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Abstract

Robots with remote processing capabilities would be useful in hazardous or complex environments presenting weight and
cost constraints. We implemented a novel robotic system that incrementally triangulates and navigates towards a speaking
target. This system comprises a distributed, biologically inspired, three-layer control system. High-level decision making
is performed via Internet protocol by a pulse-coded neocortical simulator situated remotely in a secure location. The robot
navigated towards and contacted an animated human mouth target in 75 of 80 trials (χ2 = 20.3, P < 0.0001). Current work
involves classification and appropriate tactical response to acquired audio and visual speech information.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Robots typically have weight and power restric-
tions but voracious computing appetites. Wireless
connections to powerful remote computing platforms
combined with advances in software control make
previously infeasible robotics problems realizable
[14]. An interesting extension of this approach to
robot control is a hierarchical command system that
mimics biological brain function. Organic nervous
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systems have simple, local, high-speed motor and
sensory circuits connected to more distant and slower
(but more capable) brain structures for more compli-
cated functions, and they call on the more powerful
(but also slower and more remote) neocortex for the
highest level of strategic decision making.

To test the hierarchical control concept, we set out
to solve an example target threat identification prob-
lem, which we have broken down into two subtasks
of different complexity.

1.1. Target localization

The system must be able to localize a target in the
environment and navigate the robot towards it. The
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target will emit continuous audio-speech signals, and
the robot will localize it by binaural audio processing
techniques.

1.2. Target threat assessment

Once it has reached the target, the robot must use
further audio and visual information from the target,
such as speech recognition with visual cues, to classify
it as a threat or non-threat.

This experiment combines traditional robotic tasks,
like movement and simple obstacle avoidance, with
somewhat more computation-intensive tasks like tar-
get homing using audio cues along with the consider-
ably more difficult (and more computation-intensive)
challenges of speech and image analysis.

Table 1
CARL’s three-level control system with biological correlates

Body Brainstem Cortex

Functions performed at this
control level

Movement, simple
danger avoidance

Sound localization, preparing
spike codes from audio and
video data for input to
neocortex simulation

Neocortical simulator software,
speech recognition using audio
and video (lip reading)

Location of this control
function in CARL system

On board the mobile
robot, called CARL

On nearby desktop class computer,
called “Brainstem”, connected to
robot via wireless RF

On remote large-scale parallel
computer, called ‘Cortex’, connected
to Brainstem via the Internet

Fig. 1. CARL localizing a target.

2. Method

A breakdown of the system’s functions with their
approximate neural correlates is depicted inTable 1.
A sample experimental run is depicted inFig. 1, and
a short video clip demonstrating CARL (Cortex Ac-
cessed Remote Learning) in action is available online
(http://www.cs.unr.edu/∼macera/threatID.html).

Each of the three main components of the CARL
system will be described in turn in the remainder of
this section.

2.1. CARL robot

CARL is a remote-brained robot with three-level
processing capability: on board, on a local PC/Laptop
and on a remote computer cluster. The purpose of this

http://www.cs.unr.edu/~macera/threatID.html
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Fig. 2. Depiction of CARL’s remote processing capability and its practical interaction with the environment.

processing architecture is to provide CARL with two
main features: a limber and dynamic body that inter-
acts its environment, and the potential of processing
high-level AI techniques that usually requires massive
computation. These features make CARL an excellent
prototype for robotics and AI experimentation.Fig. 2
depicts this idea.

2.1.1. Onboard features
CARL by its own is a high-precision miniature pro-

grammable autonomous robot. It is a wheeled robot
based on a dual processor architecture inspired by the
biology of the nervous system. The secondary pro-
cessor, a PIC16C71 RISC, is factory programmed to
control speed and heading. This processor also com-
municates I/O and position information to the primary
processor on board, a Parallax BS2-IC microcon-
troller, which allows sensor capture and navigation
[3]. CARL’s design offers high navigation accuracy,
responsiveness and easy to command.

