
ar
X

iv
:q

-b
io

.N
C

/0
61

10
89

 v
1

 2
8

N
ov

 2
00

6

Simulation of networks of spiking neurons:
A review of tools and strategies

Romain Brette1, Michelle Rudolph2, Ted Carnevale3, Michael Hines3, David Beeman4,
James M. Bower5, Markus Diesmann6,7, Abigail Morrison7, Philip H. Goodman8,

Frederick C. Harris, Jr.8, Milind Zirpe8, Thomas Natschläger9, Dejan Pecevski10, Bard Ermentrout11,
Mikael Djurfeldt12, Anders Lansner12, Olivier Rochel13, Thierry Vieville14, Eilif Muller 15,

Andrew P. Davison2, Sami El Boustani2 and Alain Destexhe2∗.

1: Ecole Normale Supérieure, Paris, France
2: CNRS, Gif-sur-Yvette, France

3: Yale University, New Haven, CT, USA
4: University of Colorado, Boulder, CO, USA
5: University of Texas, San Antonio, TX, USA

6: University of Freiburg, Germany
7: RIKEN Brain Science Institute, Wako City, Japan

8: University of Nevada, Reno NV, USA
9: Software Competence Center Hagenberg, Hagenberg, Austria

10: Technical University of Graz, Austria
11: University of Pittsburgh, Pittsburgh, PA, USA

12: KTH, Sweden
13: University of Leeds, UK

14: INRIA, Nice, France
15: University of Heidelberg, Germany

November 28, 2006

Abstract

We review different aspects of the simulation of spiking neural networks. We start by reviewing the
different types of simulation strategies and algorithms that are currently implemented. We next review the
precision of those simulation strategies, in particular incases where plasticity depends on the exact timing of
the spikes. We overview different simulators and simulation environments presently available (restricted to
those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are
reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally,
we provide a series of benchmark simulations of different types of networks of spiking neurons, includ-
ing Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based
synapses, using clock-driven or event-driven integrationstrategies. The same set of models are implemented
on the different simulators, and the codes are made available. The ultimate goal of this review is to provide
a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given
modeling problem related to spiking neural networks.

∗Address for correspondence: Alain Destexhe, Unité de Neurosciences Intégratives et Computationnelles (UNIC), CNRS (Bat 33),
1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France (destexhe@iaf.cnrs-gif.fr)

1

Introduction

The growing experimental evidence that spike timing may be important to explain neural computations has
motivated the use of spiking neuron models, rather than the traditional rate-based models. At the same time, a
growing number of tools have appeared, allowing the simulation of spiking neural networks. Such tools offer
the user to obtain precise simulations of a given computational paradigm, as well as publishable figures in a
relatively short amount of time. However, the range of computational problems related to spiking neurons is
very large. It requires in some cases to use detailed biophysical representations of the neurons, for example
when intracellular electrophysiological measurements are to be reproduced (e.g., see Destexhe and Sejnowski,
2001). In this case, one uses conductance-based models, such as the Hodgkin and Huxley (1952) type of
models. In other cases, one does not need to realistically capture the spike generating mechanisms, and simpler
models, such as the integrate-and-fire (IF) model are sufficient. IF type models are also very fast to simulate,
and are particularly attractive for large-scale network simulations.

There are two families of algorithms for the simulation of neural networks: synchronous or “clock-driven”
algorithms, in which all neurons are updated simultaneously at every tick of a clock, and asynchronous or
“event-driven” algorithms, in which neurons are updated only when they receive or emit a spike (hybrid strate-
gies also exist). Synchronous algorithms can be easily coded and apply to any model. Because spike times are
typically bound to a discrete time grid, the precision of thesimulation can be an issue. Asynchronous algorithms
have been developed mostly for exact simulation, which is possible for simple models. For very large networks,
the simulation time for both methods scale as the total number of spike transmissions, but each strategy has its
own assets and disadvantages.

In this paper, we start by providing an overview of differentsimulation strategies, and outline to which extent
the temporal precision of spiking events impacts on neuronal dynamics of single as well as small networks of IF
neurons with plastic synapses. Next, we review the currently available simulators or simulation environments,
with an aim to focus only on publically-available and non-commercial tools to simulate networks of spiking
neurons. For each type of simulator, we describe the simulation strategy used, outline the type of models which
are most optimal, as well as provide concrete examples. The ultimate goal of this paper is to provide a resource
to enable the researcher to identify which strategy or simulator to use for a given modeling problem related to
spiking neural networks.

1 Simulation strategies

This discussion is restricted to serial algorithms for brevity. The specific sections of NEST and SPLIT contain
additional information on concepts for parallel computing.

There are two families of algorithms for the simulation of neural networks: synchronous or “clock-driven”
algorithms, in which all neurons are updated simultaneously at every tick of a clock, and asynchronous or
“event-driven” algorithms, in which neurons are updated only when they receive or emit a spike. These two
approaches have some common features that we will first describe by expressing the problem of simulating
neural networks in the formalism of hybrid systems, i.e., differential equations with discrete events (spikes). In
this framework some common strategies for efficient representation and simulation appear.

Since we are going to compare algorithms in terms of computational efficiency, let us first ask ourselves
the following question: how much time can it possibly take for a good algorithm to simulate a large network?
Suppose there areN neurons whose average firing rate isF and average number of synapses isp. If all spike
transmissions are taken into account, then a simulation lasting 1s (biological time) must processN× p×F spike
transmissions. The goal of efficient algorithm design is to reach this minimal number of operations (of course,
up to a constant multiplicative factor). If the simulation is not restricted to spike-mediated interactions, e.g. if
the model includes gap junctions or dendro-dendritic interactions, then the optimal number of operations can
be much larger, but in this review we chose not to address the problem of graded interactions.

2

1.1 A hybrid system formalism

Mathematically, neurons can be described ashybrid systems: the state of a neuron evolves continuously ac-
cording to some biophysical equations, which are typicallydifferential equations (deterministic or stochastic,
ordinary or partial differential equations), and spikes received through the synapses trigger changes in some of
the variables. Thus the dynamics of a neuron can be describedas follows:

dX
dt

= f (X)

X ← gi(X) upon spike from synapse i

whereX is a vector describing the state of the neuron. In theory, taking into account the morphology of the
neuron would lead to partial differential equations; however, in practice, one usually approximates the dendritic
tree by coupled isopotential compartments, which also leads to a differential system with discrete events. Spikes
are emitted when some threshold condition is satisfied, for instanceVm≥ θ for integrate-and-fire models (where
Vm is the membrane potential and would be the first component of vectorX), and/ordVm/dt ≥ θ for Hodgkin-
Huxley type models. This can be summarized by saying that a spike is emitted whenever some conditionX ∈A
is satisfied. For integrate-and-fire models, the membrane potential, which would be the first component ofX,
is reset when a spike is produced. The reset can be integratedinto the hybrid system formalism by considering
for example that outgoing spikes act onX through an additional (virtual) synapse:X← g0(X).

