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Abstract

The optimization problem is simply stated as follows: Given a set of N
cities, construct a connected network which has minimum length. The problem
is simple enough, but the catch is that you are allowed to add junctions in your
network. Therefore the problem becomes how many extra junctions should be
added, and where should they be placed, so as to minimize the overall network
length.

This intriguing optimization problem is also known as the Steiner Minimal
Tree Problem, where the junctions that are added to the network are called
Steiner Points. What is known about the general problem will be presented
first and then the focus will turn from the general problem to the problem on
a lattice of points called a grid.

The characterization of the Steiner Minimal Tree (SMT) for a 2 x m grid
is generally known, while the only other conjectured characterizations for grids
previously known were for square grids. We will present the characterization
of SMT’s for 2 x m grids, as well as characterizations of SMT’s for grids up
through 7 x m.
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1 The Problem

Minimizing a network’s length is one of the oldest optimization problems in math-
ematics and, consequently, it has been worked on by many of the leading mathemati-
cians in history. In the mid-seventeenth century a simple problem was posed: Find
the point P that minimizes the sum of the distances from P to each of three given
points in the plane. Solutions to this problem were derived independently by Fermat,
Torricelli and Cavalieri. They all deduced that either P is inside the triangle formed



by the given points and that the angles at P formed by the lines joining P to the
three points are all 120°, or P is one of the three vertices and the angle at P formed
by the lines joining P to the other two points is greater than or equal to 120°.

In the nineteenth century a mathematician at the University of Berlin named Jakob
Steiner studied this problem and generalized it to include an arbitrarily large set of
points in the plane. This generalization created a star when P was connected to all
the given points in the plane and is a geometric approach to the 2-dimensional center
of mass problem.

In 1934 Kossler and Jarnik generalized the network minimization problem even
further [20]: Given n points in the plane find the shortest possible connected network
containing these points. This generalized problem, however, did not become popular
until the book What is Mathematics by Courant and Robbins [11] was published in
1941. Courant and Robbins linked the name Steiner with this form of the problem
proposed by Kossler and Jarni’k, and it became known as the Steiner Minimal Tree
(SMT) problem. The general solution to this problem allows multiple points to be
added, each of which is called a Steiner Point, creating a tree instead of a star.

Much is known about the exact solution to the Steiner Minimal Tree problem.
Those who wish to learn about some of the spin-off problems are invited to read
the introductory article by Bern and Graham [1], the excellent survey paper on this
problem by Hwang and Richards [18], or the recent volume in The Annals of Discrete
Mathematics devoted completely to Steiner Tree problems [19]. Some of the basic
pieces of information about the Steiner Minimal Tree problem that can be gleaned
from these articles are: (i) all of the original n points will be of degree 1, 2, or 3, (ii)
the Steiner Points are all of degree 3, (iii) any two edges meet at an angle of at least
120° in the Steiner Minimal Tree, and (iv) at most n — 2 Steiner Points will be added
to the network.

In Section 2 we review the first fundamental algorithm generally known for calcu-
lating SMT’s. In Section 3 we look at the current computational results for finding
SMT’s. In Section 4 we present what is currently known about SMT’s on grids and
then introduce SM'T’s for other grid networks. Finally we present some ambitious
future work in Section 5.

2 The First Solution

A typical problem-solving approach is to begin with the simple cases and expand
to a general solution. As we saw in Section 1, the trivial three point problem had
already been solved in the 1600’s, so all that remained was the work toward a general
solution. As with many interesting problems this is harder than it appears on the
surface.

The method proposed by the mathematicians of the mid-seventeenth century for
the three point problem is illustrated in Figure 1. This method stated that in order to
calculate the Steiner Point given points A, B, and C, you first construct an equilateral
triangle (AC X)) using the longest edge between two of the points (AC') such that the
third (B) lies outside the triangle. A circle is circumscribed around the triangle, and
a line is constructed from the third point (B) to the far vertex of the triangle (X).