CARL features four true 8-bit A/D conversion ports,
a speaker, four CdS light sensors and a thermistor
to perceive temperature variations. Four ultra-bright

Fig. 3. Wireless audio–video hardware configuration.

LED’s permit object proximity detection and status
indication. Highly responsive bumper sensors detect
objects around the entire front and sides of the robot.
CARL has an efficient drive system that operates in
near silence. Programmable PWM-controlled motors
can deliver speeds from a crawl to more than 0.61 m/s.
IR encoders monitor the motion of each wheel. The
robot is approximately 0.18 m in diameter and 0.11 m
tall overall.

Onboard, CARL contains a color video camera,
stereophonic microphones to facilitate triangulation of
sound, and a simple RF module (100 m span), that en-
ables a wireless link to local computers. This hardware
configuration is illustrated inFig. 3.

2.1.2. Hierarchical processing and control capability
CARL has a unique remote processing architecture.

Computing tasks and control commands have been
distributed in a three-level fashion that correlates liv-
ing creatures.Reactive control, which requires min-
imum computation, is performed on CARL’s body.
Instinctive control, which involves higher computa-
tion, is executed on a local PC. And,decisive control,
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Fig. 4. CARL’s three-layer control and processing architecture. Processing work is distributed according to its complexity. Control commands
are defined remotely.

which demands massive computation, is performed
on a remote computer cluster. This architecture is
depicted inFig. 4.

CARL connects to the local PC, dubbed ‘Brainstem’,
using the RF link. Audio, video and metrics are gath-
ered from CARL’s sensors and passed on in real time
to Brainstem for processing. Brainstem passes a pre-
processed version of this data across the Internet to
our remote located multiprocessor, named ‘Cortex’,
which runs a program that simulate a biological neo-
cortical network for perceptual analysis[30].

2.2. Brainstem functions

Brainstem resides on a nearby computer such as
a laptop, connected to CARL via wireless RF link.
The functionality of this system is three-fold: as a
low-level decision and control system where compu-
tational tasks are not rigorous (for instance, sound
localization); as a spike-encoded brain stimulus gen-
erator of auditory and visual signals for interpretation
at the level of Cortex; and lastly as an interpreter
of top-down signals from the remote Cortex, trans-
lating spike-encoded communications into instruc-
tions for CARL’s navigation and tactical response
systems.

2.2.1. Sound localization
Human beings localize a sound source primarily

using cues derived from differences between the in-
puts received by the two ears. Two such cues play the
dominant role in how humans estimate the horizontal
position of a sound source: the interaural time dif-
ference (ITD) and the interaural intensity difference
(IID) [8,15,16]. In the human brain, the IID function
is performed by a brainstem structure called the lat-
eral superior olive, and the ITD function is performed
by a brainstem structure called the medial superior
olive [23]. Correlation of these two structures are
implemented in conventional software (i.e., in an al-

gorithmic programming language) on our Brainstem
computer.

In the localization sequence, sound from the target
is received by CARL’s two spatially separated micro-
phones, and the data streams are passed on to Brain-
stem for processing. There the signals are digitized
and the appropriate computations are performed on
the Brainstem processor (an energy comparison[21]
in the case of IID and a cross-correlation algorithm[2]
in the case of ITD). The direction of the sound source
is identified as either to the left side, right side, or ap-
proximately ahead, and the corresponding movement
command is then radioed back to CARL. This sound
localization technique is repeated between intervals of
time for the next incremental move, and in this way
CARL approaches the target step by step.

The methodology used for sound localization by
ITD, which proved to be more resilient to noise and
echo, is illustrated inFig. 5. Stereo audio stream was
captured at 16 000 Hz of frequency in a window of
0.02 s, every 0.5 s approximately for cross-correlation
analysis and navigation decision.