With this formalism, it appears clearly thatspike times need not be stored(except of course if transmission
delays are included), even though it would seem so from more phenomenological formulations. For example,
consider the following integrate-and-fire model (described for example in Gütig and Sompolinsky (2006)):

V(t) = ∑
i

ωi ∑
ti

K(t− ti)+Vrest

whereV(t) is the membrane potential,Vrest is the rest potential,ωi is the synaptic weight of synapsei, ti are
the timings of the spikes coming from synapsei, andK(t− ti) = exp(−(t − ti)/τ)− exp(−(t − ti)/τs) is the
post-synaptic potential (PSP) contributed by each incoming spike. The model can be restated as a two-variables
differential system with discrete events as follows:

τ
dV
dt

= Vrest−V +J

τs
dJ
dt

= −J

J ← J+
τ− τs

τ
wi upon spike from synapse i

Virtually all post-synaptic potentials or currents described in the literature (e.g.α-functions, bi-exponential
functions) can be expressed this way. Several authors have described the transformation from phenomenological
expressions to the hybrid system formalism for synaptic conductances and currents (Destexhe et al, 1994a,
1994b, Rotter and Diesmann, 1999, Giugliano, 2000), short-term synaptic depression (Giugliano et al, 1999),
and spike-timing-dependent plasticity (Song et al, 2000).In many cases, the Spike Response Model (Gerstner
and Kistler, 2002) is also the integral expression of a hybrid system. To derive the differential formulation of
a given post-synaptic current or conductance (PSC), one wayis to see the latter as the impulse response of a
linear time-invariant system (which can be seen as a filter (Janke et al, 1998)) and use transformation tools from
signal processing theory such as the Z-transform (Kohn and Wörgötter, 1998; see also Sanchez, 2001) or the
Laplace transform (the Z-transform is the equivalent of theLaplace transform in the digital time domain, i.e.,
for synchronous algorithms).

1.2 Using linearities for fast synaptic simulation

In general, the number of state variables of a neuron (lengthof vectorX) scales with the number of synapses,
since each synapse has its own dynamics. This fact constitutes a major problem for efficient simulation of

3

neural networks, both in terms of memory consumption and computation time. However, several authors have
observed that all synaptic variables sharing the same linear dynamics can be reduced to a single one (Wilson
and Bower, 1989, Bernard et al, 1994, Lytton, 1996 and Song etal, 2000). For example, the following set of
differential equations, describing an integrate-and-firemodel withn synapses with exponential conductances:

C
dV
dt

= V0−V +∑
i

gi(t)(V−Es)

τs
dg1

dt
= −g1

. . .

τs
dgn

dt
= −gn

gi ← gi +wi upon spike arriving at synapsei

is mathematically equivalent to the following set of two differential equations:

C
dV
dt

= V0−V +g(t)(V−Es)

τs
dg
dt

= −g

g ← g+wi upon spike arriving at synapsei

whereg is the total synaptic conductance. The same reduction applies to synapses with higher dimensional
dynamics, as long as it is linear and the spike-triggered changes (gi ← gi +wi) are additive and do not depend
on the state of the synapse (e.g. the rulegi ← gi + wi ∗ f (gi) would cause a problem). Some models of spike-
timing dependent plasticity (with linear interactions between pairs of spikes) can also be simulated in this way
(see e.g. Abbott and Nelson (2000)). However, some important biophysical models are not linear and thus
cannot benefit from this optimization, in particular NMDA-mediated interactions and saturating synapses.

1.3 Synchronous or “clock-driven” algorithms

In a synchronous or “clock-driven” algorithm (see pseudo-code in figure 1), the state variables of all neurons
(and possibly synapses) are updated at every tick of a clock:X(t)→ X(t + dt). With non-linear differen-
tial equations, one would use an integration method such as Euler or Runge-Kutta (Press et al, 1993) or, for
Hodgkin-Huxley models, implicit methods (Hines, 1984). Neurons with complex morphologies are usually
spatially discretized and modelled as interacting compartments: they are also described mathematically by cou-
pled differential equations, for which dedicated integration methods have been developed (for details see e.g.
the specific section of Neuron in this review). If the differential equations are linear, then the update operation
X(t)→X(t +dt) is also linear, which means updating the state variables amounts simply to multiplyingX by a
matrix: X(t +dt) = AX(t) (Hirsch and Smale, 1974; see also Rotter and Diesmann (1999)for an application to
neural networks), which is very convenient in vector-basedscientific softwares such as Matlab or Scilab. Then,
after updating all variables, the threshold condition is checked for every neuron. Each neuron that satisfies
this condition produces a spike which is transmitted to its target neurons, updating the corresponding variables
(X← gi(X)). For integrate-and-fire models, the membrane potential ofevery spiking neuron is reset.

Computational complexity

The simulation time of such an algorithm consists of two parts: 1) state updates and 2) propagation of spikes.
Assuming the number of state variables for the whole networkscales with the number of neuronsN in the
network (which is the case when the reduction described in section 1.2 applies), the cost of the update phase is
of orderN for each step, so it isO(N/dt) per second of biological time (dt is the duration of the time bin). This
component grows with the complexity of the neuron models andthe precision of the simulation. Every second

4

(biological time), an average ofF×N spikes are produced by the neurons (F is the average firing rate), and each
of these needs to be propagated top target neurons. Thus, the propagation phase consists inF ×N× p spike
propagations per second. These are essentially additions of weightswi to state variables, and thus are simple
operations whose cost does not grow with the complexity of the models. Summing up, the total computational
cost per second of biological time is of order

Update + Propagation

cU ×
N
dt

+ cP×F×N× p (∗)

wherecU is the cost of one update andcP is the cost of one spike propagation; typically,cU is much higher
thancP but this is implementation-dependent. Therefore, for verydense networks, the total is dominated by
the propagation phase and is linear in the number of synapses, which is optimal. However, in practice the first
phase is negligible only when the following condition is met:

cP

cU
×F× p×dt >> 1

For example, the average firing rate in the cortex might be as low asF = 1 Hz (Olshausen and Field, 2005), and
assumingp= 10,000 synapses per neuron anddt = 0.1 ms, we getF× p×dt = 1. In this case, considering that
each operation in the update phase is heavier than in the propagation phase (especially for complex models),
i.e.,cP < cU , the former is likely to dominate the total computational cost. Thus, it appears that even in networks
with realistic connectivity, increases in precision (smaller dt, see section 2) can be detrimental to the efficiency
of the simulation.

Delays

For the sake of simplicity, we ignored transmission delays in the description above. However it is not very
complicated to include them in a synchronous clock-driven algorithm. The straightforward way is to store the
future synaptic events in a circular array. Each element of the array corresponds to a time bin and contains a
list of synaptic events that are scheduled for that time (seee.g. Morrison et al, 2005). For example, if neuroni
sends a spike to neuronj with delayd (in units of the time bindt), then the synaptic event “i→ j” is placed in
the circular array at positionp+d, wherep is the present position. Circularity of the array means the addition
p+d is modular ((p+d) modn, wheren is the size of the array — which corresponds to the largest delay in
the system).

What is the additional computational cost of managing delays? In fact, it is not very high and does not
depend on the duration of the time bin. Since every synaptic event (i→ j) is stored and retrieved exactly once,
the computational cost of managing delays for one second of biological time is

cD×F×N× p

wherecD is the cost of one store and one retrieve operation in the circular array (which is low). In other words,
managing delays increases the cost of the propagation phasein equation(∗) by a small multiplicative factor.

Exact clock-driven simulation

The obvious drawback of clock-driven algorithms as described above is that spike timings are aligned to a
grid (ticks of the clock), thus the simulation is approximate even when the differential equations are computed
exactly. Other specific errors come from the fact that threshold conditions are checked only at the ticks of
the clock, implying that some spikes might be missed (see section 2). However, in principle, it is possible to
simulate a network exactly in a clock-driven fashion when the minimum transmission delay is larger than the
time step. It implies that the precise timing of synaptic events is stored in the circular array (as described in
Morrison et al, 2006). Then within each time bin, synaptic events for each neuron are sorted and processed in

5

the right order, and when the neuron spikes, the exact spike timing is calculated. Neurons can be processed
independently in this way only because the time bin is smaller than the smallest transmission delay (neurons
have no influence on each other within one time bin).

