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Abstract

This paper presents a low-cost algorithm for multicast routing
in computer networks. For performance evaluation, it is compared
with Link-State multicast routing, which is a low-delay algorithm
used by the Internet MOSPF protocol [1]. This new algorithm sup-
ports the group concept and the unknown-destination delivery. It
uses a minimum average distance method to select the forwarding
links to achieve the low-cost goal. Another important feature of this
algorithm is that no delivery tree has to be maintained, which elim-
inates the problem of memory and CPU congestion. Moreover, its
computation time complexity is only linear in the group size. Sim-
ulation study shows that this algorithm can lower delay by as much
as 40 percent for the same offered load, compared with the low-delay
algorithm.
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1 Introduction

Routing is one of the most important aspects of computer networks, and
unicast routing has been the dominant scheme used in network routing over
the past several decades. However, in the past few years, multicast routing
has seen widespread use in those networks that support it. There are many
cases that exist where an application must send the same information to
more than one destination, such as:

e updating all copies of a replicated file or database.

e sending data packets to all participants in a computer-mediated con-
ference.

e emailing to more than one receiver.

e disseminating intermediate results to a set of processors supporting a
distributed

computation.
Multicast routing can be defined as follows: Given a network (N, L),

where N is a set of nodes and L a set of links, a source node s € N,



and a set of destination nodes GCN (the subset G is called a group), if
1 < |G| < |N| —1, then the problem is a multicast problem. (If |G| =1, it
is a unicast problem and if |G| = |N| — 1, it is a broadcast problem).

A multicast group is a set of destination nodes to which a message is to
be delivered, and each destination node is a member of the group. For each
source, there can be many different destination groups. The primary thing
to remember is that multicasting should be more efficient than unicasting
separate copies to each destination, because multicasting should reduce the
transmission overhead.

Modern networks also require the unknown-destination delivery function
for routing. If a set of destinations can be identified by a single group
address, such a group address can be used to reach one or more destinations
whose individual addresses are unknown to the sender or whose address may
change over time. These capabilities are some of the implications of group
addressing.

Algorithms for solving the multicast routing problem can be divided into
two categories: low-delay algorithms and low-cost algorithms. Low-delay
routing algorithms minimize the path length from the source to every des-
tination node. This usually requires that the message be sent to every
destination along the shortest path. Low-cost routing algorithms minimize
the total traffic. The total traffic is equivalent to the total length of the
paths in a delivery tree. Finding a minimum-cost routing tree is equivalent
to finding a Steiner Tree in a graph, which is known to be NP-complete [2].
Many traditional heuristics for Steiner Tree problem are not suitable for
multicasting when the network is large (see [2], Part II, Chapter 4 for cov-
erage of several heuristics).

A number of algorithms have been proposed for multicast routing prob-
lems. The earlier algorithms [3, 4] do not support group addressing. The
optimal multicast routing algorithms [5, 6] are too costly to be practical.
The algorithms described in [1] and [7] are mainly low-delay algorithms.
A low-cost algorithm, such as [8], that incrementally updates a delivery
tree will lose effectiveness when group changes are frequent and when the
number of source-group pairs is large, for it requires information be kept
at each node for each such pair.

This paper presents a low-cost multicast algorithm that requires a packet
to carry only one short field in addition to the group address. It is compu-
tationally efficient and effective in reducing the cost.

The remainder of the paper is organized as follows. In Section 2 we
formally describe this new algorithm. In Section 3 we present a simple
example for explaining the algorithm. A simulation model is presented in
Section 4. Results are presented in Section 5, and Conclusions and Future
Work follow in Section 6.



