three values of
A_STATUS is unhealthy, set A_STATUS(i,0) to healthy. Otherwise, for each of the three di-
mensions in A_ACCELERATION calculate the mean (u) and the standard deviation (o). If
| - ALACCELERATION(i,0)| > A_SCALE*c, then set ALACCELERATION(i,0) to p and set
A_STATUS(i,0) to unhealthy.

ot

Figure 3: ASP Specification Summary.

The 5 programmers were given input data types and ranges, but not specific test data. They
were also told that the module must satisfy very tight timing constraints. The 5 Fortran-77 versions
of the module ranged from 42 to 55 lines of code, and were run on Sun 3/50s under SunOS version
4.1. Although we did monitor programmer debugging, we did not perform any acceptance testing.

Execution times for correct output of the 5 versions ranged from 89 to 151 milliseconds. As
stated before, incorrect answers were penalized with an effective time of 400, yet, of the 30 test
cases for each of the 5 versions (150 total responses), only 20 responses were incorrect. The number
of functional failures per version was 0, 1, 1, 5, and 13.

The only parameters to the synchronization model were the value of the timing constraint,
T, and the correlation among exzec; modules, K. In figure 4 we show the mean time to failure
(MTTF) as a function of the timing constraint 7" for a range of correlation factors. Each curve is
a spline of 63 datapoints evenly spaced across the T range [89, 151] ms. Since the longest correct
execution time was 151 ms, the right-hand endpoints of the curves in figure 4 show the reliability
estimates when only functional errors are considered. The figure also shows that when the timing
constraint is very tight all versions of the software will fail immediately, i.e. after one timer interval.
We note extreme sensitivity of MTTF to correlation in the range 0 < K < 0.3, where we see a
precipitous drop in MTTF over a wide range of timing constraints. If this trend holds for software
in general, then this is a cause for concern, since this study causes us to expect programs in a
natural environment to correlate to at least this degree. For example, if we use a specific value of

MTTF (ms)
8400 K 0.0
K 0.1
7000
K 0.3
5600
K 0.5
4200 ﬁ %
2800
1400
A8 20 130 40 150
y/ 4
\ \ \ | \ T (ms)

Figure 4: MTTF of Correlated Samples with Mutation Test Data.

the timing constraint, 7', to transform each execution time random variable to binary (success is
correct execution in time < 7'), then we can measure sample correlation of success/failure for the
10 possible pairings of programs on the sequence of automatically generated test data. A choice of
T = 110 ms yielded 92 successes, 58 failures (30 test cases X 5 versions), and an average pairwise
correlation of 0.200498.

To lend evidence to our conjecture that these reliability estimates are conservative, we ran
the experiment again using random test cases in place of the Godzilla-generated test cases. We
assumed a uniform distribution over the legal input space and selected 100 test cases at random.
All five versions were executed on each of the 100 test cases, and an execution time (time to
correct output) distribution for each was recorded. The synchronization model was run again using
these new execution time distributions. The results are shown in figure 5, where we see a dramatic
increase in estimated MTTF for all correlation and timing constraint values, indicating that random
testing did not find as many faults as mutation testing. Average pairwise sample correlation of
success/failure at 7" = 110 ms in this case was 0.157524, which was derived from 284 successes
and 216 failures (100 test cases X 5 versions). The two sets of curves in figures 4 and 5 serve as
estimated bounds on the reliability of our 5-version voting system. They also provide a gauge by
which we might judge the effectiveness of reliability enhancement techniques.

5 An Enhancement

Programmers typically respond to test results by modifying their code to correct the faults found
during testing, which can naturally be expected to improve the reliability. In a second experiment,
each of the five programmers was provided with the 30 automatically generated test cases, including

MTTF (ms)
8400

K 0.0
B K 0.1
K 0.3
K 0.5

K 0.7

K10

120 130 140 150
\ \ \ \ T (ms)

Figure 5: MTTF of Correlated Samples with Random Test Data.

the correct outputs, and given the opportunity to improve module code. The modules were changed,
sometimes extensively, until they worked correctly on all 30 test cases. The automated test case
generator was then run again to provide an alternative set of test cases with 100% mutation kill
score. The new set also contained 30 test cases. Although this new set satisfied the same mutation
criteria, the randomness inherent in the constraint satisfaction mechanism ensured different values.

Fach of the five “improved” modules was executed on all 30 of the new test cases, and an
execution time (time to correct output) distribution for each was recorded. The synchronization
model was executed again using these new distributions. The results are shown in figure 6, where
we see a dramatic improvement in reliability (MTTF) over that exhibited in figure 4.

As a control, the five original modules were also executed on these new test cases, and the
synchronization model was run with the resulting execution time distributions. The results are
similar to those in figure 4, but report slightly lower MTTEF. This indicates that the new test
cases represent at least as stringent a test as the original set, as well as indicating that the MTTF
improvement in figure 6 over figure 4 genuinely indicates a substantial improvement in reliability.