Some sort of clock signals can also be used in general event-driven algorithms without the assumption of a
minimum positive delay. For example, one efficient data structure used in discrete event systems to store events
is a priority queue known as “calendar queue” (Brown, 1988),which is a dynamic circular array of sorted lists.
Each “day” corresponds to a time bin, as in a classical circular array, and each event is placed in the calendar at
the corresponding day; all events on a given day are sorted according to their scheduling time. If the duration
of the day is correctly set, then insertions and extractionsof events take constant time on average. Note that, in
contrast with standard clock-driven simulations, the state variables are not updated at ticks of the clock and the
duration of the days depends neither on the precision of the simulation or on the transmission delays (it is rather
linked to the rate of events) — in fact, the management of the priority queue is separated from the simulation
itself.

Note however that in all these cases, state variables need tobe updated at the time of every incoming spike
rather than at every tick of the clock in order to simulate thenetwork exactly (e.g. simple vector-based updates
X ← AX are not possible), so that the termevent-drivenmay be a better description of these algorithms (the
precise terminology may vary between authors).

Noise in synchronous algorithms

Noise can be introduced in synchronous simulations by essentially two means: 1) adding random external
spikes; 2) simulating a stochastic process.

Suppose a given neuron receivesF random spikes per second, according to a Poisson process. Then the
number of spikes in one time bin follows a Poisson distribution with meanF × dt. Thus one can simulate
random external spike trains by letting each tick of the clock trigger a random number of synaptic updates. If
F×dt is low, the Poisson distribution is almost a Bernouilli distribution (i.e., there is one spike with probability
F × dt). It is straightforward to extend the procedure to inhomogeneous Poisson processes by allowingF to
vary in time. The additional computational cost is proportional toFext×N, whereFext is the average rate of
external synaptic events for each neuron andN is the number of neurons. Note thatFext can be quite large
since it represents the sum of firing rates of all external neurons (for example it would be 10,000 Hz for 10,000
external synapses per neuron with rate 1 Hz).

To simulate a large number of external random spikes, it can be advantageous to simulate directly the
total external synaptic input as a stochastic process, e.g.white or colored noise (Ornstein-Uhlenbeck). Lin-
ear stochastic differential equations are analytically solvable, therefore the updateX(t)→ X(t + dt) can be
calculated exactly with matrix computations (Arnold, 1974) (X(t +dt) is, conditionally toX(t), a normally dis-
tributed random variable whose mean and covariance matrix can be calculated as a function ofX(t)). Nonlinear
stochastic differential equations can be simulated using approximation schemes, e.g. stochastic Runge-Kutta
(Honeycutt, 1992).

1.4 Asynchronous or “event-driven” algorithms

Asynchronous or “event-driven” algorithms are not as widely used as clock-driven ones because they are sig-
nificantly more complex to implement (see pseudo-code in figure 3) and less universal. Their key advantages
are a potential gain in speed due to not calculating many small update steps for a neuron in which no event
arrives and that spike timings are computed exactly (but seebelow for approximate event-driven algorithms);
in particular, spike timings are not aligned to a time grid anymore (which is a source of potential errors, see
section 2).

The problem of simulating dynamical systems with discrete events is a well established research topic in
computer science (Ferscha, 1996; Sloot et al, 1999; Fujimoto, 2000 Zeigler et al, 2000; see also Rochel and
Martinez, 2003 and Mayrhofer et al, 2002), with appropriatedata structures and algorithms already available to
the computational neuroscience community. We start by describing the simple case when synaptic interactions

6

are instantaneous, i.e., when spikes can be produced only attimes of incoming spikes (no latency); then we will
turn to the most general case.

Instantaneous synaptic interactions

In an asynchronous or “event-driven” algorithm, the simulation advances from one event to the next event.
Events can be spikes coming from neurons in the network or external spikes (typically random spikes described
by a Poisson process). For models in which spikes can be produced by a neuron only at times of incoming
spikes, event-driven simulation is relatively easy (see pseudo-code in figure 2). Timed events are stored in a
queue (which is some sort of sorted list). One iteration consists in 1) extracting the next event; 2) updating the
state of the corresponding neuron (i.e., calculating the state according to the differential equation and adding the
synaptic weight) 3) checking if the neuron satisfies the threshold condition, in which case events are inserted in
the queue for each downstream neuron.

In the simple case of identical transmission delays, the data structure for the queue can be just a FIFO queue
(first in, first out), which has fast implementations (Cormenet al, 2001). When the delays take values in a small
discrete set, the easiest way is to use one FIFO queue for eachdelay value, as described in Mattia and Del
Giudice (2000). It is also more efficient to use a separate FIFO queue for handling random external events (see
paragraph about noise below).

In the case of arbitrary delays, one needs a more complex datastructure. In computer science, efficient
data structures to maintain an ordered list of time-stampedevents are grouped under the namepriority queues
(Cormen et al, 2001). The topic of priority queues is dense and well documented; examples are binary heaps,
Fibonacci heaps (Cormen et al, 2001), calendar queues (Brown, 1988, Claverol et al, 2002) or van Emde Boas
trees (van Emde Boas et al, 1976; see also Connolly et al (2003) in which various priority queues are compared).
Using an efficient priority queue is a crucial element of a good event-driven algorithm. It is even more crucial
when synaptic interactions are not instantaneous.

Non-instantaneous synaptic interactions

For models in which spike times do not necessarily occur at times of incoming spikes, event-driven simulation
is more complex. We first describe the basic algorithm with nodelays and no external events (see pseudo-code
in figure 3). One iteration consists in 1) finding which neuronis the next one to spike; 2) updating this neuron;
3) propagating the spike, i.e., updating its target neurons. The general way to do that is to maintain a sorted list
of the future spike timings of all neurons. These spike timings are only provisory since any spike in the network
can modify all future spike timings. However, the spike withlowest timing in the list is certified. Therefore,
the following algorithm for one iteration guarantees the correctness of the simulation (see figure 3): 1) extract
the spike with lowest timing in the list; 2) update the state of the corresponding neuron and recalculate its
future spike timing; 3) update the state of its target neurons; 4) recalculate the future spike timings of the target
neurons.

For the sake of simplicity, we ignored transmission delays in the description above. Including them in an
event-driven algorithm is not as straightforward as in a clock-driven algorithm, but it is a minor complication.
When a spike is produced by a neuron, the future synaptic events are stored in another priority queue in which
the timings of events are non-modifiable. The first phase of the algorithm (extracting the spike with lowest
timing) is replaced by extracting the next event, which can be either a synaptic event or a spike emission. One
can use two separate queues or a single one. External events can be handled in the same way. Although delays
introduce complications in coding event-driven algorithms, they can in fact simplify the management of the
priority queue for outgoing spikes. Indeed, the main difficulty in simulating networks with non-instantaneous
synaptic interactions is that scheduled outgoing spikes can be canceled, postponed or advanced by future incom-
ing spikes. If transmission delays are greater than some positive valueτmin, then all outgoing spikes scheduled
in [t, t + τmin] (t being the present time) are certified. Thus, algorithms can exploit the structure of delays to
speed up the simulation (Lee and Farhat, 2001).