2 Description of the Proposed Algorithm

In an inter-network environment, it is assumed that sub-networks have the
capability of multicast routing. In our model, each router and its attached
sub-network are treated as a node. We omit the details within subnetworks
and represent the network with a set of nodes connected by links. In this
context, we use node and router interchangeably. It is also assumed that
each node maintains a routing table for all nodes, and each routing table
entry records the shortest path and the first-hop node for each destination.
Each node also maintains the group-member information which ensures that
every node knows the local membership of every group; therefore, when a
packet arrives at a node, the node can decide whether there is any member
in its attached subnetwork to which the packet will be forwarded.

For a general multicast routing algorithm, some basic requirements should
be considered:

1) The algorithm should be computationally efficient: an algorithm is
not useful if it requires more than linear time to determine to which link a
packet is to be sent. A constant-time complexity is preferred.

2) The algorithm should be scalable: it should not be heavily dependent
on network size, group size, etc.

3) The algorithm should be compatible with unicast routing: it should
not require excessive information when compared with unicast routing and
should not change dramatically from the unicast environment.

4) The algorithm should seek a minimization of delay and traffic: these
two goals may or may not conflict with each other. A minimum-cost tree
may require packets to reach some member host along a path that is not
the shortest path. But when the minimum-cost tree is utilized, the entire
traffic is reduced, which may help reduce the delay.

Another important issue is that of low-delay and low-cost routing. Low-
delay routing is designed to minimize the path length from the source to
every destination node. It usually requires the message to be sent to every
destination along the shortest path or its equivalent as in unicast routing.
Each link is assigned a length which can be 1, or the recent traffic rate, or
queue length on the link. An interesting thing to remember when design-
ing algorithms is that the link length from two opposite directions can be
different.

The goal of low-cost routing is to minimize the total traffic, which is
equivalent to the total length of the paths in a delivery tree. In graph-
theoretic terms, a minimum-delay routing corresponds to a shortest-path
tree, while a minimum-cost routing corresponds to a Steiner Tree in a
graph. Finding a Steiner Tree is an NP-complete problem. There exist
some heuristic algorithms for computing a low-cost multicast tree, as dis-
cussed in Section 1, but they either suffer from high computational cost or



are not suitable for the datagram environment.

Our algorithm is aimed at low-cost routing and supports group address-
ing. The simulation results we present later strongly show that our new
algorithm has better performance than a compared low-delay algorithm, in
both cost and delay.

The main idea behind this algorithm is that we use the minimum average
distance method to select the forwarding links. When a packet arrives at
a node, the algorithm computes the average distance for each neighbor of
the current node, where the average distance is the average distance from
the neighbor node to all nodes in its responsible destination set. Then
we select the neighbor node which has the minimum average distance to
forward the packet. This procedure continues until all destination members
are processed.

To describe the algorithm, we first define the following variables:

G The destination set, that is, a group.

G; Node i’s responsible destination set. It is the subset of G to which
node i is responsible for delivering the message.

N; Node i’s open neighborhood set, i.e., all of node i’s neighbor nodes
except for node i itself.

D; Neighbor j’s responsible destination set.

L;  Average distance from neighbor node j to j’s responsible destina-
tion set.

A; The assigned neighbor set, i.e., the subset of G; that has been

assigned to a link.
di;  The shortest path distance from node 4 to node j.

In addition to the routing table of its own, each node also keeps the rout-
ing table of its neighbors, which is the common practice in the distributed
Bellman-Ford algorithms [9]. As usual, the routing table at each node is
assumed to contain the following entries that are related to our work:

e destination

e shortest distance

¢ next hop
where “next hop” tells which link to take to reach the destination on the
shortest path from the current node. We do not use the tabled next hop
directly, but compute the next hop based on our algorithm. In the algo-
rithm, each packet p is required to carry a small integer p.radius that is
used in conjunction with the next-hop entries to compute the routing path.

