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Abstract

The Optimization problem is simply stated as follows: Given a set of N
cities, construct a connected network which has minimum length. The problem
is simple enough, but the catch is that you are allowed to add junctions in your
network. Therefore the problem becomes how many extra junctions should be
added, and where should they be placed so as to minimize the overall network
length.

This intriguing optimization problem is also known as the Steiner Minimal
Tree Problem, where the junctions that are added to the network are called
Steiner Points. A Simulated Annealing approach is proposed for this NP-Hard
problem, and some very exciting results from it are presented.

1 The Problem

Minimizing a network’s length is one of the oldest optimization problems in math-
ematics and, consequently, it has been worked on by many of the leading mathemati-
cians in history. In the mid-seventeenth century a simple problem was posed: Find
the point P that minimizes the sum of the distances from P to each of three given
points in the plane. Solutions to this problem were derived independently by Fermat,
Torricelli and Cavalieri. They all deduced that either P is inside the triangle formed
by the given points and that the angles at P formed by the lines joining P to the
three points are all 120°, or P is one of the three vertices and the angle at P formed
by the lines joining P to the other two points is greater than or equal to 120°.

In the nineteenth century a mathematician at the University of Berlin, named
Jakob Steiner, studied this problem and generalized it to include an arbitrarily large
set of points in the plane. This generalization created a star when P was connected
to all the given points in the plane, and is a geometric approach to the 2-dimensional
center of mass problem.



In 1934 Kossler and Jarnik generalized the network minimization problem even
further [21]: Given n points in the plane find the shortest possible connected network
containing these points. This generalized problem, however, did not become popular
until the book, What is Mathematics, by Courant and Robbins [7], appeared in 1941.
Courant and Robbins linked the name Steiner with this form of the problem proposed
by Kossler and Jarnfk, and it became known as the Steiner Minimal Tree problem.
The general solution to this problem allows multiple points to be added, each of which
is called a Steiner Point, creating a tree instead of a star.

Much is known about the exact solution to the Steiner Minimal Tree problem.
Those who wish to learn about some of the spin-off problems are invited to read
the introductory article by Bern and Graham [1], the excellent survey paper on this
problem by Hwang and Richards [19], or the recent volume in The Annals of Discrete
Mathematics devoted completely to Steiner Tree problems [20]. Some of the basic
pieces of information about the Steiner Minimal Tree problem that can be gleaned
from these articles are: (i) the fact that all of the original n points will be of degree 1,
2, or 3, (ii) the Steiner Points are all of degree 3, (iii) any two edges meet at an angle
of at least 120° in the Steiner Minimal Tree, and (iv) at most n — 2 Steiner Points
will be added to the network.

2 The First Solution

A typical problem-solving approach is to begin with the simple cases and expand
to a general solution. As we saw in Section 1, the trivial three point problem had
already been solved in the 1600’s, so all that remained was the work toward a general
solution. As with many interesting problems this is harder than it appears on the
surface.

The method proposed by the mathematicians of the mid-seventeenth century for
the three point problem is illustrated in Figure 1. This method stated that in order to
calculate the Steiner Point given points A, B, and C, you first construct an equilateral
triangle (AC X)) using the longest edge between two of the points (AC') such that the
third (B) lies outside the triangle. A circle is circumscribed around the triangle, and
a line is constructed from the third point (B) to the far vertex of the triangle (X).
The location of the Steiner Point (P) is the intersection of this line (BX) with the
circle.

For the next thirty years after Kossler and Jarnik presented the general form of
the SMT problem, the only algorithms that existed were heuristics. The heuristics
were typically based upon the Minimum-Length Spanning Tree (MST), which is a
tree that spans or connects all vertices whose sum of the edge lengths is as small
as possible, and tried in various ways to join three vertices with a Steiner Point. In
1968 Gilbert and Pollak [16] linked the length of the SMT to the length of a MST.
It was already known that the length of an MST is an upper bound for the length of
an SMT, but their conjecture stated that the length of an SMT would never be any
shorter than ? times the length of an MST. This conjecture, was recently proved [8],
and has led to the MST being the starting point for most of the heuristics that have
been proposed in the last 20 years. This combination approach, starting with the



Figure 1: AP + CP = PX.

MST, will serve as the basis for the heuristic we present later in this paper.

In 1961 Melzak developed the first algorithm for calculating an SMT [23]. Melzak’s
Algorithm was geometric in nature and was based upon some simple extensions to
Figure 1. The insight that Melzak offered was the fact that you can reduce an n
point problem to a set of n —1 point problems. This reduction in size is accomplished
by taking every pair of points, A and C in our example, calculating where the two
possible points, X; and X,, would be that form an equilateral triangle with them, and
creating two smaller problems, one where X; replaces A and C, and the other where
X5 replaces A and C. Both Melzak and Cockayne pointed out however that some
of these sub-problems are invalid. Melzak’s algorithm can then be run on the two
smaller problems. This recursion, based upon replacing two points with one point,
finally terminates when you reduce the problem from three to two vertices. At this
termination the length of the tree will be the length of the line segment connecting
the final two points. This is due to the fact that BP + AP + CP = BP + PX.
This is straightforward to prove using the law of cosines, for when P is on the circle,
LAPX = LCPX =60°. This allows the calculation of the last Steiner Point (P) and
allows you to back up the recursive call stack to calculate where each Steiner Point
in that particular tree is located.