7

Computational complexity

Putting aside the cost of handling external events (which isminor), we can subdivide the computational cost of
handling one outgoing spike as follows (assumingp is the average number of synapses per neuron):

• extracting the event (in case of non-instantaneous synaptic interactions)

• updating the neuron and its targets:p+1 updates;

• insertingp synaptic events in the queue (in case of delays);

• updating the spike times ofp+1 neurons (in case of non-instantaneous synaptic interactions);

• inserting or reschedulingp+1 events in the queue (future spikes for non-instantaneous synaptic interac-
tions).

Since there areF×N spikes per second of biological time, the number of operations is approximately propor-
tional to F ×N× p. The total computational cost per second of biological timecan be written concisely as
follows:

Update + Spike + Queue
(cU + cS + cQ) ×F×N× p

wherecU is the cost of one update of the state variables,cS is the cost of calculating the time of the next spike
(non-instantaneous synaptic interactions) andcQ is the average cost of insertions and extractions in the priority
queue(s). Thus, the simulation time is linear in the number of synapses, which is optimal. Nevertheless, we note
that the operations involved are heavier than in the propagation phase of clock-driven algorithms (see previous
section), therefore the multiplicative factor is likely tobe larger. We have also assumed thatcQ is O(1), i.e., that
the dequeue and enqueue operations can be done in constant average time with the data structure chosen for the
priority queue. In the simple case of instantaneous synaptic interactions and homogeneous delays, one can use
a simple FIFO queue (First In, First Out), in which insertions and extractions are very fast and take constant
time. For the general case, data structures for which dequeue and enqueue operations take constant average
time (O(1)) exist, e.g. calendar queues (Brown, 1988, Claverol et al, 2002), however they are quite complex,
i.e.,cQ is a large constant. In simpler implementations of priorityqueues such as binary heaps, the dequeue and
enqueue operations takeO(logm) operations, wherem is the number of events in the queue. Overall, it appears
that the crucial component in general event-driven algorithms is the queue management.

What models can be simulated in an event-driven fashion?

Event-driven algorithms implicitly assume that we can calculate the state of a neuron at any given time, i.e., we
have an explicit solution of the differential equations (but see below for approximate event-driven simulation).
This would not be the case with e.g. Hodgkin-Huxley models. Besides, when synaptic interactions are not
instantaneous, we also need a function that maps the currentstate of the neuron to the timing of the next spike
(possibly+∞ if there is none).

So far, algorithms have been developed for simple pulse-coupled integrate-and-fire models (Watts, 1994,
Claverol et al, 2002, Delorme and Thorpe, 2003) and more complex ones such as some instances of the Spike
Response Model (Makino, 2003, Marian et al, 2002, Gerstner and Kistler, 2002) (note that the SRM model
can usually be restated in the differential formalism of section 1.1). Recently, Rudolph and Destexhe (2006)
introduced several integrate-and-fire models with synaptic conductances which are suitable for event-driven
simulation. Algorithms were also recently developed by Brette to simulate exactly integrate-and-fire models
with exponential synaptic currents (Brette, 2006a) and conductances (Brette, 2006b), and Tonnelier et al (2006,
submitted) extended this work to the quadratic model (Ermentrout and Kopell, 1986). However, there are
still efforts to be made to design suitable algorithms for more complex models (for example the two-variable
integrate-and-fire models of Izhikevich (2003) and Brette and Gerstner (2005)), or to develop more realistic
models that are suitable for event-driven simulation.

8

Noise in event-driven algorithms

As for synchronous algorithms, there are two ways to introduce noise in a simulation: 1) adding random external
spikes; 2) simulating a stochastic process.

The former case is by far easier in asynchronous algorithms.It simply amounts to adding a queue with
external events, which is usually easy to implement. For example, if external spikes are generated according
to a Poisson process with rateF, the timing of the next event if random variable with exponential distribution
with 1/F . If n neurons receive external spike trains given by independentPoisson processes with rateF , then
the time of the next event is exponentially distributed withmean 1/(nF) and the label of the neuron receiving
this event is picked at random in{1,2, . . . ,n}. Inhomogeneous Poisson processes can be simulated exactlyin a
similar way (Daley and Vere-Jones, 1988). Ifr(t) is the instantaneous rate of the Poisson process and is bounded
by M (r(t) ≤M), then one way to generate a spike train according to this Poisson process in the interval[0,T]
is as follows: generate a spike train in[0,T] according to a homogeneous Poisson process with rateT ∗M; for
each spike at timeti, draw a random numberxi from a uniform distribution in[0,M]; select all spikes such that
xi ≤ r(ti).

Simulating directly a stochastic process in asynchronous algorithms is much harder because even for the
simplest stochastic neuron models, there is no closed analytical formula for the distribution of the time to the
next spike (see e.g. Tuckwell (1988)). It is however possible to use precalculated tables when the dynamical
systems are low dimensional (Reutimann et al, 2003) (i.e., not more than 2 dimensions). Note that simulating
noise in this way introduces provisory events in the same wayas for non-instantaneous synaptic interactions.

Approximate event-driven algorithms

We have described asynchronous algorithms for simulating neural networks exactly. For complex neuron mod-
els of the Hodgkin-Huxley type, Lytton and Hines (2005) havedeveloped an asynchronous simulation algorithm
which consists in using for each neuron an independent time step whose width is reduced when the membrane
potential approaches the action potential threshold.

2 Precision of different simulation strategies

As shown in this paper, a steadily growing number of neural simulation environments does endow computational
neuroscience with tools which, together with the steady improvement of computational hardware, allow to
simulate neural systems with increasing complexity, ranging from detailed biophysical models of single cells
up to large-scale neural networks. Each of these simulationtools pursues the quest for a compromise between
efficiency in speed and memory consumption, flexibility in the type of questions addressable, and precision or
exactness in the numerical treatment of the latter. In all cases, this quest leads to the implementation of a specific
strategy for numerical simulations which is found to be optimal given the set of constraints set by the particular
simulation tool. However, as shown recently (Hansel et al.,1998; Lee and Farhat, 2001; Morrison et al, 2006),
quantitative results and their qualitative interpretation strongly depend on the simulation strategy utilized, and
may vary across available simulation tools or for differentsettings within the same simulator. The specificity
of neuronal simulations is that spikes induce either a discontinuity in the dynamics (integrate-and-fire models)
or have very fast dynamics (Hodgkin-Huxley type models). When using approximation methods, this problem
can be tackled by spike timing interpolation in the former case (Hansel et al., 1998; Shelley and Tao, 2001)
or integration with adaptive time step in the latter case (Lytton and Hines, 2005). Specifically in networks of
integrate-and-fire neurons, which to date remain almost exclusively the basis for accessing dynamics of large-
scale neural populations (but see Section 3.7), crucial differences in the appearance of synchronous activity
patterns were observed, depending on the temporal resolution of the neural simulator or the integration method
used.