Figure 1: AP + CP = PX.

The location of the Steiner Point (P) is the intersection of this line (BX) with the
circle.

For the next thirty years after Kossler and Jarnik presented the general form of
the SMT problem, the only algorithms that existed were heuristics. The heuristics
were typically based upon the Minimum-Length Spanning Tree (MST), which is a
tree that spans or connects all vertices whose sum of the edge lengths is as small
as possible, and tried in various ways to join three vertices with a Steiner Point. In
1968 Gilbert and Pollak [14] linked the length of the SMT to the length of a MST.
It was already known that the length of an MST is an upper bound for the length of
an SMT, but their conjecture stated that the length of an SMT would never be any
shorter than @ times the length of an MST. This conjecture was recently proved [12]
and has led to the MST being the starting point for most of the heuristics that have
been proposed in the last 20 years [16, 19].

In 1961 Melzak developed the first known algorithm for calculating an SMT [21].
Melzak’s Algorithm was geometric in nature and was based upon some simple exten-
sions to Figure 1. The insight that Melzak offered was the fact that you can reduce
an n point problem to a set of n — 1 point problems. This reduction in size is accom-
plished by taking every pair of points, A and C in our example, calculating where
the two possible points, X; and X,, would be that form equilateral triangles with
them, and creating two smaller problems, one where X; replaces A and C, and the
other where X; replaces A and C. Melzak’s algorithm can then be run on the two
smaller problems. This recursion, based upon replacing two points with one point,
finally terminates when you reduce the problem from three to two vertices. At this
termination the length of the tree will be the length of the line segment connecting
the final two points. This is due to the fact that BP + AP + CP = BP + PX.
This is straightforward to prove using the law of cosines, for when P is on the circle,
LAPX = /CPX =60°. This allows the calculation of the last Steiner Point (P) and
allows you to back up the recursive call stack to calculate where each Steiner Point
in that particular tree is located.



This reduction is important in the calculation of an SMT, but the algorithm still
has exponential order, since it requires looking at every possible reduction of a pair
of points to a single point. The recurrence relation for an n-point problem is stated
quite simply in the following formula:

n

T(n):2*<2)*T(n—1).

This yields what is obviously a non-polynomial time algorithm. In fact Garey, Gra-
ham, and Johnson [13] have shown that the Steiner Minimal Tree problem is NP-Hard
(NP-Complete if the distances are rounded up to discrete values).

3 Current Results

In 1967, just a few years after Melzak’s paper, Cockayne [6] clarified some of the
details from Melzak’s proof and proposed a new term, the “steiner hull” [7]. The
steiner hull was the foundation for the first decomposition algorithm for the SMT
problem. This decomposition, along with a clarified algorithm, proved to be the basis
for the first computer program to calculate SMTs, which appeared in [10], and which
could compute an SMT for any placement of up to 7 vertices.

The biggest breakthrough after Cockayne’s algorithm came from Winter in 1985 [22]
who was able to establish some geometric results that enabled one to eliminate (prune
out) a great many of the reconstruction sequences required by Melzak’s algorithm.
Using this, Winter was able to compute SMTs for 15 or fewer vertices. Winter’s
algorithm has been the basis for most of the enhancements in SMT algorithms since
then.

In 1986 another major computational breakthrough was made. Cockayne and
Hewgill [8] were able to calculate the SMT for up to 30 vertices 80% of the time.
They achieved this through the use of what they termed an incompatibility matrix,
which took the sub-trees left after Winter’s pruning and determined whether trees ¢
and j could appear together in the SMT.

Most of the rest of the current results for exact computation of SMTs belong to
Cockayne and Hewgill. In 1992 they developed better pruning techniques that have
allowed them to calculate SMTs for up to 100 vertices 80% of the time. Their paper
describing these results [9] recently appeared in a special issue of Algorithmica devoted
exclusively to the Steiner Problem.