Suppose packet p arrives at node i via a neighbor node k or is generated
at node . The description of the algorithm is as follows:

1. If i is the source node,
R=o00; A;=070;
else



R = p.radius;  A; = {k};
If R =0, stop.
2. Compute node i’s responsible set
Gi={9lg€G, dig < Rand g # i}

3. Foreach j € N; and j € A;, compute j’s destination set

D; ={glg € Gi and djy < dyy} (1)

and the average length
Lj = (dij + Y djg — L;)/|Dj| (2)

geD;

where ﬁj is the sum of the overlapping next-hop links, defined as
Li= " (ngk = Dis
njr>1
where n;; is the number of members in D; that will be sent via link
Jjk from node j to node k, and l;;, is the length of the link. If (all
Dj = @) or (N,' = A,), StOp.
4. Let J be the subscript such that

Ly= iy Li
and define
Ry = d 3
J ;IEI%).(I Jg ( )

Send a packet with radius Ry to node J.
5. Gj:Gi_DJ AZZA,U{J}

G, =0
stop
else
go to step 3. O

When a packet arrives at a node ¢ and is addressed to group G, we give
a condition to limit the size of the destination set — that is, to decide to
which members of group G should be sent the packet from the current node
i. We use a variable p.radius as the condition. The value of p.radius is the
path distance between the current node and the most remote destination
member. That is, the current node 7 sends packets only to those members
(in G;) whose shortest-path distance from node i is less than or equal to
p.radius (Step 2). If node i is the source node, then we set p.radius = oo.
This means that at the beginning, we consider all members of the group G
as the destination set. If node ¢ is not the source node, the packet must
have come from its parent node; the packet then carries a radius with it
which was computed at the parent node. A; at the source node is . When



a packet arrives at node ¢ from its parent, A; initially contains the parent
node. A; will be increased by adding node i’s neighbors one by one until it
contains all of the neighbors or other terminating conditions are satisfied
(Step 3).

For each neighbor j € N; and j ¢ A;, we compute j’s responsible desti-
nation set D; by (1) and each j’s average length L; by (2). We then send
the packet together with a radius to the selected neighbor node which has
the minimum average path length. The radius is computed by (3). It is
the path length between the selected neighbor node and the most remote
member from G ;. G; is updated by taking out the destination set of the
selected neighbor node. A; is updated by adding in the selected neighbor
node.

The algorithm will terminate at a node in three cases:

1) ifallD; =0
2) if N;=A;
3) isz'Z(b

If none of the above conditions are satisfied, then it will go back to Step 3 to

process other neighbor nodes until one of the three conditions is satisfied.
Each node executes the same algorithm whenever a packet arrives. The

algorithm execution will stop when the radius for every packet is zero.

3 A Simple Example

We use the network shown in Figure 1 to illustrate our algorithm. Assume
that the source node is S, and the destination set G = {E, F, M}. Each
node in the graph has a letter which is the name of the node and numbers
which represent an ordering of their neighbors. The result shows that the
cost generated by our algorithm is 11, but with shortest path algorithm,
the total cost is 13.

Figure 1: Example Network



At node S
1. The packet is generated, R = co, and Ag = {).
2. Gs ={E,F,M}

3. Ns={H,C,B,M}, As =0
Dy = {E} Lyu=3+2=5
Do ={E,F} Lo=(3+4+2)/2=45
Dg={F,M} Lp=(2+2+3)/2=35
Dy ={M,F} Lu=(44+0+2)/2=3

4. J=M,R;=2
—send packet p to M with p.radius = 2

5. Gs ={E}, As = {M} — go to step 3
3. Ns— As ={H,C, B}
Dy ={E} Lu=5
D¢ = {E} Lc =7
DB = @ LB =00
4. J=H,R; =2
—send packet p to H with p.radius = 2
5. Gs =0 — stop
At node M

1. G={E,F,M}, R=2, Ay ={S}

o

Gu ={M,F}

3. Nu ={B,S,F}, A ={S}, Nu — Ay = {B, F}
DB:(Z) LBZOO
Dr = {F} Lp=2/1=2

4. J=F,R; =0
—send packet p to F with p.radius =0

o

Gu ={M}, Am ={S,F} — go to step 3

3. Nu — Ay = {B}
Dp =0 — stop



At node H
1. G={E,F,M}, R=2, Ag = {S}
2. Gu ={E}

3. Nu ={E,S}, Nu — Ay = {E}
Dg = {E} Lp =2

4. J=E, R;=0
—send packet p to E with p.radius =0

5. Gg =0 — stop

In the end, all packets at all involved nodes have R = 0, so the algorithm
execution is terminated.