In this section we address this question using one of the mostsimple analytically solvable LIF neuron

9

model, namely the classic leaky integrate-and-fire neuron,described by the state equation

τm
dm(t)

dt
+m(t) = 0, (1)

whereτm = 20 ms denotes the membrane time constant and 0≤ m(t) ≤ 1. Upon arrival of a synaptic event
at timet0, m(t) is updated by a constant∆m =0.1 (∆m = 0.0085 in network simulations) after which it decays
according to

m(t) = m(t0)exp[−
t− t0

τm
] . (2)

If mexceeds a thresholdmthres= 1, the neuron fires and is afterwards reset to a resting statemrest = 0 in which it
stays for an absolute refractory periodtre f = 1 ms. The neurons were subject to non-plastic or plastic synaptic
interactions. In the latter case, spike timing dependent synaptic plasticity was used according to a model by
Song and Abbott (2001). In this case, upon arrival of a synaptic input at timetpre, synaptic weights are changed
according to

g← g+F(∆t)gmax, (3)

where
F(∆t) =±A± exp{±∆t/τ±} (4)

for ∆t = tpre− tpost < 0 and∆t ≥ 0, respectively. Here,tpost denotes the time of the nearest postsynaptic spike,
A± quantify the maximal change of synaptic efficacy, andτ± determine the range of pre- to postsynaptic spike
intervals in which synaptic weight changes occur. Comparing simulation strategies at the both ends of a wide
spectrum, namely a clock-driven algorithm (see Section 1.3) and event-driven algorithm (see Section 1.4), we
evaluate to which extent the temporal precision of spiking events impacts on neuronal dynamics of single as
well as small networks. These results support the argument that the speed of neuronal simulations should not
be the sole criteria for evaluation of simulation tools, butmust complement an evaluation of their exactness.

2.1 Neuronal systems without STDP

In the case of a single LIF neuron with non-plastic synapses subject to a frozen synaptic input pattern drawn
from a Poisson distribution with rateνinp = 250 Hz, differences in the discharge behavior seen in clock-driven
simulations at different resolutions (0.1 ms, 0.01 ms, 0.001 ms) and event-driven simulations occurred already
after short periods of simulated neural activity (Fig. 4A).These deviations were caused by subtle differences in
the subthreshold integration of synaptic input events due to temporal binning, and “decayed” with a constant
which depended on the membrane time constant. However, for astrong synaptic drive, subthreshold deviations
could accumulate and lead to marked delays in spike times, cancellation of spikes or occurrence of additional
spikes.

Although differences at the single cell level remained widely constrained and did not lead to changes in
the statistical characterization of the discharge activity when long periods of neural activity were considered,
already small differences in spike times of individual neurons can lead to crucial differences in the population
activity, such as synchronization (see Hansel et al., 1998;Lee and Farhat, 2001), if neural networks are con-
cerned. We investigated this possibility using a small network of 15×15 LIF neurons with all-to-all excitatory
connectivity with fixed weights and not distance-dependentsynaptic transmission delay (0.2 ms), driven by a
fixed pattern of superthreshold random synaptic inputs to each neuron (average rate 250 Hz; weight∆m= 0.1).
In such a small network, the activity remained primarily driven by the external inputs, i.e. the influence of in-
trinsic connectivity is small. However, due to small differences in spike times due to temporal binning could had
severe effects on the occurrence of synchronous network events where all (or most) cells discharge at the same
time. Such events could be delayed, canceled or generated depending on the simulation strategy or temporal
resolution utilized (Fig. 4B).

10

2.2 Neuronal systems with STDP

The above described differences in the behavior of neural systems simulated by using different simulation
strategies remain constrained to the observed neuronal dynamics and are minor if some statistical measures,
such as average firing rates, are considered. More severe effects can be expected if biophysical mechanism
which depend on the exact times of spikes are incorporated into the neural model. One of these mechanism is
short-term synaptic plasticity, in particular spike-timing dependent synaptic plasticity (STDP). In this case, the
self-organizing capability of the neural system considered will yield different paths along which the systems
will develop, and, thus, possibly lead to a neural behavior which not only quantitatively but also qualitatively
may differ across various tools utilized for the numerical simulation.

To explain why such small differences in the exact timing of events are crucial if models with STDP are
considered, consider a situation in which multiple synaptic input events arrive in between two state updates att
andt +dt in a clock-driven simulation. In the latter case, the times of these events are assigned to the end of the
interval (Fig. 5A). In the case these inputs drive the cell over firing threshold, the synaptic weights of all three
synaptic input channels will be facilitated by the same amount according to the used STDP model. In contrast,
if exact times are considered, the same input pattern could cause a discharge already after only two synaptic
inputs. In this case the synaptic weights liked to these inputs will be facilitated, whereas the weight of the input
arriving after the discharge will be depressed.

Although the chance for the occurrence of situations such asthose described above may appear small,
already one instance will push the considered neural systemonto a different path in its self-organization. The
latter may lead to systems whose qualitative behavior may, after some time, markedly vary from a system
with the same initial state but simulated by another, temporally more or less precise simulation strategy. Such a
scenario was investigated by using a single LIF neuron (τm = 4.424 ms) with 1,000 plastic synapses (A+ = 0.005,
A−/A+ = 1.05,τ+ = 20 ms,τ− = 20 ms,gmax = 0.4) driven by the same pattern of Poisson-distributed random
inputs (average rate 5 Hz,∆m =0.1). Simulating only 1,000 s neural activity led to markeddifferences in
the temporal development of the average rate between clock-driven simulations with a temporal resolution of
0.1 ms and event-driven simulations (Fig. 5B). Consideringthe average firing rate over the whole simulated
window, clock-driven simulations led to an about 10 % highervalue compared to the event-driven approach,
and approached the value observed in event-driven simulations only when the temporal resolution was increased
by two orders of magnitude. Moreover, different simulationstrategies and temporal resolutions led also to a
significant difference in the synaptic weight distributionat different times (Fig. 5C).

Both findings show that the small differences in the precision of synaptic events can have a severe impact
even on statistically very robust measures, such as averagerate or weight distribution. Considering the temporal
development of individual synaptic weights, both depression and facilitation were observed depending on the
temporal precision of the numerical simulation Indeed, thelatter could have severe impact on the qualitative
interpretation of the temporal dynamics of structured networks, as this result suggests that synaptic connections
in otherwise identical models can be strengthened or weakened due to the influence of the utilized simulation
strategy or simulation parameters.

In conclusion, the results presented in this section suggest that the strategy and temporal precision used
for neural simulations can severely alter simulated neuraldynamics. Although dependent on the neural system
modeled, observed differences may turn out to be crucial forthe qualitative interpretation of the result of nu-
merical simulations, in particular in simulations involving biophysical processes depending on the exact order
or time of spike events (e.g. as in STDP). Thus, the search foran optimal neural simulation tool or strategy
for the numerical solution of a given problem should be guided not only by its absolute speed and memory
consumption, but also its numerical exactness.

11

3 Overview of simulation environments

3.1 NEURON

3.1.1 NEURON’s domain of utility

NEURON is a simulation environment for creating and using empirically-based models of biological neurons
and neural circuits. Initially it earned a reputation for being well-suited for conductance-based models of cells
with complex branched anatomy, including extracellular potential near the membrane, and biophysical prop-
erties such as multiple channel types, inhomogeneous channel distribution, ionic accumulation and diffusion,
and second messengers. In the early 1990s, NEURON was already being used in some laboratories for network
models with many of thousands of cells, and over the past decade it has undergone many enhancements that
make the construction and simulation of large-scale network models easier and more efficient.

To date, more than 600 papers and books have described NEURONmodels that range from a membrane
patch to large scale networks with tens of thousands of conductance-based or artificial spiking cells1. In 2005,
over 50 papers were published on topics such as mechanisms underlying synaptic transmission and plastic-
ity (Banitt et al. 2005), modulation of synaptic integration by subthreshold active currents (Prescott and De
Koninck 2005), dendritic excitability (Day et al. 2005), the role of gap junctions in networks (Migliore et al.
2005), effects of synaptic plasticity on the development and operation of biological networks (Saghatelyan et al.
2005), neuronal gain (Azouz 2005), the consequences of synaptic and channel noise for information processing
in neurons and networks (Badoual et al. 2005), cellular and network mechanisms of temporal coding and recog-
nition (Kanold and Manis 2005), network states and oscillations (Wolf et al. 2005), effects of aging on neuronal
function (Markaki et al. 2005), cortical recording (Moffittand McIntyre 2005), deep brain stimulation (Grill et
al. 2005), and epilepsy resulting from channel mutations (Vitko et al. 2005) and brain trauma (Houweling et al.
2005).