The last major breakthrough belongs to the author. His work involved complete
parallelization of the construction of SMTs. While it is still under modification, this
method has reduced the computation time by at least an order of magnitude and
methods under examination may lead to further improvements [15, 17]. Table 1
provides a summary of the major programs written to solve the SMT problem and
their capabilities.



Program Author(s) Location Points
STEINER [10] Cockayne & Schiller | Univ of Victoria 7
STEINERT2 [2] Boyce & Serry ATT Bell Labs 10
STEINERT3 [5] Boyce & Serry ATT Bell Labs 12
GEOSTEINER [22] Winter Univ of Copenhagen 15
EDSTEINERS6 [8] Cockayne & Hewgill | Univ of Victoria 30
EDSTEINERS9 [9] Cockayne & Hewgill | Univ of Victoria 100
PARSTEINER94 [15, 17] | Harris Clemson University 100

Table 1: Computation Results

4 Grids

The problem of determining SMTs for grids was mentioned to the author by Ron
Graham. In this context we are thinking of a grid as a regular lattice of unit squares.
The literature has little of information regarding SMTs on grids, and most of the
information that is given is conjectured and not proven. In Section 4.1 we will look
at what is known about SMTs on grids. In the following sub-sections we will in-
troduce new results for grids up through 7 x m in size. The new results presented

are computational results from PARSTEINER94 [15, 17] which was discussed in the

previous section.

4.1 2 x m and Square Grids

The first proof for anything besides a 2 x 2 grid came in a paper by Chung and
Graham [4] in which they proved the optimality of their characterization of SMTs for
2 xm grids. The only other major work was presented in a paper by Chung, Gardner,
and Graham [3]. They argued the optimality of the SMT on 2 x 2, 3 x 3, and 4 x 4
grids and gave conjectures and constructions for those conjectures for SMTs on all
other square lattices.

In their work Chung, Gardner, and Graham specified three building blocks from
which all SMTs on square (n x n) lattices were constructed. The first, labeled Z, is
just a K3, or a path on two vertices. This building block is given in Figure 2-A. The
second, labeled Y, is a Full Steiner Tree (FST) (n vertices and n — 2 steiner points)
on 3 vertices of the unit square. This building block is given in Figure 2-B. The
third, labeled &', is an FST on all 4 vertices of the unit square. This building block
is given in Figure 2-C. For the generalizations we are going to make here, we need to
introduce one more building block, which we will label &. This building block is an
FST on a 3 x 2 grid and appears in Figure 2-D.

SMTs for grids of size 2 x m have two basic structures. The first is an FST on
all the vertices in the 2 x m grid. An example of this for a 2 x 3 grid is given in
Figure 2-D. The other structure is constructed from the building blocks previously
described. We hope that these building blocks, when put in conjunction with the
generalizations for 3 x m, 4 x m, 5 x m, 6 x m, and 7 x m will provide the foundation
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Figure 2: Building Blocks

for a generalization of m x n grids in the future.

In their work on ladders (2 x m grids) Chung and Graham established and proved
the optimality of their characterization for 2 x m grids. Before giving their character-
ization, a brief review of the first few 2 x m SMTs is in order. The SMT for a 2 x 2
grid is shown in Figure 2-C, the SMT for a 2 x 3 grid is shown in Figure 2-D, and
the SMT for a 2 x 4 grid is given in Figure 3.

Chung and Graham [4] proved that SMTs for ladders fell into one of two categories.
If the length of the ladder was odd, then the SMT was the F'ST on the vertices of the
ladder. The SMT for the 2 x 3 grid in Figure 2-D is an example of this. If the length
of the ladder was even, the SMT was made up of a series of (3 — 1) AZ’s followed
by one last X'. The SMT for the 2 x 4 grid in Figure 3 is an example of this.

o

Figure 3: SMT for a 2 x 4 Grid

4.2 3 x m Grids

The SMT for 3 x m grids has a very easy characterization which can be seen once
the initial cases have been presented. The SMT for the 3 x 2 grid is presented in
Figure 2-D. The SMT for the 3 x 3 grid is presented in Figure 4.

