A Generic Queuing System for Computational Intensive Problems

1
Introduction

Many combinatorial optimization problems belong to class NP-complete. Consequently, computational requirements for solution algorithms are unpredictable and sometimes intense. Parallel computers offer the hope for providing the computational power to meet the demands of solving NP-complete problems. However, the difficulty in parallelizing most algorithms lies in properly and efficiently dividing the work to ensure maximum concurrency and simultaneous termination. Work queues have proven to be an efficient means of ensuring load balancing but they often require large amounts of message passing as slave processes request work from the queue. These messages make proper synchronization of the utmost importance, but they also make it difficult to achieve. By developing a generic work queuing system for medium to large Beowulf clusters, which are made of multi-computers or network computers, we attempt to simplify this problem.

The algorithm Harris and Harris presented in [1] uses an exhaustive search to find the Minimum Crossing Number (MCN) of a graph. As graph size increases, exhaustive searches can become computationally intensive—taking months or even years to complete on a single processor. Using a medium to large Beowulf cluster and a parallel queuing system that can be optimized for problem granularity, we have solved the MCN of a complete graph for a number of vertices less than nine. The MCN of complete graphs with vertices numbering less than 10 was conjectured by Guy in [2] and has been proven in [3], allowing us to verify our results. The MCN for larger vertex sets has not been proven yet. However, by harnessing the power of large computer clusters, and optimizing algorithm granularity, this problem may finally be solved for larger graphs. Our queuing system has been designed to aid in solving this, and other, large computationally intensive problems.

The remainder of this paper is laid out in the following manner: Chapter 2 presents background information concerning the Minimum Crossing Number of complete graphs, parallel work queues, gives a brief introduction to Beowulf clusters, and addresses some of the work that has been done before. Chapter 3 describes the proposed implementation of our queuing system. Chapter 4 describes the “job” used to solve the Minimum Crossing Number Problem and the Traveling Salesman Problem in our queuing system and lists the results obtained, and Chapter 5 finishes the paper with our conclusions and future work.

2
Background and Problem Description
Applications using Minimum Crossing Number includes optimization of networks for parallel computer architectures, VLSI circuit design, information retrieval, numerical analysis, computational biology, and archaeology. Due to the fact that a graph can be drawn in numerous ways, finding the minimum crossing of a graph is proven to be an NP-Complete problem [2].

2.1 The History of the Minimum Crossing Number Problem

In 1944, Paul Turan was the first to recognize the Minimum Crossing Number Problem for what it is today, also known as “Turan’s Brickyard Problem” [4]. Although the problem is easily stated and has been well studied, there is still a great amount to uncover. There are, in general, two categories of crossing numbers of graphs: crossing number and rectilinear crossing number. When the edges of a graph are all straight-line segments on a plane, the rectilinear crossing number is defined by its crossings. [6, 7] have shown results for rectilinear crossing number of fairly large, complete graphs. This work gave bounds to the rectilinear crossing numbers for a range of complete graphs. Researches on general crossing numbers have mainly focused on Guy’s conjecture [2] about the minimum crossing number of Kn, which has been proven to be true for all Kn, where n (10:

[image: image1.wmf]
Richard Guy’s conjecture remains unproven for complete graphs larger than K10. In this paper we are concerned with the crossing number of a graph G as the minimal number of edge crossings in any drawing of G in the plane. In all drawings under consideration, we uses the definition given in [10]:

(adjacent edges never cross

(two nonadjacent edges cross at most once

(no edge crosses itself.

(no more than two edges cross at a point.

(the (open) arc in the plane corresponding to an edge of the graph contains no vertex of the graph.

We have built a tool that allows us to expand our knowledge of the MCN problem and other computationally expensive problems.

2.2 Parallel Work Queue and Cluster Information

Problems such as the Minimum Crossing Number of a complete graph are computationally intensive and virtually impossible to solve using a conventional single processor machine. Fortunately, such problems can often be easily broken down into smaller problems. The size, or granularity, of these smaller problems can vary greatly, but the concept of each processor tackling only a portion of the overall problem applies regardless of size.

A work queue is one method of ensuring a balanced work load that is evenly distributed across many processors or machines. This load balancing can be either centralized, residing with a master process, or decentralized, controlled by each slave. A combination of these two systems may also be used. The work queue is especially useful in load balancing with irregular data structures such as an unbalanced search tree [7].