3.1.2 How NEURON differs from other neurosimulators

The chief rationale for domain-specific simulators over general purpose tools lies in the promise of improved
conceptual control, and the possibility of exploiting the structure of model equations for the sake of com-
putational robustness, accuracy, and efficiency. Some of the key differences between NEURON and other
neurosimulators are embodied in the way that they approach these goals.

Conceptual control
The cycle of hypothesis formulation, testing, and revision, which lies at the core of all scientific research,

presupposes that one can infer the consequences of a hypothesis. The principal motivation for computational
modeling is its utility for dealing with hypotheses whose consequences cannot be determined by unaided intu-
ition or analytical approaches. The value of any model as a means for evaluating a particular hypothesis depends
critically on the existence of a close match between model and hypothesis. Without such a match, simulation
results cannot be a fair test of the hypothesis. From the user’s viewpoint, the first barrier to computational mod-
eling is the difficulty of achieving conceptual control, i.e. making sure that a computational model faithfully
reflects one’s hypothesis.

NEURON has several features that facilitate conceptual control, and it is acquiring more of them as it
evolves to meet the changing needs of computational neuroscientists. Many of these features fall into the gen-
eral category of ”native syntax” specification of model properties: that is, key attributes of biological neurons
and networks have direct counterparts in NEURON. For instance, NEURON users specify the gating properties
of voltage- and ligand-gated ion channels with kinetic schemes or families of Hodgkin-Huxley style differential
equations. Another example is that models may include electronic circuits constructed with the LinearCircuit-
Builder, a GUI tool whose palette includes resistors, capacitors, voltage and current sources, and operational
amplifiers. NEURON’s most striking application of native syntax may lie in how it handles the cable prop-
erties of neurons, which is very different from any other neurosimulator. NEURON users never have to deal

1http://www.neuron.yale.edu/neuron/bib/usednrn.html

12

directly with compartments. Instead, cells are represented by unbranched neurites, called sections, which can
be assembled into branched architectures (the topology of amodel cell). Each section has its own anatomi-
cal and biophysical properties, plus a discretization parameter that specifies the local resolution of the spatial
grid. The properties of a section can vary continuously along its length, and spatially inhomogeneous variables
are accessed in terms of normalized distance along each section ((Hines and Carnevale 2001), chapter 5 in
(Carnevale and Hines 2006)). Once the user has specified celltopology, and the geometry, biophysical proper-
ties, and discretization parameter for each section, NEURON automatically sets up the internal data structures
that correspond to a family of ODEs for the model’s discretized cable equation.

Computational robustness, accuracy, and efficiency
NEURON’s spatial discretization of conductance-based model neurons uses a central difference approxi-

mation that is second order correct in space. The discretization parameter for each section can be specified by
the user, or assigned automatically according to the dlambda rule (see (Hines and Carnevale 2001), chapters 4
and 5 in (Carnevale and Hines 2006)).

For efficiency, NEURON’s computational engine uses algorithms that are tailored to the model system
equations (Hines 1984, 1989; Hines and Carnevale 2004). To advance simulations in time, users have a choice
of built-in clock driven (fixed step backward Euler and Crank-Nicholson) and event driven methods (global
variable step and local variable step with second order threshold detection); the latter are based on CVODES
and IDA from SUNDIALS (Hindmarsh et al. 2005). Networks of artificial spiking cells are solved analytically
by a discrete event method that is several orders of magnitude faster than continuous system simulation (Hines
and Carnevale 2004). NEURON fully supports hybrid simulations, and models can contain any combination of
conductance-based neurons and analytically computable artificial spiking cells. Simulations of networks that
contain conductance-based neurons are second order correct if adaptive integration is used (Lytton and Hines
2005).

Synapse and artificial cell models accept discrete events with input stream specific state information. It is
often extremely useful for artificial cell models to send events to themselves in order to implement refractory
periods and intrinsic firing properties; the delivery time of these ”self events” can also be adjusted in response
to intervening events. Thus instantaneous and non-instantaneous interactions of section 1.4 are supported.

Built-in synapses exploit the methods described in section1.2. Arbitrary delay between generation of an
event at its source, and delivery to the target (including 0 delay events), is supported by a splay-tree queue
(Sleator and Tarjan 1983) which can be replaced at configuration time by a calendar queue. If the minimum
delay between cells is greater than 0, self events do not use the queue and parallel network simulations are
supported. For the fixed step method, when queue handling is the rate limiting step, a bin queue can be selected.
For the fixed step method with parallel simulations, when spike exchange is the rate limiting step, six-fold spike
compression can be selected.

3.1.3 Creating and using models with NEURON

Models can be created by writing programs in an interpreted language based on hoc (Kernighan and Pike
1984), which has been enhanced to simplify the task of representing the properties of biological neurons and
networks. Users can extend NEURON by writing new function and biophysical mechanism specifications in
the NMODL language, which is then compiled and dynamically linked ((Hines and Carnevale 2000), chapter 9
in (Carnevale and Hines 2006). There is also a powerful GUI for conveniently building and using models; this
can be combined with hoc programming to exploit the strengths of both (Fig. 6).

The past decade has seen many enhancements to NEURON’s capabilities for network modeling. First
and most important was the addition of an event delivery system that substantially reduces the computational
burden of simulating spike-triggered synaptic transmission, and enabled the creation of analytic integrate-and-
fire cell models which can be used in any combination with conductance-based cells. Just in the past year the
event delivery system was extended so that NEURON can now simulate models of networks and cells that are
distributed over parallel hardware (see NEURON in a parallel environment below).

The GUI

13

The GUI contains a large number of tools that can be used to construct models, exercise simulations, and
analyze results, so that no knowledge of programming is necessary for the productive use of NEURON. In ad-
dition, many GUI tools provide functionality that would be quite difficult for users to replicate by writing their
own code. Some examples are:

Model specification tools

• Channel Builder–specifies voltage- and ligand-gated ion channels in terms of ODEs (HH-style, including
Borg-Graham formulation) and/or kinetic schemes. Channelstates and total conductance can be sim-
ulated as deterministic (continuous in time), or stochastic (countably many channels with independent
state transitions, producing abrupt conductance changes).

• Cell Builder–manages anatomical and biophysical properties of model cells.

• Network Builder–prototypes small networks that can be mined for reusable code to develop large-scale
networks (chapter 11 in (Carnevale and Hines 2006)).

• Linear Circuit Builder–specifies models involving gap junctions, ephaptic interactions, dual-electrode
voltage clamps, dynamic clamps, and other combinations of neurons and electrical circuit elements.

Model analysis tools

• Import3D–converts detailed morphometric data (Eutectic,Neurolucida, and SWC formats) into model
cells. It automatically fixes many common errors, and helps users identify complex problems that require
judgment.

• Model View–automatically discovers and presents a summaryof model properties in a browsable textual
and graphical form. This aids code development and maintenance, and is increasingly important as code
sharing grows.

• Impedance–compute and display voltage transfer ratios, input and transfer impedance, and the electro-
tonic transformation.

Simulation control tools

• Variable Step Control–automatically adjusts the state variable error tolerances that regulate adaptive in-
tegration.

• Multiple Run Fitter–optimizes function and model parameters.