The sequence ends when CARL’s front bumper
contacts the target. This initiates capture and RF trans-
fer of audio-visual signals to Brainstem and Cortex,
where threat assessment is performed. For this phase,
Brainstem still serves as the intermediary for CARL’s
communication with the neocortical simulator. Brain-
stem is also responsible for converting the audio and
video data received from CARL into spike-coded in-
put suitably formatted for the neocortical simulator
responsible for the deeper analysis.

2.2.2. Spike encoding of audio and visual data
Another function of Brainstem is to prepare, in real

time, the spiking data for neural network simulation.
This is accomplished as follows. CARL’s audio data
is processed using short time Fourier transforms. The
result is a set of energies for 129 frequency bands.
The energy in each frequency band is converted into
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Fig. 5. Sound localization methodology by cross-correlation of binaural information.

a spike probability for a section of cells in the simu-
lated auditory cortex. CARL’s video data is processed
by a Gabor filter on Brainstem, which results in spike
probabilities for subregions of the image for different
frequency ranges considered at different orientations
[19]. These spike frequencies are sent to the neocor-
tical simulator (NCS), on Cortex, where the data is
input to groups of cells in the visual cortex of the

Fig. 6. Preprocessing of visual and audio data. (a) Video frame of the speaking mouth target; (b) Gabor analysis of the mouth frame; (c)
spectrogram of the speech captured.

simulated neocortex in retinotopic (spatially mapped)
fashion analogous to human visual processing.

Fig. 6(a) is an example image of the target taken
by CARL’s own camera at the end of a successful
localization run.Fig. 6(b) represents the output of a
Gabor analysis of the image, which is subsequently
converted into probability values for a region of the
simulated visual cortex and then forwarded to Cortex
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for processing.Fig. 6(c) is the STFT output, which
is subsequently converted into probabilities by Brain-
stem for spike encoding input to the auditory cortex
simulated on Cortex.

2.3. Cortex functions

Cortex is a powerful cluster of computers linked
to the Brainstem system via TCP/IP protocol. Cur-
rently Cortex consist of 128 processors with a total
of 256 GB of RAM and more than one Terabyte of
disk storage, interconnected with a Myrinet 2000
high speed/low-latency interconnection network. The
goal of Cortex is to deal with CARL’s high-level
decision and control tasks that require intensive
computation, such as bimodal (audio-video) or mul-
timodal (i.e., multisensory) processing. Data input
or stimulus to Cortex is received from Brainstem,
and the results are sent back to Brainstem for robot
control.

2.3.1. Cortex: a generalized ‘brain server’
At present, Cortex runs a biologically realistic

spike-coded neural network, named NCS (neocortical
simulator). In brief, the neocortical model employed
here simulates several columns worth of a small vi-
sual and auditory cortex with thousands of cells and
millions of synapse connections. NCS has the ca-
pability of simulating a chunk of spiking neocortex
of thousands of cells with millions of synapses with
a high degree of biological accuracy, including fea-
tures such as ion channels, synaptic facilitation and
depression, and Hebbian learning[12,29–31].

NCS was implemented in C language using MPI
parallel programming library. A neocortical simula-
tion session can be created de novo with each new
set of data from CARL, according to a description in
a configuration file, or, more commonly, a previously
trained brain can be loaded from disk for that simula-
tion run. For this work, NCS was trained in advance to
recognize a number of phrases, some of which were
classified as threatening and some as neutral. The de-
sign and training of NCS is detailed inSection 3.

The cluster performing the simulation can serve any
number of simultaneous requests for simulations, ei-
ther processing each request to completion in the order
it was received or starting each request immediately
as it arrives, even if other simulations are ongoing. In

this way the cluster can function as a ‘brain server’
for multiple robots in the field.

2.3.2. Bimodal (sound and video) speech recognition
This section describes a particular high-level de-

cision process performed on Cortex by NCS. Once
CARL reaches the target, Brainstem begins to pass
the audio and video data emitted by the target to the
remote neocortex portion of the control system for
threat analysis. The audio data captured by CARL’s
microphone consists of one of several spoken phrases
emitted by the target for that test run, and the video
captured by CARL’s camera consists of short moving
images, played on a small video screen embedded in
the target, of human mouths articulating the phrase as
it is spoken.

