
88 March/April 2007 Published by the IEEE Computer Society 0272-1716/07/$25.00 © 2007 IEEE

S cientists of the Desert Research Institute’s atmos-
pheric, hydrological, and earth and ecosystem sci-

ence divisions sift through vast amounts of data
gathered from sophisticated instrumentation and com-
putational models. To help address the data analysis
needs that stem from the growing volume of data, DRI
established the Center for Advanced Visualization,
Computation, and Modeling (CAVCaM) to foster DRI’s
move into interactive, large-scale, 3D visualization of
these and other environmental research issues.
CAVCaM currently employs a four-sided, CAVE-like,
Fakespace FLEX immersive display system, a Visbox
single-screen immersive display, and a 44 CPU with 160
Gbytes of RAM SGI Altix 3700 SMP system.

Our mission is two-pronged. First, we seek to partner
with our researcher collaborators at DRI and the larger
scientific communities through the development and
use of better visualization tools. Second, we work with
research sponsors to create visualization applications
for training and simulation. For example, in conjunc-
tion with research sponsored by the US Army, DRI
researchers are investigating the physics behind real-
world phenomena so they can create realistic, real-time
environmental effects in training and simulation appli-
cations. Examples of these phenomena include the
behavior of wildfires and of dust generated from vari-
ous soil conditions, and the flow and effect of atmos-
pheric contaminants on large-scale visibility.

To best achieve these goals, our underlying philoso-
phy is to use established standards and generic tools
(ideally open source) and contribute back to the open-
source community. Of course, situations might arise
when conditions deter us from these goals. For exam-
ple, collaborators might have established procedures
that require specific software systems, and they might
be understandably reluctant to abandon them. Or,
there might be situations when no open-source prod-
uct is available that fills the need, such as realistically
portraying real-world vegetation. However, these goals
serve as our general guidelines and have let us quickly
establish a center that is already addressing many
clients’ needs.

Software tools
Although CAVCaM does not focus exclusively on

immersive, or VR, environments, much of our early
efforts have required immersive visualization tools. The
most desirable solution, of course, is to work with soft-
ware packages that users can operate immersively, as
well as through a desktop interface. In particular, our
work with the Vis5D/Cave5D combination meets this
goal. Also, some solutions work for the Kitware
Visualization ToolKit (VTK), though often with some
extra layers that can decrease performance and flexibil-
ity. In other cases, we are developing immersive tools
that can directly interface with data from existing desk-
top tools, such as the ESRI Geographic Information
Systems software suite.

FreeVR
To ensure that our immersive tools would be not only

widely distributable but also widely usable, it is incum-
bent upon us to build them around a VR integration
library that is both open-source and flexible enough to
run on a wide spectrum of immersive display systems.
FreeVR is one such library.

FreeVR was born at a time when there were few, if
any, open-source VR integration libraries that would
work both in projection or head-based immersive dis-
plays. The primary objective is to put an abstraction
layer between the simulated world and the input and
output devices. For a VR application to be widely use-
ful, it is vital that it be transportable among immersive
displays at facilities beyond the one where the applica-
tion was created. The abstraction layer’s purpose is to
allow user-interfaces to work with many physical
devices. Thus, FreeVR includes device interface soft-
ware for many hardware devices commonly found at VR
facilities.

FreeVR applications’ programming style is not unusu-
al for VR integration libraries. The application program-
mer specifies the rendering routine and separately
specifies the world simulation routine. These routines
are executed in independent processes or threads, pro-
viding a coarse-grain form of parallelism. This method

William R.
Sherman,
Simon Su,
Philip A.
McDonald,
and Yi Mu
Desert Research
Institute

Frederick
Harris Jr.
University of
Nevada, Reno

Open-Source Tools for Immersive Environmental
Visualization__

Projects in VR Editors:
Larry Rosenblum and Simon Julier

IEEE Computer Graphics and Applications 89

is the same as that employed by the CAVELib, making it
convenient to port many existing VR applications to the
FreeVR open-source alternative.

This course-grain parallelism permits some natur-
al efficiencies. However, developers must take care to
control state changes in the virtual world such that
each synchronized render-frame shows the same data
on all screens. This is best accomplished by segregat-
ing the world dynamics calculations from the render-
ing and using data locks to prevent simultaneous
access. Many times, developers can integrate applica-
tions not originally written for a multiscreen display
into FreeVR or other similar libraries and quickly make
them work on an immersive display. Applications that
do a good job of segregating the rendering from the
simulation of the world facilitate such porting consid-
erably. Unfortunately, the authors of many graphical
programs do not anticipate multiple, simultaneous
rendering operations and, therefore, write in a style
that merges simulation and rendering. These pro-
grams are often exceedingly difficult to port to a VR
environment.

FreeVR also has graphical output drivers written to
work with many different systems. FreeVR primarily
works with the ubiquitous OpenGL rendering library.
Also, some higher-level rendering systems add many
features above and beyond what the standard library
provides. Specifically, FreeVR has been designed to work
with SGI’s Performer library, the OpenSceneGraph
library, and the OpenSG system. Ports for OpenInventor
and the similar Coin3D systems have also progressed,
though they have multiprocessing issues.