3.1.4 NEURON in a parallel environment

NEURON supports three kinds of parallel processing.
1.Multiple simulations distributed over multiple processors, each processor executing its own simulation.

Communication between master processor and workers uses a bulletin-board method similar to Linda (Carriero
and Gelernter 1989).

2.Distributed network models with gap junctions.
3.Distributed models of individual cells (each processor handles part of the cell). At present, setting up

distributed models of individual cells requires considerable effort; in the future it will be made much more
convenient.

The four benchmark simulations of spiking neural networks (see Appendix 2) were implemented under
NEURON. Figure 7A demonstrates the speedup that NEURON can achieve with distributed network models
of the four types (conductance-based, current-based, Hodgkin-Huxley, event-based – see Appendix 2) on a

14

Beowulf cluster (dashed lines are ”ideal”–run time inversely proportional to number of CPUs–and solid symbols
are actual run times). Figure 7B shows that performance improvement scales with the number of processors and
the size and complexity of the network; for this figure we ran aseries of tests using a NEURON implementation
of the single column thalamocortical network model described by Traub et al. (2005) on the Cray XT3 at the
Pittsburgh Supercomputer Center. Similar performance gain has been documented in extensive tests on parallel
hardware with dozens to thousands of CPUs, using published models of networks of conductance based neurons
(Migliore et al., 2006). Speedup is linear with the number ofCPUs, or even superlinear (due to larger effective
high speed memory cache), until there are so many CPUs that each one is solving fewer than 100 equations.

3.1.5 Future plans

NEURON undergoes a continuous cycle of improvement and revision, much of which is devoted to aspects of
the program that are not immediately obvious to the user, e.g. improvement of computational efficiency. More
noticeable are new GUI tools, such as the recently added Channel Builder. Many of these tools exemplify a
trend toward ”form-based” model specification, which is expected to continue. The use of form-based GUI tools
increases the ability to exchange model specifications withother simulators through the medium of XML. With
regard to network modeling, the emphasis will shift away from developing simulation infrastructure, which is
reasonably complete, to the creation of new tools for network design and analysis.

3.1.6 Software development, support, and documentation

Michael Hines directs the NEURON project, and is responsible for almost all code development. The other
members of the development team have varying degrees of responsibility for activities such as documentation,
courses, and user support. NEURON has benefited from significant contributions of time and effort by members
of the community of NEURON users who have worked on specific algorithms, written or tested new code, etc..
Since 2003, user contributions have been facilitated by adoption of an ”open source development model” so
that source code, including the latest research threads, can be accessed from an on-line repository2.

Support is available by email, telephone, and consultation. Users can also post questions and share informa-
tion with other members of the NEURON community via a mailinglist and The NEURON Forum3. Currently
the mailing list has more than 700 subscribers with ”live” email addresses; the Forum, which was launched in
May, 2005, has already grown to 300 registered users and 1700posted messages.

Tutorials and reference material are available4. The NEURON Book (Carnevale and Hines 2006) is the
authoritative book on NEURON. Four books by other authors have made extensive use of NEURON (Destexhe
and Sejnowski 2001; Johnston and Wu 1995; Lytton 2002; Mooreand Stuart 2000), and several of them have
posted their code online or provide it on CD with the book.

Source code for published NEURON models is available at manyWWW sites. The largest code archive is
ModelDB5, which currently contains 238 models, 152 of which were implemented with NEURON.

3.1.7 Software availability

NEURON runs under UNIX/Linux/OS X, MSWin 98 or later, and on parallel hardware including Beowulf
clusters, the IBM Blue Gene and Cray XT3. NEURON source code and installers are provided free of charge6,
and the installers do not require ”third party” software. The current standard distribution is version 5.9.39. The
alpha version can be used as a simulator/controller in dynamic clamp experiments under real-time Linux7 with
a National Instruments M series DAQ card.

2http://www.neuron.yale.edu/neuron/install.html
3https://www.neuron.yale.edu/phpBB2/index.php
4http://www.neuron.yale.edu/neuron/docs/docs.html
5http://senselab.med.yale.edu/senselab/ModelDB
6http://www.neuron.yale.edu
7http://rtai.org

15

3.2 GENESIS

3.2.1 GENESIS Capabilities and Design Philosophy

GENESIS (the GEneral NEural SImulation System) was given its name because it was designed, at the outset,
be an extensible general simulation system for the realistic modeling of neural and biological systems (Bower
and Beeman, 1998). Typical simulations that have been performed with GENESIS range from subcellular
components and biochemical reactions (Bhalla, 2004) to complex models of single neurons (De Schutter and
Bower, 1994), simulations of large networks (Nenadic et al., 2003), and systems-level models (Stricanne and
Bower, 1998). Here, ”realistic models” are defined as those models that are based on the known anatomical and
physiological organization of neurons, circuits and networks (Bower, 1995). For example, realistic cell models
typically include dendritic morphology and a large varietyof ionic conductances, whereas realistic network
models attempt to duplicate known axonal projection patterns.

Parallel GENESIS (PGENESIS) is an extension to GENESIS thatruns on almost any parallel cluster, SMP,
supercomputer, or network of workstations where MPI and/orPVM is supported, and on which serial GENESIS
itself is runnable. It is customarily used for large networksimulations involving tens of thousands of realistic
cell models (for example, see Hereld et al., 2005).

GENESIS has a well-documented process for users themselvesto extend its capabilities by adding new
user-defined GENESIS object types (classes), or script language commands without the need to understand or
modify the GENESIS simulator code. GENESIS comes already equipped with mechanisms to easily create
large scale network models made from single neuron models that have been implemented with GENESIS.

While users have added, for example, the Izhikevich (2003) simplified spiking neuron model (now built in
to GENESIS), and they could also add IF or other forms of abstract neuron models, these forms of neurons are
not realistic enough for the interests of most GENESIS modelers. For this reason, GENESIS is not normally
provided with IF model neurons, and no GENESIS implementations have been provided for the IF model
benchmarks (see Appendix 2). Typical GENESIS neurons are multicompartmental models with a variety of
Hodgkin-Huxley type voltage- and/or calcium-dependent conductances.

3.2.2 Modeling with GENESIS

GENESIS is an object-oriented simulation system, in which asimulation is constructed of basic building blocks
(GENESIS elements). These elements communicate by passingmessages to each other, and each contains the
knowledge of its own variables (fields) and the methods (actions) used to perform its calculations or other duties
during a simulation. GENESIS elements are created as instantiations of a particular precompiled object type that
acts as a template. Model neurons are constructed from thesebasic components, such as neural compartments
and variable conductance ion channels, linked with messages. Neurons may be linked together with synaptic
connections to form neural circuits and networks. This object-oriented approach is central to the generality
and flexibility of the system, as it allows modelers to easilyexchange and reuse models or model components.
Many GENESIS users base their simulation scripts on the examples that are provided with GENESIS or in the
GENESIS Neural Modeling Tutorials package (Beeman, 2005).

GENESIS uses an interpreter and a high-level simulation language to construct neurons and their networks.
This use of an interpreter with pre-compiled object types, rather than a separate step to compile scripts into
binary machine code, gives the advantage of allowing the user to interact with and modify a simulation while it
is running, with no sacrifice in simulation speed. Commands may be issued either interactively to a command
prompt, by use of simulation scripts, or through the graphical interface. The 268 scripting language commands
and the 125 object types provided with GENESIS are powerful enough that only a few lines of script are needed
to specify a sophisticated simulation. For example, the GENESIS “cell reader” allows one to build complex
model neurons by reading their specifications from a data file.