We note that although the relative effects of correlation are still visible in figure 6, the
correlation K = 1.0 curve of figure 6 lies entirely above the correlation K = 0.0 curve of figure 4.
Since an N-version system with K = 1.0 is equivalent to a single version, an interpretation is that
any single version of code for which specification includes matching mutation-generated I/O pairs
may be more reliable than a 5-version voting system in which testing is under the complete control
of the individual unit developers. The results also suggest that constraint-based testing could hold
greater potential for reliability enhancement than the desirable, but perhaps unachievable, goal of
independence among N versions. Nevertheless, an alternative interpretation would lend support
to N-version programming. It may be unfair to compare the higher quality code represented by
figure 6 with that represented by figure 4, since testing in the latter case was uncontrolled. If we

10

MTTF (ms)
8400

K 0.0

KO0.1

7000 K 0.3

5600 K05

K 0.7
4200
B K10

2800

1400

110 120 130 140 150
\ \ \ | \ T (ms)

Figure 6: MTTF of Improved Code with New Mutation Test Data.

focus only on the higher quality code represented by figure 6, we see that for any specific timing
constraint 7" within the range [105, 110] ms successful N-version programming (K small) does offer
substantial improvement over the single version case (K = 1.0).

We emphasize that the present experiment is a very simple one, and a complete case study
will be needed before we can attempt to draw definitive conclusions. For example, since random
testing did not find as many faults as mutation testing (see figure 5), we can conclude that random
testing is unlikely to hold as much potential for reliability enhancement. However, we cannot
conclude that presenting programmers with 30 test cases generated by an alternative, non-random
scheme (e.g. data flow testing or functional testing) would have been less effective than using the
mutation-generated cases.

6 Mutation Gradient Retry

Mutation analysis may also prove effective in the design of fault-tolerant software. In a real-time
environment, sensor data often contains noise. Ammann and Knight [1] have proposed retrying
on failures with forced minor variations in input data. This technique, called data diversity, could
be an effective means of providing software fault tolerance. Missing from their approach is any
guidance on the direction of data variation. If we find that a minor variation caused us to enter
a domain region of lesser mutation kill potential, as identified by the constraints generated during
testing, then we could reasonably expect less data sensitivity and hence a greater probability of
success on that retry.

To explore this possibility within the present testing framework, we isolated a particularly
troublesome mutation-generated test case on which 4 of 5 original versions exhibited functional

11

failure. (No single test case caused all versions to fail.) We fixed all input values at this point
except for the values of G'1 and G2 (see specifications, figure 3). By randomly varying G'1 and
(2 across their legal ranges (-5.0, 5.0) we obtained 15,000 system failure points, shown in figure 7.
These are points where 3 or more versions exhibited functional failure. This diagram is strikingly

5

Figure 7: Failure Points in (G1,G2) Space.

similar to those of [1] in suggesting that high density failure regions form hyperplanes in the input
space.

We subjected each of the 15,000 failure points to a system retry with forced variation in
G1 and G2. We varied the point (G1,G2) in a random direction, as per [1], and in the direction
of the downward mutation gradient, determined from mutation kill scores over a lattice of points
in (G1,G2) space. This process was automated, but computationally expensive. The number of
failures surviving retry, as a function of distance moved, is shown in figure 8. We see random retry
offered an order of magnitude reduction in failures (from 15,000 to <1,500), but that mutation-
gradient retry fared significantly better. We have also plotted in figure 8 results of retry in the
direction of the upward mutation gradient. If the mutation gradient generally points orthogonally
to failure hyperplanes, then upward gradient movement should serve as well as downward, which
is certainly supported by the results of this test.

7 Conclusions

We have presented a method for obtaining numerical estimates of the reliability of N-version, real-
time software. The method uses an extended stochastic Petri net to represent the synchronization

12

1600

failures
1400 @\ .
x§¥
1200 .., random -
D/*‘" %ﬂww’g“%m@wwgmm //E\' M“M@_______EMMW
1000 4
800 |- S :
%:::% _ up
600 S Mﬁ&%:m%%mm:
R —
“*m@,,.,/
400 + down
200 - .
distance changed
0 | | | |
0 0.2 0.4 0.6 0.8 1

Figure 8: Failures Surviving Retry.

structure of the N versions (software modules). Net simulation is used to estimate system reliability
under different correlation assumptions.

Module execution time distributions are derived by executing the modules on test cases that
are generated by a mutation testing system. Since these test cases are designed to reveal faults,
and hence represent stressful input, we contend that such execution time distributions are likely to
deliver a conservative estimate of system reliability. A major advantage of this approach is that it
allows us to directly incorporate results from software testing into the reliability measure.

We conducted a simple empirical investigation of this approach using five independently
developed implementations of the accelerometer sensor processing module from NASA’s planetary
lander control software. We observed a rapid decrease in estimated reliability of the 5-version
system as the correlation increased over the narrow range of 0.0 < K < 0.3. This is disturbing,
in that it suggests that even relatively low correlation among versions could prevent significant
reliability enhancement through N-way voting alone.