From here we can characterize all 3 x m grids. Except for in the 3 x 2 grid, which
is an & building block, there will be only two basic building blocks present, X'’s and
Z’s. There will be exactly two Z’s and (m — 1)A’s. The two Z’s will appear on each
end of the grid. The A’s will appear in a staggered checkerboard pattern, one on

"

Figure 4: SMT for a 3 x 3 Grid




each column of the grid the same way that the two A’s are staggered in the 3 x 3
grid. The 3 x 5 grid is a good example of this and is shown in Figure 5.

P

Figure 5: SMT for a 3 x 5 Grid

4.3 4 x m Grids

The foundation for the 4 x m grids has already been laid. In their most recent
work, Cockayne and Hewgill presented some results on Square Lattice Problems [9].
They looked at 4 x m grids for m = 2 to m = 6. They also looked at the SMTs for
these problems when various lattice points in that grid were missing. What they did
not do, however, was characterize the structure of the SM'T’s for all 4 x m grids.

The 4 x 2 grid is given in Figure 3. From the work of Chung, Gardner, and
Graham [3], we know that the SMT for a 4 x 4 grid is a checkerboard pattern of 5
X’s. This layout gives us the first two patterns we will need to describe the 4 x m
generalization. The first pattern, which we will call pattern A, is the same as the 3 x4
grid without the two Z’s on the ends. This pattern is given in Figure 6. The second
pattern, denoted as pattern B, is the 2 x 4 grid in Figure 3 without the connecting

7. This is shown in Figure 7.

Figure 6: 4 x m Pattern A
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Figure 7: 4 x m Pattern B

Before the final characterization can be made, two more patterns are needed. The
first one, called pattern C, is a 4 x 3 grid where the pattern is made up of two non-
connected 2 x 3 SMTs, shown in Figure 8. The next pattern, denoted pattern D,
is quite simply a Y centered in a 2 x 4 grid. This is shown in Figure 9. The final
pattern, denoted &, is just an Z on the right side of a 2 x 4 grid. This is shown in
Figure 10.

Now we can begin the characterization. The easiest way to present the character-
ization is with some simple string rewriting rules. Since the 4 x 2, 4 x 3, and 4 x 4
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patterns have already been given, the rules will begin with a 4 x 5 grid. This grid
has the string AC. The first rule is that whenever there is a C on the right end of
your string replace it with BDB. Therefore a 4 x 6 grid is cal ABDB. The next rule
is that whenever there is a B on the right end of your string replace it with a C. The
final rule is whenever there is a DC on the right end of your string replace it with an
EAB. These rules are summarized in Table 2. A listing of the strings for m from 5

to 11 is given in Table 3.

Figure 8: 4 x m Pattern C

.

Figure 9: 4 x m Pattern D

Figure 10: 4 x m Pattern &

1| B—-=C
21C — BDB
3| DC— EAB

Table 2: Rewrite rules for 4 x m Grids.

m=| 5 6 7 8
String | AC | ABDB | ABDC | ABEAB

m = 9 10 11
String | ABEAC | ABEABDB | ABEABDC

Table 3: String Representations for 4 x m Grids



4.4 5 xm Grids

For the 5 x m grids there are 5 building blocks (and their mirror images which are
donated with an ’) that are used to generate any 5 x m grid. These building blocks
appear in Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15.

aad

Figure 11: 5 x m Pattern A

Figure 12: 5 x m Pattern B
Figure 13: 5 x m Pattern C

X

Figure 14: 5 x m Pattern D

A

Figure 15: 5 x m Pattern &




With the building blocks in place, the characterization of 5 x m grids is quite easy
using grammar rewrite rules. The rules used for rewriting strings representing a 5 xm
grid are given in Table 4. The SMTs for 5 x 2, 5 x 3, and 5 x 4 have already been
given. For a 5 x 5 grid the SMT is made up of the following string: EA'BD. As a
reminder, the A’ signifies the mirror of building block A. A listing of the strings for
m from 5 to 11 is given in Table 5.