OpenSceneGraph
In the past, many applications designed for CAVEs and

CAVE-like displays have made use of the SGI Performer
scene-graph library. In addition to the data structure
organization the scene-graph provided, Performer was
designed and built to provide synchronized multiple-
view displays with efficient, parallel rendering. This
design meshed well with VR systems that, in most cases,
required complex scenes to display simultaneously on
multiple screens. Unfortunately, Performer is a closed-
source library, proprietary to SGI. Although SGI has pro-
vided ports to some non-SGI systems, there are serious
doubts of the library’s long-term availability.

In many ways, the open-source OpenSceneGraph
library provides many of Performer’s qualities. As with
the Performer library, OSG divides the overall rendering
process into separate application, culling, and render-
ing operations, allowing parallel pipelining. Un-
fortunately, as an open-source system, not all of the
contributed modules adhere to this design. Therefore,
some modules do not work well in a multiview system.
For example, the particle system node uses the cull
process to update particle movement and, when multi-
ple culling processes are all writing to the same memo-
ry, problems ensue. Apart from node modules that
depart from the restriction of avoiding writing during
culling and rendering, the OSG library works well for
many of our applications, especially those that require
medium-size terrain rendering.

Vis5D/Cave5D
In 1988, the Space Science and Engineering Center

at the University of Wisconsin, Madison, released the
Vis5D atmospheric visualization tool.1 In 1994, a VR
port of this open-source application was created for the
CAVE immersive display system.2 This port, named
“Cave5D,” used the latest version of Vis5D available at
that time (version 4.0) and the now commercially avail-
able CAVELib VR integration library.

Our effort began in 2005 by taking the latest version
of Vis5D (version 1.3.0 beta of what is now called
Vis5D+, available from http://sourceforge.net) and
integrating it with the latest immersive version (Cave5D
2.0, dating from the late 1990s). At the same time, we
integrated this version of Cave5D with the FreeVR open-
source VR integration library.

We added an API function to the Vis5D+ core that
provides a means of specifying which data management
functions are to be used in lieu of the standard cal-
loc(), malloc(), and free() functions. This has
eliminated the need to maintain separate versions of the
Vis5D+ code—one for Vis5D+ itself, which uses the
standard data management functions, and another for
Cave5D, which uses shared memory.

The volume visualization technique that Vis5D
previously used was that of layered, axis-aligned,
texture maps rendered from back to front. Those
axis-aligned cross-sections that are most nearly
orthogonal to the line of view are the ones the appli-
cation presented. However, for visualizations in a
CAVE-like display, the chosen planes’ optimal orien-
tation and ordering differs among the screens. This,
in turn, leads to a loss of visual coherence and a high
degree of distraction and confusion. We addressed
this difficulty by dividing the volume into cubes and,
progressing from back to front, rendering the cubes’
front faces. Although the chosen faces and cube
order might differ among the displays, the overall
effect is a consistent family of cubes and maintained
visual coherence (see Figure 1).

1 Visualizing atmospheric aerosols over Los Angeles in Cave5D.

Visualization ToolKit
Another exemplary open-source visualization pack-

age that we use is the VTK visualization toolkit from
Kitware.3 VTK uses the dataflow processing paradigm of
passing information between modular, conceptual com-
ponents in information filtering and visualization. VTK
can be useful for prototyping visualizations through a
desktop interface. The best current solution for render-
ing VTK on immersive displays is through Paul Rajlich’s
VTK-to-Performer translator. However, transferring the
geometric representation from the internal VTK data into
Performer’s data structures has a delay. Plus, there is a
longer term issue of Performer’s future availability.

Ideally, we would like to rely on VTK to do only the
rendering and allow FreeVR to handle windowing, and

so on. Unfortunately, VTK does not currently provide
this option. The rendering in VTK is bound into mod-
ules that open windows and create graphic library con-
texts and also provide the interaction controls. To
integrate well with most VR integration libraries, which
calculate perspective matrices for each window on the
basis of the user’s head position, the most desirous sit-
uation is for VTK to provide the routine that does all the
rendering without modifying the perspective matrix
already on the stack—a vtkRender() routine.
Presently, this does not seem to be a trivial modification
to the VTK API.

GIS reader/writer
Much research at DRI involves the relationship

between physical models and actual real estate—prob-
lems that frequently require Geographic Information
Systems (GIS) tools. Most DRI GIS researchers use the
ESRI suite of tools. CAVCaM must work with data com-
patible with these tools to facilitate collaboration with
these scientists.

Using publicly available information, we wrote an API
to read and write simple layer datafiles, which contain
point, line, and polygonal information (see Figure 2). We
can render these as their native shapes or create a texture
map for draping over Digital Elevation Mapping data.

We wrote our initial interactive GIS reader/writer
application using the basic OpenGL library. This version
works well so long as the terrain covers only a medium-
size region—one in which the texture map for the entire
terrain fits within the hardware rendering card’s mem-
ory. To allow larger spatial coverage, we implemented a
second version of the interactive GIS tool for use with
the OSG library to take advantage of its terrain paging
capabilities.