We also considered a technique for reliability enhancement in which programmers were given
mutation-generated I/O pairs and required to match them. The resulting dramatic improvement
in estimated system reliability suggests that constraint-based testing may hold greater potential
for reliability enhancement than achieving independence among N versions. Nevertheless, we find
that successful N-version programming (K small), when applied to the improved modules, does
offer additional significant reliability enhancement for a range of tight timing constraints.

We emphasize that our coding experiment was a very simple one, and a complete case study
will be needed before we can attempt to draw definitive conclusions.

Finally, we considered an application of mutation analysis to the design of fault-tolerant
software. We modified Ammann and Knight’s data diversity technique, which calls for retry on
system failure with forced minor random variation in input data, to incorporate a specific variation

13

direction determined by the mutation kill gradient. Results show a significant reduction in system
failures. However, this study considered only a two-dimensional cross section of the input space
and did not consider effects of multiple retries. An extended study that incorporates the entire
input domain as well as the effects of timing constraints on limiting multiple retries is warranted.

References

[1

[7]

[8]

[12]

[13]

[14]

] P. Ammann and J. Knight. Data diversity: An approach to software fault-tolerance. Proc.

17th Int. Symp. on Fault-Tolerant Computing (FTCS-17), pages 122-126, Pittsburgh, PA,
July, 1987.

A. Avizienis. The n-version approach to fault-tolerant software. IEFE Trans. Soft. Engr.,
SE-11(12):1491-1501, December 1985.

G. Balbo, S. Bruell, and S. Ghanta. Combining queueing networks and generalized stochastic
petri nets for the solution of complex models of system behavior. IFEE Trans. on Comp., 37,
1988.

T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale University, New
Haven CT, 1980.

T.A. Budd and D. Angluin. Two notions of corrections and their relation to testing. Acta
Informatica, 18(1):31-45, November 1982.

R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. Offutt. An extended
overview of the Mothra software testing environment. In Proceedings of the Second Workshop
on Software Testing, Verification and Analysis, Banfl Alberta, July 1988. IEEE Computer
Society Press.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. Computer, 11(4), April 1978.

R. A. DeMillo and A. J. Offutt. Experimental results of automatically generated adequate
test sets. In Proceedings of the Sizth Annual Pacific Northwest Software Quality Conference,
pages 209-151, Portland OR, September 1988. Lawrence and Craig.

R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data generation. IFEE Trans.
Soft. Engr., 17(9):900-910, September 1991.

J. Dugan, A. Bobbio, G. Ciardo, and K. Trivedi. The design of a unified package for the
solution of stochastic petri net models. Proc. Int. Workshop on Timed Petri Nels, Torino,
1985.

J.B. Dugan, K.S. Trivedi, R.M. Geist, and V.F. Nicola. Extended stochastic petri nets: Ap-
plications and analysis. Proc. 10th Int. Symp. on Computer Performance (PERFORMANCE
84), pages 507-520, December, 1984.

D. Eckhardt and L. Lee. A theoretical basis for the analysis of multi-version software subject
to coincident errors. IEEFE Trans. Soft. Engr., SE-11, 1985.

M.R. Girgis and M.R. Woodward. An experimental comparison of the error exposing ability
of program testing criteria. In Proceedings of the Workshop on Software Testing, pages 64-73.
IEEE Computer Society Press, July 1986.

M. A. Holliday and M. K. Vernon. A generalized timed Petri net model for performance
analysis. IEEF Transactions on Software Engineering, pages 1297-1310, December 1987.

14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Kelly and A. Avizienis. A specification-oriented multi-version software experiment. Proc.
FTCS-13, Milan, 1983.

K. N. King and A. J. Offutt. A Fortran language system for mutation-based software testing.
Software Practice and Frperience, 21(7):686-718, July 1991.

J. Knight and N. Leveson. An experimental evaluation of the assumption of independence in
multi-version programming. [EFFE Trans. Soft. Engr., SE-12, 1986.

J. Knight and N. Leveson. An empirical study of failure probabilities in multi-version software.
Proc. of FTCS-16, Vienna, 1986.

B. Littlewood and D. Miller. A conceptual model of multi-version software. Proc. FTCS-17,
Pittsburgh, 1987.

M. Marsan, G. Conte, and G. Balbo. A class of generalized stochastic petri nets for the
performance evaluation of multiprocessor systems. ACM Trans. on Comp. Sys., 2:93-122,
1984.

Michael K. Molloy. Performance analysis using stochastic Petri nets. IEFE Trans. Compul.,
C-31(9):913-917, September 1982.

J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

Y-B. Shieh, D. Ghosal, and S. Tripathi. Modeling of fault-tolerant techniques in hierarchical
systems. Proc. F'TCS-19, Chicago, 1989.

K.S. Trivedi. Probability and Statistics with Reliability, Queueing, and Compuler Science
Applications. Prentice-Hall, Englewood Cliffs, NJ, 1983.

B. Withers, D. Rich, D. Lowman, and R. Buckland. Software requirements: Guidance and
control software development specification. NASA Contractor Report 182058, NASA Langley
Research Center, June, 1990.

T. Yoneda, K. Nakade, and Y. Tohma. A fast timing verification method based on the inde-
pendence of units. Proc. FT(CS-19, Chicago, 1989.

15