C — B'D
D— AE
& — AC

C'— BD
D — A&
E - AC

S| O | W | Do —

Table 4: Rewrite rules for 5 x m Grids

m = 5 6 7 8
String | EA'BD | EA'BAE | EABAAC | EABAAB'D

m = 9 10 11
String | EABA'AB'AE" | EABAAB'AAC | EABA'AB'AA'BD

Table 5: String Representations for 5 x m Grids

4.5 6 x m Grids

For the 6 x m grids there are 5 building blocks that are used to generate any 6 x m
grid. These building blocks appear in Figure 16, Figure 17, Figure 18, Figure 19, and
Figure 20.

o X

Figure 16: 6 x m Pattern A

The solution for 6 x m grids can now be characterized by using grammar rewrite
rules. The rules used for rewriting strings representing a 6 x m grid are given in
Table 6. The basis for this rewrite system is the SMT for the 6 x 3 grid which is
AC. 1t is also nice to see that for the 6 x m grids there is a simple regular expression
which can characterize what the string will be. That regular expression has the form:

A(BE)*(C|BD). A listing of the strings for m from 6 to 11 is given in Table 7.
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Figure 17: 6 x m Pattern B
Figure 18: 6 x m Pattern C

Figure 19: 6 x m Pattern D

Figure 20: 6 x m Pattern &

11C— BD
2| D—= &C

Table 6: Rewrite rules for 6 x m Grids

m = 6 7 8
String | ABEBD | ABEBEC | ABEBEBD

m = 9 10 11

String | ABEBEBEC | ABEBEBEBD | ABEBEBEBEC

Table 7: String Representations for 6 x m Grids
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4.6 7 xm Grids

For the 7 x m grids there are 6 building blocks that are used to generate any 7 x m
grid. These building blocks appear in Figure 21, Figure 22, Figure 23, Figure 24,
Figure 25, and Figure 26.

The grammar rewrite rules for strings representing a 7xm grid are given in Table 8.

The basis for this rewrite system is the SMT for the 7 x 5 grid which is FA'E'F'. A
listing of the strings for m from 6 to 11 is given in Table 9.

o

Figure 21: 7 x m Pattern A

H o o o o o
o o o o o

Figure 23: 7 x m Pattern C

XX

Figure 24: 7 x m Pattern D

5 Conclusions and Future Work

In this work we reviewed what is known about SMTs on grids and then presented
results from PARSTEINER94 [15, 17] which characterize SMTs for 3 x m to 7 x m

grids. The next obvious question is what is the characterization for an 8 x m grid,
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Figure 25: 7 x m Pattern &

ANt

Figure 26: 7 x m Pattern F

E'F — BAF
F —CD

CD — AEF
EF — B'AF'
f/ — C/D/
C/D/ — A/E/’/F/

S| O | W | DO —

Table 8: Rewrite rules for 7 x m Grids

m = 6 7 8 9
String | FABAF | FABACD | FABAAEF | FABA AB'AF'
m = 10 11 12
String | FABA'AB'AC'D" | FABAAB'AAE'F' | FABAAB' AA'BA'F

Table 9: String Representations for 7 x m Grids
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or an n X m grid? Well, this is where things start getting nasty. Even though
PARSTEINER94 cuts the computation time of the previous best program for SMT's
by an order of magnitude, the computation time for an NP-Hard problem blows up

sooner or later, and 8 x m is where we run into the computation wall.

We have been able to make small chips into this wall though, and have some results
for 8 x m grids. The pattern for this seems to be based upon repeated use of the
8 x 8 grid which is shown in Figure 27. This grid solution seems to be combined
with smaller 8x solutions in order to build larger solutions. However, until better

computational approaces are developed further characterizations of SMTs on grids
will be very hard, and tedious.

Figure 27: 8 x 8
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