Bimodal recognition was chosen in order to support
and link a related research project exploring the po-
tential for increased phrase recognition accuracy when
combining lip position information with sound infor-
mation into a bimodal neocortical speech recognition
strategy. Details of this learning algorithm are avail-
able in a technical report from our lab[19], and a
summary is described inSection 3.

To reduce data transit demands, the audio and video
information is converted into a neural spike-coded
representation on Brainstem, before being passed to
the neocortex simulator over a conventional computer
network, usually the Internet. Since the neocortical
processing takes from several seconds to minutes, de-
pending on the complexity of the neocortical model
installed, the network latencies introduced in commu-
nication to the remote neocortex are acceptable for
our purposes.

3. Design and training of NCS for bimodal
recognition

Our network was designed to processes bimodal,
audio and visual, information. We decided on audio
and visual information because these are the two sen-
sory modalities that we as humans rely on the most
and which we, the scientific community, have the
best understanding. Next we designed our network
to incorporate the current understanding of biological
processing while keeping with reasonable simula-
tion times. Both the transformation of audio/visual
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information and the design of the network are dis-
cussed in more detail to follow.

3.1. Data acquisition and spike encoding

Audio–video-interleave (.avi) movies were recorded
from 10 volunteers speaking the following three
sentences: “Attack with gas bombs”, “He is a loyal
citizen”, and “I’m not entirely sure”. Each .avi was
recorded at 25 frames per-second with audio digitiza-
tion of 11 kHz. Recordings were truncated to 1.6 s of
audio and 40 frames of video to keep the sentences
the same length. Auditory signals were processed
using a short-time-Fourier-transform (STFT). STFT
decomposes the auditory signal into 129 frequency
bands and provides the power of each frequency as a
function of time (Fig. 7).

By moving a narrow window (2.5 ms) indepen-
dently for each frequency across time a probability
of spiking is computed from the power within each
window (normalized to the maximum power across
all windows of all frequencies). In actuality the
tonotopic representation of the cochlea is closer to
a logarithmic scale, and the Fourier transform is a
linear manipulation. In order to minimize the differ-
ence between cochlear processing and the STFT, a
larger proportion of cells encoded lower frequencies
than higher frequencies. Our auditory cortex included
three columns. The first column received the first 20
frequency bands, the second column received the next
40 frequency bands, and the final column received
the remaining 69 frequency bands.

Fig. 7. Spectrogram of the spoken sentence “attack with gas bombs”. Vertical axis-auditory frequency (0–5.5 kHz in 129 bands). Horizontal
axis: time in seconds (1.6 s). Pseudocolor legend: signal power in dB [−120, 25].

Visual signals were first whitened and then pro-
cessed using Gabor analysis. The receptive field
properties of primary visual cortex (VI) simple cells
resemble Gabor-like properties[28], minimizing the
tradeoff between frequency information and spatial
information.Fig. 8shows two frames of an .avi movie
before and after Gabor-filtering using horizontally
oriented high and low band-pass filters. In order to
preserve the retinotopic mapping, the filtered image
was broken down into 5× 5 subregions. The average
intensity within a subregion was used as the prob-
ability of spiking for a group of cells encoding that
position.

3.2. Network design

Our network was made up of 10 columns (6 visual,
3 auditory and 1 association). Each primary sensory
column comprised two layers, an input (IV) and output
layer (II/III). Layer IV included 300 excitatory cells.
Layer II/III included 300 excitatory and 75 inhibitory
cells. Layer IV excitatory cells connected to layer II/III
excitatory cells with a 10% probability. Layer II/III
excitatory cells connected with each other and to in-
hibitory cells with a 10% probability. Inhibitory cells
connected to excitatory cells within layer II/III with
a 5% probability. The association column was made
up of one input layer (IV) similar to the output lay-
ers of the primary sensory columns. The excitatory
cells of layer II/III for the six visual and three audi-
tory columns each connected with layer IV of the as-
sociation column using a 1% probability. Simulations
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Fig. 8. Two frames(240× 240) from an .avi movie before and after horizontal Gabor-filtering. (a and d) Before filtering; (b and e) after
filtering with high band-pass filter; (c and e) after filtering with low band-pass filter; (g) high band-pass filter(30× 30); (h) low band-pass
filter (30× 30).

typically took approximately 3–5 min to process a 3-s
recording.