4 Simulation Studies

Simulation studies were performed on our algorithm and the Link-State
multicast algorithm described in [7], which is a low-delay algorithm. The
Link-State multicast algorithm was chosen because it assumes roughly the
same network information as does our algorithm and because it is the mul-
ticast version of the Internet standard protocol OSPF and is used in the
experimental MOSPF protocol [1]. Also, by comparing with a low-delay
algorithm, we were able to study the impact on delay by traffic reductions.

The simulation studies measured two different relationships: one was de-
lay versus offered load, the other was utilization versus offered load. Delay
is defined to be the interval between the time a packet is generated and
the time the packet arrives at the destination. In a multicast environment,
the delay is the average delay for all destinations. Offered load is defined
to be the rate of packet generation. Utilization is defined to be the average
utilization of all links.

A queueing model was used for the simulation study, where the link from
node 7 to node j was modeled as a queue. Unicast packets and multi-
cast packets with random destinations were generated at each node with
exponentially distributed intervals. Groups of random sizes appeared and
disappeared also with exponentially distributed intervals. The group pop-
ulation was maintained at a stable level by equal birth and death rates.

The parameters of interest in our algorithm are defined in Table 1. Note
that ms in the table should be interpreted as a relative time unit. The
initial group population is also the average number of active groups, with
the group birth and death rates being equal.



Symbol | Definition

ty transmission rate, bits/ms

tp packet transmission time, ms

Au unicast packet arrival rate, packet/ms/node
Am multicast packet arrival rate, packet/ms/node
Ag birth and death rate of groups, group/ms

G initial group population

Gmax maximum size of a group

Gmin minimum size of a group

Table 1: Network Parameters

1.  On receipt of a link-state update reporting a change in g
for each cache record ¢ with c.grp = g,
discard ¢
2. On receipt of a multicast packet from
source s to group g via node k,
if no cache record c exists such that
csrc = s and c.grp =g
create ¢; c.src = s; ¢.grp = g
compute c.parent and c.child
if c.parent = k,
for each child node j,
send copy of packet to node j

Figure 2: Link-State multicast Algorithm

The Link-State multicast algorithm [7] maintains a delivery tree for each
active source-group pair. A simplified version of the Link-State multicast
algorithm is given in Figure 2. In the algorithm, a cache record c is created
for each active source-group pair to be maintained in the delivery tree. A
cache record at a node has the fields c.src, c.grp, c.parent, and c.child to
keep the source, group, parent and child nodes in the delivery tree for that
source-group pair. Whenever a group g appears or disappears on a node k,
node k will flood a link-state update to report this change.



5 Results

We randomly generated four networks with 40, 75, 97, and 123 nodes re-
spectively. In each network, the number of groups fluctuated around an
average, determined by a birth/death process, and the size of each group
was determined by a random number uniformly distributed in a certain
range. In the simulation, the multicast packet generation rate, A,,, was set
to be the same as the unicast rate, A\,. The rates were assigned the val-
ues for which no severe congestion was observed and reasonable utilizations
were obtained. Table 2 gives the ranges for the values of other parameters
for the four networks (refer to Table 1 for parameter definitions). In the
table, the value 1/1K for A\, means that the group birth and death rate is
1/1024 of the unicast packet generation rate.

network | G | Gmin | Gmax | av. # hit Ag tp link
size links ratio length
40 3 2 39 2.95 91% 1/1K | 0.1 1
75 5 2 37 2.59 91% 1/1K | 0.1 1
97 4 2 48 3.22 92% 1/1K | 0.1 1
123 3 2 40 3.25 | 86-95% | 1/1K | 0.1 1