In centralized load balancing, the tasks to be performed are held by the master and meted out to the slaves as they finish other tasks and become idle. This process minimizes the time each slave is idle, thereby maximizing efficiency. One disadvantage of centralized load balancing is the possibility of a bottleneck while the master distributes tasks—many slaves may request tasks, but the master can only issue one at a time. In decentralized load balancing, local processes keep their own work pools. This strategy has the benefit of avoiding the bottleneck mentioned above. Decentralized load balancing is similar to static partitioning and has the same apparent problems. In more complex systems, the slaves may request work from each other or from a centralized master queue as well.

It is often advantageous to use a divide and conquer strategy when dealing with difficult and/or lengthy problems. These problems may have data sets that are completely defined prior to run-time and are often divided among the processors, each computing its own results from its data set. This is referred to as static partitioning. If one processor finishes working it must wait idly while the other processors “catch up.” When a processor is idle, the benefits of concurrent execution are not realized to their entirety. In addition, heterogeneous processor clusters can make effective partitioning very difficult. Static partitioning is effective when data sets are known prior to runtime and the execution time of the data can be easily determined. This is seldom the case, however. One solution is dynamic load balancing.

Our idea for a computational engine is a group of networked workstations that are made of many low-cost machines serving as a “Supercomputer”. The parallel queue functions by distributing work across all machines. Our experiments were run on a large cluster of 128 Pentium III and Pentium IV XEON Processors over Ethernet (for NFS) and Myrinet 2 (for communication).

2.3 Previous Solutions and Problems

We began with an existing implementation of a sequential algorithm to find the MCN of a complete planar graph given by Harris in [1]. It is a Depth First Search algorithm with Branch-and-Bound, which exhaustively covers the entire search space that lead to an optimal solution. This implementation had been parallelized using static partitioning by Tadjiev in [8, 9]. The problem with his implementation is that, as we mentioned earlier, static partitioning generally does little to ensure load balancing. Frequently, only several hours into a multi-day run, one processor would be working while the others sat idle, see Figure 1. As we can see, processor 2 and 3 sit idle while processor 1 works toward a solution.

Very little speedup was noticed in solving larger vertex sets, even when the method was run on many processors. By utilizing a generic work queuing system, the MCN and other problems could be solved with minimal adaptation.

3 The Generic Queuing System

Many computationally expensive problems have their parallel algorithms either proposed or implemented, which makes it easy to break problems into jobs (or sub-jobs). Therefore, we decided to build a queue of jobs (work) that can be distributed across a cluster to harness the parallel computation power available, allowing researchers to use it with little or even no knowledge needed of the parallel programming details.

3.1 Queuing System Implementation

The queuing system was designed to be as generic as possible, allowing it to be adapted to a variety of problem sizes and types. The system works around “jobs.” A job represents whatever amount of work can be executed independently. Thus, the system is easily tunable by the user to ensure parallel efficiency. The size of each job is referred to as the granularity of a task. Coarse granularity refers to a task with a large amount of sequential instructions that take a significant amount of time to execute [11].
In our proposed implementation (see Figure 2), the master will create the first m jobs. The problem is dynamically partitioned in the queue. In general, m is determined by the problem under investigation and should be greater than n, where n is the number of slave processors. These jobs are put in the master’s queue. The master then sends a job to each processor. Each processor will create more jobs while processing. These jobs are kept in a local work queue by each slave. When a slave’s local work queue reaches some user defined size, it will send back the extra jobs to the master for placement in the master queue. When a slave is idle, it sends a request for a job to the master and, upon receipt, begins computation and the filling of its local queue. If a slave is idle and the master queue is empty, the idle slave “steals” a job from another slave via the master. Process termination occurs when all slaves are idle and the master’s work queue is empty.

3.2 Application with the MCN Problem

A job is normally a C/C++ data structure that needs to be defined and overloaded by the user if it is not represented using a built-in data type. For MCN problems, the job is simply an integer array filled in with its graph description such as its current crossings, region list, edges needs to be added to make it complete, etc. The queue is started after the master creates initial jobs and distributes them to the slaves. Whenever the slave gets a job, it will decode the integer array, modify the data using the algorithm presented in [1], and encode it to a new integer array as a new job. Each slave first puts the job it generates in its local queue unless its queue size hits the maximum size. Signals such as new best MCN and master or slave requesting jobs, etc. will be broadcasted among all processors. Thus, every slave can throw away those jobs that have more crossings then the best solution. We usually force the master to hold a certain amount of jobs in its queue so that jobs can be delivered reasonably fast whenever any idle slave requests. The program will stop when the master queue is empty and all the slaves are idle.