3.2.1. Cell design
Our cell models consisted of a single integrate-and-

fire compartment. Resting potential and threshold
were−65 and−40 mV, respectively. Once threshold
was reached, a spike template consistent with litera-
ture-based measurements of chord-width, peak, rise
and fall rates was applied for the following 2 ms. For
pyramidal cells the most common firing pattern to
sustained supra-threshold current is a repetitive firing
rate with little to no decrease in frequency (RS1)[7].
In addition, a similar firing pattern occurs for several
types of inhibitory cells[11]. For reasons of simplic-
ity 80% of our pyramidal and inhibitory cells shared
the same compartment design for regular spiking be-
havior. The other 20% of our pyramidal and inhibitory
cells comprised adapting/accommodating firing pat-
terns to sustained current. Again the inhibitory and
pyramidal shared the same compartment design.

3.2.2. Channel design
Although our cell model used a spike template once

threshold was reached, several sub-threshold respon-
sive channels were used to achieve the desired repet-

itive firing pattern. Recent evidence has shown that
AP repolarization is not Ca2+ dependent[22] and
that voltage-gated K+ channels, not Ca2+ activated
K+ channels, are largely responsible for AP repolar-
ization [1,10,18]. In addition, A-type channels have
been linked to neuronal repetitive firing without ac-
commodation[6,25,27]. In light of this evidence we
used only an A-type channel to model repetitive spik-
ing behavior. Models of M-type channels[32] and SK
channels[9] have been shown to contribute to spike
frequency adaptation and therefore were included to
achieve the desired firing behavior. Previous reports
have shown that several after hyperpolarizations oc-
cur following an AP: fast (IC) calcium dependent, in-
termediate non-calcium dependent, and slow (IAHP)
calcium dependent currents[27]. Therefore, we in-
cluded a fast Ca2+ dependent K+ channel, an M-type
K+ channel, and a slow Ca2+ dependent K+ channel
into our cell model. These channels were included in
the ratio 1:1:2, respectively.

3.3. Network training

Learning and training were designed to take
advantage of the synaptic properties observed in
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Fig. 9. Pseudocolor windowed spike rate plots in response to spoken sentences. Vertical axis: windowed spike frequency. Horizontal axis:
time (each frame shown here corresponds to 1.6 s, the time for the complete sentence to be spoken once; sentences were repeated a total
of seven times).

neocortical tissue. Both short-term transient and
long-term Hebbian-like synaptic changes were mod-
eled. In order to mimic the feedback projections of
the frontal cortex training was accomplished by selec-
tively injecting a unique subset of cells with current
for each sentence presented to the network. Both the
synaptic properties and training are discussed in more
detail below.

3.3.1. Synaptic dynamics
Our synapse model included reversal potential,

conductance,A (absolute strength, or product of
quantal size and number of release sites),U (mean
probability of release),D and F (the time constants
to recover from depression and facilitation, respec-
tively). Details of parametric equations are com-
pletely characterized in[20,26]. F1 synapses pre-
dominately facilitate (F:D, 9.04± 1.85), F2 synapses
depress (D:F, 40.6 ± 4.6), and F3 synapses are
mixed (2.82 ± 4.6); further details can be found in
[11].

3.3.2. Learning
Spike-coded visual and auditory representations in

primary sensory cortices demonstrated unique patterns
for the three sentences (Fig. 9). When output layers of
these primary cortices interacted in multimodal asso-

ciation cortex, there was again preservation of unique
spiking patterns (Fig. 9, fourth column).