SpeedTree
For some of our applications, realism is the key ingre-

dient. Because our applications deal primarily with out-
door environments, we sought tools that would render
realistic vegetation. What we found and pursued is the
SpeedTree vegetation rendering library. SpeedTree uses
textures and multiple levels-of-detail methods to rapid-
ly render realistic trees and other vegetation.

SpeedTree is primarily designed as a source of realis-
tic outdoor scenes for large game worlds. SpeedTree is a
commercial product and, therefore, is an exception to our
precept of building on open-source tools. However, our
license does include source code, so although most of the
SpeedTree customers use Microsoft Windows or console
gaming systems, we were able to implement the render-
ing system on the Linux systems that drive our immer-
sive displays. For copyright purposes, we must have an
alternate, lower-quality vegetation graphical representa-
tion to include in general distributions of our work.

Applications
Ultimately, our work aims to produce tools to help our

collaborators evaluate their science or train their per-
sonnel. In early 2005, we began working on projects
with different DRI research groups. In all cases, our soft-
ware development has focused on the previously men-

Projects in VR

90 March/April 2007

2 Immersively interacting with Geographic Information Systems layer
data.

3 A SpeedTree tree with foliage removed and burned away.

IEEE Computer Graphics and Applications 91

tioned tools to help us build a suite of tools that will be
of use not only on these applications but also for our
future projects.

Wildfire simulation
Wildfires are a frequent summer-time concern for

land managers and communities neighboring wild lands
throughout the world. We have been working with the
DRI Program for Climate, Ecosystem, and Fire
Applications to produce a wildfire visualization system
to help better understand wildfires and to benefit train-
ing, prediction, and policy decisions related to wildfire
management.

An important feature for the wildfire visualization is
the vegetation found in the terrain that will be the wild-
fire’s fuel source. Our initial experiments with vegeta-
tion rendering was with simple X-style billboard trees.
However, we wanted to move to a solution that would
look realistic even when located very near to the trees or
brush. For this, we turned to the SpeedTree vegetation
rendering system (see Figure 3). We integrated the
SpeedTree renderer with the OpenSceneGraph and
FreeVR libraries to bring realistic looking trees into the
virtual world. Work remains, however, to increase ren-
dering efficiency and therefore the number of trees that
the application can render in real-time. We have also
begun incorporating realistic-looking fire and smoke
models into the scene.

Atmospheric Visibility Analysis
Atmospheric gaseous and particulate chemicals can

impact visibility significantly. The thrust of our work in
this area is to take the atmospheric chemistry model’s
output data and combine it with visibility transfer func-
tions to accurately portray atmospheric pollution’s
impact on visibility. Atmospheric scientists at DRI have
used the Comprehensive Air-quality Model with exten-
sions (CAMx) to study atmospheric chemicals’ behav-
ior in a number of cases. We reformatted CAMx output
so that it is compatible with Cave5D, which we then use
for the visualizations. Figure 4 shows an example of this
application’s visualization capability.

The Future
As we continue to work on these projects, along with

new projects that we recently selected, we expect to
build up a suite of tools that will be useful for environ-
mental visualization, training, and exploration. Some
of our future application work will include visualizing
sand dunes’ internal structures and immediate forecast-
ing, or nowcasting, with a portable VR system for the
user interface. Our goals for future development include
increasing the realism of world rendering in real-time,
immersive display systems. We are also working toward
interfacing our immersive displays with an existing,
robust, open-source visualization toolkit, such as
SCIRun from the University of Utah or Kitware’s VTK.

Conclusion
The Center for Advanced Visualization, Computation,

and Modeling is a new lab, having brought online a CAVE
immersive display and most of the staff in mid-2005. By

starting with open-source tools and extending them to
meet our needs, we have been able to bring data from
DRI researchers into our CAVE in only a few months.

Our lab is committed to developing open-source tools
that will help expand the community of collaborators
with whom we can work. We look forward to being able
to interface other generic visualization and GIS tools
into our framework to let us quickly view data of many
other researchers at DRI and elsewhere. ■

References
1. W. Hibbard et al., “Exploring Coupled Atmosphere-Ocean

Models Using Vis5D,” Int’l J. Supercomputer Applications,
vol. 10, no. 2, 1996, pp. 211-222.

2. C. Cruz-Neira et al., “The CAVE: Audio Visual Experience
Automatic Virtual Environment,” Comm. ACM, vol. 35, no.
6, 1992, pp. 64-72.

3. W. Schroeder, K. Martin, and B. Lorensen, The Visualiza-
tion Toolkit: An Object-Oriented Approach to 3D Graphics,
3rd ed., Kitware, 2003.

Contact authors William R. Sherman at wsherman@
dri.edu, Simon Su at ssu@dri.edu, Philip A. McDonald
at philipm@dri.edu, Yi Mu at ymu@dri.edu, and Fred-
erick Harris Jr. at fredh@cse.unr.edu.

Contact the department editors at cga-vr@computer.
org.

For further information on this or any other computing
topic, please visit our Digital Library at http://www.
computer.org/publications/dlib.

4 Volume rendering in Vis5D showing visibility.