Table 2: Parameter values

The hit ratio is the ratio for not reconstructing the delivery tree for
the Link-State multicast algorithm. This is not an independent variable,
rather it is the function of other parameters. We chose the parameters
so that the ratio was slightly over 90%. This selection of parameters is
reasonable and makes the Link-State algorithm perform well. The hit ratio
can be decreased by increasing group appearance/disappearance or group
membership change frequency, or by increasing group size or the number
of groups. However, the Link-State algorithm does not perform as well
in these situations. We execute both our algorithm and the Link-State
multicast algorithm with exactly the same network parameters.

We assume that the time for the reconstruction of the delivery tree for
the Link-State multicast algorithm is (E + N)log N units [10], where N is
the number of nodes, and E is the total number of links in the network.
This is equivalent to transmitting ((E+N) log N)/L packets from one node,
where L is the packet length (in bits). We also assume that the time for
selecting the next hop for our algorithm is G5 x N; units for each node,
where GG, is the destination group size and NN, is the number of links at
that node. This time is equivalent to transmitting G5 x N;/L packets.

The first 3,000 packets (on average) received at each node were discarded

10



to ensure that the network reaches a steady state; then statistics are col-
lected for the subsequent 10,000 packets (on average) received at each node.

The simulation results are shown in Figures 3 through 8. In these figures,
the curves labeled ‘Radius’ are for our algorithm, those with ‘LS’ are for the
compared algorithm. In Figures 3 through 7, the horizontal axes represent
the message rate, which is the offered load. The vertical axes represent
the delay (Figures 3, 4, 5) and utilization (Figures 6, 7). Figure 8 shows
the average delay and utilization reductions by algorithm over the Link-
State multicast algorithm. The reductions are calculated by the following
formula:

4 T;—R;
722:1 i % 100%

A= 1

where

A is the average percentage delay or utilization reduction.
LS; is the delay or utilization of the Link-State multicast algorithm for
the ith network.
R; is the delay or utilization of our algorithm for the ith network.

The delays and utilizations for the smaller network of 40 nodes are based
on a different range of message rates (100 to 800) from that used in the
three larger networks (50 to 400), because the smaller network can tolerate
higher message rates for both algorithms. To calculate the average, the
message rates are normalized with the highest rate used in each network.

The simulation results show that our algorithm has better performance
than the compared algorithm since both the delay and the utilization are
lower on the four networks. For the same offered load, both the delays and
network traffic are lower. At certain crucial message rates, the delay can
be lowered by 40 percent. The delay reduction at these rates means our
algorithm can support higher offered load than can the compared algorithm.

When the message rate increases, the corresponding utilization of links
increases, as seen in Figures 6 and 7. Utilization reflects the traffic load.
The increased traffic causes packets to be queued for the available links. In
the case when the queuing delay plays the major role, our algorithm shows
more advantages, since it is a low-cost algorithm. Reduced total cost will
decrease the waiting time for queued packets. Therefore, the total delay is
eventually decreased.

6 Conclusions and Future Work

It is known that a low-cost algorithm can reduce traffic and delay. This
study shows that with our simple algorithm that requires only a linear time
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complexity, the delay can be substantially lower than that offered by always
taking the shortest path, and yet this algorithm has all the elements that are
required for multicasting, such as efficient computation, group addressing,
and compatibility with unicasting. The radius concept and the minimum
average distance method are effective in resolving group addressing and
provide a practical low-cost algorithm for multicasting in inter-networks.
For more efficiency, we can allow the packet to carry a limited number
of member addresses. Suppose we let the packet carry the addresses of the
four most remote members, the radius R will be smaller and the algorithm
will converge faster. As shown by Aguilar [3] the IP header usually has 40
bytes for optional use; therefore, such consideration is highly feasible.
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