The first column inFig. 9 shows three sentences
modified from the TIMIT corpus. Columns two and
three show the spiking response of neurons driven
from the visual and auditory transformations. The
fourth column is the response of associative multi-
modal cortex during reward depolarization of selected

Fig. 10. Utilization of synaptic efficacy. Mean U.S.E. (±1S.D.) af-
ter seven presentations of spoken sentence “attack with gas bombs”
among excitatory neurons in multimodal association cortex, unre-
warded neurons (left) vs. rewarded neurons (right) during training
for that sentence.
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neurons for each sentence.Fig. 10shows the change
in synaptic strength (USE) after successive sentence
presentations for the rewarded versus non-rewarded
neurons. Rewarded neurons where given direct cur-
rent injection during sentence presentation to bring
their membrane potential closer to threshold.

4. Results

The integration of three dissimilar computing sys-
tems, with reliable linkage and synchronization, is
the first achievement of this project. Our system re-
sponded effectively to different levels of computation
complexity. On CARL the computation was kept sim-
ple. On Brainstem, the computation complexity was
characterized by the cross-correlation, FFT and Ga-
bor analysis. These are used for sound localization,
auditory encoding and visual encoding, respectively.
On Cortex, the spiking neural network algorithm de-
fined the computation complexity. This is described in
Section 3.2. The computation power of each system
layer is described inTable 2.

With respect to data transmission characteristics, in
theory, Brainstem is able to receive audio–video in-
formation from CARL at 12 Mbps, and exchange con-
trol commands and metrics at 9.6 kbps. Data stream
between Brainstem and Cortex, over Ethernet link,
rated 100 kbps. And, message passing between Cortex
nodes at 2 Gbps.

Our remote-brained experiment performed as fol-
lows. First, sound localization via IID and ITD was
assessed with CARL immobile and a moving sound
source. These results are reported inSection 4.1. Next,
CARL’s ability to navigate toward a speaking target
using one of these techniques (ITD) is reported in
Section 4.2. We then briefly describe inSection 4.3
the communication that takes place between Brain-
stem and Cortex once CARL contacts the target and
acquires the bimodal data for target threat assessment.

Table 2
Three-layer control system hardware comparison

Processor Processor speed Memory

CARL BS2-IC 20 MHz∼400 inst./s 2 K EEPROM 64B RAM
Brainstem Pentium 4 2.2 GHz 512MB RAM
Cortex Xeon 2.2 128 nodes 2.2 GHz per node 2GB RAM per node

Table 3
Results of 80 localization experiments

Experiment
no.

Left (CARL
orientation)

Right (CARL
orientation)

L1 L2 L3 L4 R1 R2 R3 R4

1 Ok Ok Ok Ok Ok Ok Ok Ok
2 Ok Ok Ok Ok Ok Ok Fail Ok
3 Ok Fail Ok Ok Ok Ok Ok Ok
4 Ok Ok Ok Ok Ok Ok Ok Ok
5 Ok Ok Ok Ok Ok Ok Ok Ok
6 Ok Ok Fail Ok Ok Ok Ok Ok
7 Ok Ok Ok Ok Ok Fail Ok Ok
8 Ok Ok Ok Ok Ok Ok Ok Ok
9 Ok Ok Ok Fail Ok Ok Ok Ok

10 Ok Ok Ok Ok Ok Ok Ok Ok

4.1. Sound localization using IID and ITD

Results of sound localization for IID are reported
in Fig. 11. Comparable results for ITD are reported in
Fig. 12. Although ITD and IID are generally comple-
mentary techniques for estimating a sound direction,
we found ITD to be considerably more robust and less
subject to calibration errors and errors due to noise or
echoes. Therefore, the next experiment was conducted
using ITD alone.