This reduction is important in the calculation of an SMT, but the algorithm still
has exponential order, since it requires looking at every possible reduction of a pair
of points to a single point. The recurrence relation for an n-point problem is stated
quite simply in the following formula:

T(n):2*<2)*T(n—1).

This yields what is obviously a non-polynomial time algorithm. In fact Garey, Gra-



ham, and Johnson [9] have shown that the Steiner Minimal Tree problem is NP-Hard
(NP-Complete if the distances are rounded up to discrete values).

3 Current Results

In 1967, just a few years after Melzak’s paper, Cockayne [2] clarified some of the
details from Melzak’s proof and proposed a new term, the Steiner Hull [3]. This
allows the problem to be decomposed into subproblems based on regions contained in
the hull, and the trees to be joined at the regions intersections. This decomposition,
along with a clarified algorithm, proved to be the basis for the first computer program
to calculate Steiner Minimal Trees, which appeared in [6], and which could compute
an SMT for any placement of up to 7 vertices.

The biggest breakthrough after Cockayne’s algorithm came from Winter in 1985 [28]
who was able to establish some geometric results which showed that a possible sub-tree
could not possibly exist in the Steiner Minimal Tree. This enabled one to eliminate
(prune out) a great many of the reconstruction sequences required by Melzak’s al-
gorithm. Using this, Winter was able to compute Steiner Minimal Trees for 15 or
fewer vertices. Winter’s algorithm has been the basis for most of the enhancements
in Steiner Minimal Tree algorithms since then.

In 1986 another major computational breakthrough was made. Cockayne and
Hewgill [4] were able to calculate the Steiner Minimal Trees for up to 30 vertices
80% of the time. They achieved this through the use of what they termed an incom-
patibility matrix, which took the sub-trees left after Winter’s pruning and determined
whether trees ¢ and j could appear together in the Steiner Minimal Tree.

Most of the rest of the exact current results belong to Cockayne and Hewgill. In
1992 they expanded upon their Incompatibility Matrix and developed better pruning
techniques that have allowed them to calculate Steiner Minimal Trees for up to 100
vertices 80% of the time. Their paper describing these results [5] recently appeared
in a Special Issue of Algorithmica which is totally devoted to the Steiner Problem.

4 The Proposed Heuristic

Background and Motivation

By exploring a structural similarity between stochastic Petri nets (see [25] and
[24]) and Hopfield neural nets (see [17] and [18]), Geist was able to propose and take
part in the development of a new computational approach for attacking large, graph-
based optimization problems. Successful applications of this mechanism include 1/0
subsystem performance enhancement through disk cylinder remapping [14, 13], file
assignment in a distributed network to reduce disk access conflict [12], and new com-
puter graphics techniques for digital halftoning [11] and color quantization [10]. The
mechanism is based on maximum-entropy Gibbs measures, which is described in
Reynold’s dissertation [27], and provides a natural equivalence between Hopfield nets
and the simulated annealing paradigm. This similarity allows you to select the method
that best matches the problem at hand. For the SMT problem we will implement the



Simulated Annealing approach.

Simulated Annealing [22] is a probabilistic algorithm that has been applied to
many optimization problems in which the set of feasible solutions is so large that an
exhaustive search for an optimum solution is out of the question. Although Simulated
Annealing does not necessarily provide an optimum solution, it usually provides a
good solution in a user-selected amount of time. Hwang and Richards [19] have
shown that the optimal placement of s Steiner Points to n original vertices yields a
feasible solution space of the size

g-n n (n—s—2)!
s+ 2 s!

provided that none of the original points have degree 3 in the SMT. If the degree
restriction is removed they showed that the number is even larger. The SMT problem
is therefore a good candidate for this approach.

Adding 1 Junction

Georgakopoulos and Papadimitriou [15] have provided an O(n?) solution to the
1-Steiner problem, wherein exactly one Steiner Point is added to the original set of
points. Since at most n — 2 Steiner Points are needed in an SMT solution, repeated
application of the algorithm offers a “greedy” O(n®) approach. Using their method,
the first Steiner Point is selected by partitioning the plane into Oriented Dirichlet
Cells, which they describe in detail. Since these cells do not need to be discarded and
recalculated for each addition, subsequent additions can be accomplished in linear
time. Deletion of a candidate Steiner Point requires regeneration of the MST, which
Shamos showed can be accomplished in O(n log n) time if the points are in the
plane [26], followed by the cost for a first addition (O(r?)). This approach can be
regarded as a natural starting point for Simulated Annealing by adding and deleting
different Steiner Points.