4
Results

The time needed to process one job varies a lot based on different definitions for a job. The algorithm we use to calculate minimum crossings of complete graphs breaks the problem down into very small parts. Hence, a job is composed of only a couple thousand integers, which requires a trivial amount of time to process.

	***** K8 runs with 4 slaves *****

	
	# jobs enqueued
	# jobs master send to slave
	#jobs sent to master due to slave full
	# jobs sent to master due to master requests

	Slave1
	8342722
	1514960
	500512
	394885

	Slave 2
	9798531
	1276270
	1200044
	122004

	Slave 3
	5663196
	890280
	1195091
	316733

	Slave 4
	5280137
	517435
	1043396
	116819

	Slave 5
	5997357
	942616
	375144
	114378

	Slave 6
	11615911
	1942186
	1601353
	103384

	Master
	
	7083747
	
	

	Total # job processed: 46697854
	Total time taken: 12517 seconds

	

	***** K8 runs with 8 slaves *****

	Slave 1
	5860119
	1066788
	124171
	168214

	Slave 2
	5852334
	672011
	106191
	205251

	Slave 3
	6252721
	500014
	352193
	1066193

	Slave 4
	5918188
	618149
	509321
	452096

	Slave 5
	5437214
	925381
	157449
	168598

	Slave 6
	5207427
	897845
	856689
	164729

	Slave 7
	5652174
	1096038
	837283
	152531

	Slave 8
	6219062
	353452
	391920
	335845

	Master
	
	6129678
	
	

	Total # job processed: 46399239
	Total time taken: 8493 seconds

As shown in the above table, the first column is the number of jobs that each slave handled. The next two columns are the number of jobs sent from master to slave or slave to master followed by the amount of jobs sent due to master requests or because of full slave queues.

[image: image2.wmf]
Table 2: Jobs Processed by Each Slave

Table 2 shows the total number of jobs each slave processes when the program runs on different number of nodes. We noticed that jobs are quite evenly distributed among slaves, especially when more nodes are used. The queue can manage large numbers of jobs (up to several millions) and signals while maintaining load balancing.

We also found several features that we did not expect prior to running the MCN problem using different numbers of slaves and configurations.

1. There is a trade-off between number of processors to be used and number of jobs to be processed. The total number of jobs handled by all the slaves is quite different even if they deal with the same vertex set. Since the processes are paralleled, the time required generating the first best solution is roughly the same. Therefore, the more nodes we use, the bigger their total amount is.
2. A good maximum queue size selection makes a difference. Generally speaking, the machine will complete jobs faster when there are not many jobs piled in the queue taking up system resources. Each slave will send extra jobs from its local queue whenever the maximum size is reached. Most of the time, we tend to increase the number of nodes in order to expedite the processing speed. As a consequence, there will be huge amounts of jobs passed back to the master from slaves. We need to be cautious when choosing the number of nodes to be used so that the number of jobs that slaves send back will not be beyond the master machine’s capacity. When we run K8, we set the maximum size of slave queues to 1 million jobs, and the master’s to 2 million. This works well for 5 to 16 processors. We believe this is a good general configuration.

3. Currently what we did whenever the slave asks a job from master is send one job at a time. We are unable to show whether it is more practical to send multiple jobs once, as the speed of dealing with one job alters a lot as time goes by. For the MCN problem, the time to complete a job becomes faster later on especially after a best solution is generated. On one hand, if we can assign more jobs at that time, and keep slaves busy for a short while, it will save lots of communication time instead of slaves asking jobs frequently. On the other hand, we do not always want to send more jobs, which might lead us to unbalance load.
5 Conclusions and Future Work

5.1 Conclusions

By developing a standard queuing system for use in Beowulf clusters, we have opened the door for easy adaptation of existing algorithms to solve a wide variety of problems. Using our system, costly development can be avoided. The system allows for easy tuning for optimum performance based on the computational intensity or job granularity of the chosen algorithm.