4.2. Navigation toward target

Ten trials of navigation toward target were per-
formed from each starting location (left and right) in
each of the four starting orientations (seeFig. 1), for a
total of 80 trials (Table 3, Section 2.2.1). A trial con-
sisted of repetitive cycles of sound localization and
navigation. Each trial comprised multiple individual
left/right/center ITD computations, resulting in an in-
cremental rotation, or movement toward the target if
the ITD orientation remained unchanged. A trial was
considered successful if CARL’s bumper made con-
tact with the target and the middle 80% of the imaged
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Fig. 11. Localization accuracy using IID technique.

Fig. 12. Localization accuracy using ITD technique.

lip was visible from CARL’s onboard camera. CARL
successfully navigated toward and contacted the tar-
get mouth region in 75 of 80 trials (χ2 = 20.3, P <

0.0001, based on the number of possible endings along
the edge of a meter square table surface). Each navi-
gation experiment took between 25 to 30 s.

4.3. Threat assessment of target using bimodal
neocortical speech recognition

After successful localization, 1.6 s of audio and 23
frames of video are captured and Brainstem codes the
audio and video data into spike probabilities. This data
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encoding took about 3.5 s on Brainstem during simu-
lation. Next, a TCP connection is established between
Brainstem and Cortex, and the spike-encoded data is
transferred to Cortex. The NCS program is invoked
on the data to perform the threat assessment. The ini-
tial brain state is typically loaded from a previously
trained and saved brain. The interpreted result of the
neocortical simulation is passed back to Brainstem,
which then instructs CARL to take the appropriate ac-
tion. The details of the bimodal speech recognition are
described in[17].

5. Discussion

We implemented a wheeled robot with remote and
hierarchical processing capability that can explore its
environment from any initial orientation, detect the
presence of a potential target, and reliably approach
the target using sound localization techniques in or-
der to perform bimodal (audio plus visual lip reading)
speech recognition by invoking a biologically accurate
remote neocortical simulation.

Although the concept of remote-brained robotics
has been explored previously by Inaba et al.[14], in
that work the brain and body were separated, both
conceptually and physically. Our system is novel in
that it incorporates three-level hierarchical processing
intended to model the efficiency of human neurologi-
cal perceptual processing and decision making. In this
configuration, task selection and allocation are rele-
vant and contribute to effective robot responsiveness.

Our system is also notable for its ability to map
many-to-many robots and ‘cortices’ via a distributed
communication network (here, the Internet). Each
CARL could potentially communicate with many
Cortex-like clusters globally distributed. In turn, each
Cortex could simultaneously control (hence coordi-
nate) many CARL robots. This would yield not only
flexible distribution of computational powerful across
a dynamic problem-solving environment, but also re-
dundancy that could sustain the system in the event
of focal destructive events.

Although the utilization of physical robots and
real-world environments is important in order to con-
strain and supply boundary and noise conditions, our
system can also function in a virtual reality mode,
in which the robot and environment are emulated.

This could be valuable for early stage projects such
as extraterrestrial robotic landing or hostile terrain
exploration.

From a cognitive science perspective, our remote-
brained robotic system’s massive parallel processing
and its embodiment of perceptual decisions, make our
system a valuable platform for investigating new types
of artificial intelligence such as applied neurocomput-
ing and evolutionary agents[24], where the active and
strong relationship between the brain, body and envi-
ronment is fundamental for model development[4].

Many algorithms for path planning (choosing a safe
course through a set of obstacles) have been described
in the computer science literature[5]. Few of these al-
gorithms are biologically inspired, and even fewer ef-
fectively utilize spiking neural network techniques. We
recently extended our work to include three responses
contingent on cortical interpretation: uninteresting tar-
get (repositions and resumes searching), immediate
threat to robot integrity (rapidly backs away to escape),
and target identified for subsequent action or continued
monitoring (alarms). Our work could be further ex-
tended to simulate the neocortical functions of human
path planning. It should be noted that while CARL
performs well in low noise and echoic environments
tested to date, real-world implementation will require
the ability to separate multiple sources of audio and
video signals[13] (the problem of ‘event formation’).
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