The Heuristic

The Georgakopoulos and Papadimitriou 1-Steiner algorithm and the Shamos MST
algorithm are both difficult to implement. As a result, we have chosen to investi-
gate the potential effectiveness of this Annealing Algorithm using a more direct, but
slightly more expensive O(n?®) approach. As previously noted, all Steiner Points have
degree 3 with edges meeting in angles of 120°. We consider all (g) triples where the
largest angle is less than 120°, compute the Steiner Point for each (a simple geometric
construction), select that Steiner Point giving greatest reduction, or least increase in
the length of the modified tree (increases are allowed since the Annealing Algorithm
may go uphill) and update the MST accordingly. Again, only the first addition re-
quires this (now O(n?)) step. We use the straightforward, O(n?) Prim’s algorithm to
generate the MST initially and after each deletion of a Steiner Point.

The Annealing Algorithm can be described as a non-deterministic walk on a surface.
The points on the surface correspond to the lengths of all feasible solutions, where
two solutions are adjacent if they can be reached through the addition or deletion



of one Steiner Point. The probability of going uphill on this surface is higher when
the temperature is higher but decreases as the temperature cools. The rate of this
cooling typically will determine how good your solution will be. The major portion
of this algorithm is presented in Figure 2. This non-deterministic walk, starting with
the MST has led to some very exciting results.

#define EQUILIBRIUM ((accepts>=100 AND rejects>=200) OR
(accepts+rejects > 500))

#define FROZEN ((temperature < 0.5) OR ((temperature < 1.0)
AND (accepts==0)))

while(not (FROZEN) ) {
accepts = rejects = 0;
old_energy = energy();
while(not (EQUILIBRIUM)){
operation = add or_delete();
switch(operation){
case ADD:
AF = energy change from_adding a node();
break;
case DELETE:
AF = energy _change from deleting a node();
break;

}

if(rand(0,1) < emm{o.o,—AE/temperature}){
acceptst+;
old_energy = new_energy;

telse {
/* put them back */
undo_change (operation) ;
rejects++;

}

}

temperature = temperature*0.8;

Figure 2: Simulated Annealing Algorithm

5 Results

Before we discuss large problems, a simple introduction into the results from a simple
six point problem is in order. The Annealing Algorithm is given the coordinates for

six points: (0,0), (0,1), (2,0), (2,1), (4,0), (4,1). The first step is to calculate the



MST, which has a length of 7, as shown in Figure 3. The output of the Annealing
Algorithm for this simple problem is shown in Figure 4. In this case the Annealing
Algorithm calculates the exact SMT solution which has a length of 6.616994.

(0,0) (0,1) (2,00 (2,1) (4,0) (4,1)

Figure 3: Spanning Tree for 6 point problem.

Figure 4: 6 point solution.

We propose as a measure of accuracy the percentage of the difference between
the length of the MST and the exact SMT solution that the Annealing Algorithm
achieves. This is a new measure which has not been discussed (or used) because
exact solutions have not been calculated for anything but the most simple layouts
of points. For the six point problem discussed above this percentage is 100.0% (the
exact solution is obtained).

After communicating with Cockayne, data sets were obtained for exact solutions to
randomly generated 100 point problems that were developed for [5]. This allows us
to use the measure of accuracy previously described. Results for some of these data
sets provided by Cockayne are shown in Table 1.

An interesting aspect of the Annealing Algorithm that cannot be shown in the table
is the comparison of execution times with Cockayne’s program. Whereas Cockayne
mentioned that his results had an execution cut-off of 12 hours, these results were



Exact Solution | Spanning Tree | Simulated Annealing | Percent Covered
6.255463 6.448690 6.261797 96.39%
6.759661 6.935189 6.763495 98.29%
6.667217 6.923836 6.675194 96.89%
6.719102 6.921413 6.721283 99.01%
6.759659 6.935187 6.763493 98.29%
6.285690 6.484320 6.289342 98.48%

Table 1: Results from 100 point problems

obtained in less than 1 hour. The graphical output for the first line of the table,
which reaches over 96% of the optimal value, appears as follows: the data points and
the MST are shown in Figure 5, the Simulated Annealing Result is in Figure 6, and
the Exact SM'T Solution is in Figure 7. The solution presented here is obtained in
less than ll—oth of the time with less than 4% of the possible range not covered. This
indicates that we could hope to extend our Annealing Algorithm to much larger prob-
lems, perhaps as large as 1,000 points. If we were to extend this approach to larger
problems we would definitely need to implement the Georgakopoulos-Papadimitriou

1-Steiner Algorithm and the Shamos MST Algorithm.
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