We plan to use this queuing system to solve the MCN problem for larger vertex sets. Harris and Thorpe showed in [12] that the actual rectilinear minimum crossing number diverges from the currently accepted value given by Guy in [2]. Using our queuing system as a framework to achieve load balancing, the non-rectilinear problem may be solved for K11 or greater. We also plan to develop a “job” with which the minimum crossing number of a bipartite graph may be determined. Very little adaptation should be necessary to use our queuing system for this and other similar graph theory problems.

5.2 Future Work

In future versions of this system, we want to make the system even more general by looking at the possibility of slaves being able to query other slaves and being allowed to steal jobs directly from each other—without the use of the master as an intermediary. We also plan to make queue size variables user definable at run-time rather than only at compile time. This will possibly be implemented to include a graphical user interface developed using an open source, readily available library such as GTK.

As the queue size keeps growing rapidly and piles up, we have started to wonder whether a stack implementation will work better than queue. It might give us some inspiration by watching the different performance between these two methods, although we would like to assume that a stack might act better for problems using depth first search.

The performance slowdowns caused by extensive message passing in the queuing system are less important than the ability to create, store and manage large numbers of jobs. We are working toward a system to write the queue to a hard disk or some other form of non-volatile storage to prevent excessive memory consumption. Saving the queue contents would also allow the suspension of long running jobs. Easily stopping and restarting large jobs will allow a cluster to be used for shorter processes without requiring restarting computation from the beginning.

We also look forward to seeing more improvements on the algorithm of computational intensive questions. Since there are no unique ways to break up a problem to parts, we are willing to find a better way to take apart the problem to make ultimate use of the queuing system.

References

[1]
F. Harris and C. Harris. A proposed algorithm for calculating the MCN of a graph. In Yousef Alavi, Allen J. Schwenk and Ronald L. Graham, editors. Proceedings of the Eighth Quadrenial International Conference on Graph Theory, Combinatorics, Algorithms and Applications, Kalamazoo, Michigan, June, 1996. Western Michigan University.

[2]
P. Erdös and R. Guy. Crossing numbers of graphs. In Y. Alavi, D.R. Lick, and A.T. White, editors, Graph Theory and Applications, pages 111-124, Berlin, 1973. Springer-Verlag.

[3]
M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[4]
P. Turan. A note of welcome. J. Graph Theory, 1:7-9, 1997.

[5]
J. Pach, J. Spencer, and G. Toth. New bounds on crossing numbers. In Proceeding of the 15th annual symposium on Computational Geometry, pages 124 – 133, Miami, Florida, June, 1999.

[6]
O. Aichholzer, F. Aurenhammer, and H. Krasser. On the crossing number of complete graphs. In Proceeding of the 18th annual symposium on Computational Geometry, Barcelona, Spain, June, 2002.

[7] K. Yelick. Programming Models for Irregular Applications. In Proceedings of the Workshop on Languages, Compilers and Run-Time Environments for Distributed Memory Multiprocessors, volume 28(1). ACM SIGPLAN Notices, January 1993. 10

[8] U. Tadjiev. Parallel Computation and Graphical Visualization of the Minmum Crossing Number of a Graph. Master’s Thesis, University of Nevada, Reno, Reno, NV 89557, August 1998.

[9] U. Tadjiev and F. Harris, Jr., Parallel Computation of the Minimum Crossing Number of a Graph. Proc. 8th SIAM Conf. on Parallel Process. for Sci. Comput. Minneapolis, Minnesota, March 14-17, 1997.

[10] G. Chartrand and L. Lesniak. Graphs and Digraphs. 3rd Edition. Chapman & Hall, 1996

[11] B. Wilkinson and M. Allen. Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers. Pearson Education, Prentice Hall, Upper Saddle River, NJ. 1999.

[12] J. Thorpe and F. Harris, Jr. A parallel stochastic optimization algorithm for finding the mappings of the rectilinear minimal crossing problem. Ars Comb., 43:135-148, 1996.

Work Request

Distributed / Local

Queue

Central Queue

Share Work Msg

Slave n

Slave 2

Master

Slave 1

1

2

3

Figure 1: Unbalanced Search Tree

Figure 2: Parallel Work Queue

Table 1: Performance of K8 Running over 6 and 8 Processors

_1018970707.unknown

_1019505090.xls