GENESIS provides a variety of mechanisms to model calcium diffusion and calcium-dependent conduc-
tances, as well as synaptic plasticity. There are also a number of “device objects” that may be interfaced to a
simulation to provide various types of input to the simulation (pulse and spike generators, voltage clamp cir-

16

cuitry, etc.) or measurements (peristimulus and interspike interval histograms, spike frequency measurements,
auto- and cross-correlation histograms, etc.). Object types are also provided for the modeling of biochemical
pathways (Bhalla and Iyengar, 1999). A list and descriptionof the GENESIS object types, with links to full doc-
umentation, may be found in theObjectssection of the hypertext GENESIS Reference Manual, downloadable
or viewable from the GENESIS web site.

3.2.3 GENESIS Graphical User Interfaces

Very large scale simulations are often run with no GUI, with the simulation output to either text or binary format
files for later analysis. However, GENESIS is usually compiled to include its graphical interface XODUS,
which provides object types and script-level commands for building elaborate graphical interfaces, such as the
one shown in Fig. 8 for the dual exponential variation of the HH benchmark simulation (Benchmark 3 in
Appendix 2). GENESIS also contains graphical environmentsfor building and running simulations with no
scripting, such as Neurokit (for single cells) and Kinetikit (for modeling biochemical reactions). These are
themselves created as GENESIS scripts, and can be extended or modified. This allows for the creation of the
many educational tutorials that are included with the GENESIS distribution (Bower and Beeman, 1998).

3.2.4 Obtaining GENESIS and User Support

GENESIS and its graphical front-end XODUS are written in C and are known to run under most Linux or
UNIX-based systems with the X Window System, as well as Mac OS/X and MS Windows with the Cygwin
environment. The current release of GENESIS and PGENESIS (ver. 2.3, March 17, 2006) is available from the
GENESIS web site8 under the GNU General Public License. The GENESIS source distribution contains full
source code and documentation, as well as a large number of tutorial and example simulations. Documentation
for these tutorials is included along with online GENESIS help files and the hypertext GENESIS Reference
Manual. In addition to the source distribution, precompiled binary versions are available for Linux, Mac OS/X,
and Windows with Cygwin. The GENESIS Neural Modeling Tutorials (Beeman, 2005) are a set of HTML
tutorials intended to teach the process of constructing biologically realistic neural models with the GENESIS
simulator, through the analysis and modification of provided example simulation scripts. The latest version of
this package is offered as a separate download from the GENESIS web site.

Support for GENESIS is provided through email togenesis@genesis-sim.org, and through the GEN-
ESIS Users Group, BABEL. Members of BABEL receive announcements and exchange information through
a mailing list, and are entitled to access the BABEL web page.This serves as a repository for the latest con-
tributions by GENESIS users and developers, and contains hypertext archives of postings from the mailing
list.

Rallpacks are a set of benchmarks for evaluating the speed and accuracy of neuronal simulators for the
construction of single cell models (Bhalla, et al., 1992). However, it does not provide benchmarks for network
models. The package contains scripts for both GENESIS and NEURON, as well as full specifications for
implementation on other simulators. It is included within the GENESIS distribution, and is also available for
download from the GENESIS web site.

3.2.5 GENESIS Implementation of the HH Benchmark

The HH benchmark network model (Benchmark 3 in Appendix 2) provides a good example of the type of model
that should probably NOT be implemented with GENESIS. The Vogels and Abbott (2005) integrate-and-fire
network on which it is based is an abstract model designed to study the propagation of signals under very
simplified conditions. The identical excitatory and inhibitory neurons have no physical location in space, and
no distance-dependent axonal propagation delays in the connections. The benchmark model simply replaces
the IF neurons with single-compartment cells containing fast sodium and delayed rectifier potassium channels

8http://www.genesis-sim.org/GENESIS

17

that fire tonically and display no spike frequency adaptation. Such models offer no advantages over IF cells for
the study of the situation explored by Vogels and Abbott.

Nevertheless, it is a simple matter to implement such a modelin GENESIS, using a simplification of existing
example scripts for large network models, and the performance penalty for “using a sledge hammer to crack a
peanut” is not too large for a network of this size. The simulation script for this benchmark illustrates the power
of the GENESIS scripting commands for creating networks. Three basic commands are used for filling a region
with copies of prototype cells, making synaptic connections with a great deal of control over the connectivity,
and setting propagation delays.

The instantaneous rise in the synaptic conductances makes this a very efficient model to implement with
a simulator specialized for IF networks, but such a non-biological conductance is not normally provided by
GENESIS. Therefore, two implementations of the benchmark have been provided. The Dual Exponential VA
HH Model script implements synaptic conductances with a dual exponential form having a 2 msec time-to-
peak, and the specified exponential decay times of 5 msec for excitatory connections and 10 msec for inhibitory
connections. The Instantaneous Conductance VA HH Model script uses a user-addedisynchanobject type that
can be compiled and linked into GENESIS to provide the the specified conductances with an instantaneous rise
time. There is little difference in the behavior of the two versions of the simulation, although the Instantaneous
Conductance model executes somewhat faster.

Figure 8 shows the implementation of the Dual Exponential VAHH Model with a GUI that was created by
making small changes to the exampleRSnet.g, protodefs.g, andgraphics.gscripts, which are provided in the
GENESIS Modeling Tutorial (Beeman, 2005) sectionCreating Large Networks with GENESIS.

These scripts and the tutorial specify a rectangular grid ofexcitatory neurons. An exercise suggests adding
an additional layer of inhibitory neurons. The GENESIS implementations of the HH benchmark use a layer
of 64×50 excitatory neurons and a layer of 32×25 inhibitory neurons. A change of one line in the example
RSnet.gscript allows the change from the nearest-neighbor connectivity of the model to the required infinite-
range connectivity with 2% probability.

The identical excitatory and inhibitory neurons used in thenetwork are implemented as specified in App. 2.
For both versions of the model, Poisson-distributed randomspike inputs with a mean frequency of 70 Hz were
applied to the excitatory synapses of the all excitatory neurons. The the simulation was run for 0.05 sec, the
random input was removed, and it was then run for an additional 4.95 sec.

The Control Panel at the left is used to run the simulation andto set parameters such as maximal synaptic
conductances, synaptic weight scaling, and propagation delays. There are options to provide current injection
pulses, as well as random synaptic activation. The plots in the middle show the membrane potentials of three
excitatory neurons (0, 1536, and 1567), and inhibitory neuron 0. The netview displays at the right show the
membrane potentials of the excitatory neurons (top) and inhibitory neurons (bottom). With no propagation
delays, the positions of the neurons on the grid are irrelevant. Nevertheless, this two-dimensional representation
of the network layers makes it easy to visualize the number ofcells firing at any time during the simulation.

Figure 9 shows the plots for the membrane potential of the same neurons as those displayed in Fig. 8, but
produced by the Instantaneous Conductance VA HH Model script. The plot at the right shows a zoom of the
interval between 3.2 and 3.4 sec.

In both figures, excitatory neuron 1536 has the lowest ratio of excitatory to inhibitory inputs of the four neu-
rons plotted. It fires only rarely, whereas excitatory neuron 0, which has the highest ratio, fires most frequently.

3.2.6 Future Plans for GENESIS

The GENESIS simulator is now undergoing a major redevelopment effort, which will result in GENESIS 3. The
core simulator functionality is being reimplemented in C++using an improved scheme for messaging between
GENESIS objects, and with a platform-independent and browser-friendly Java-based GUI. This will result in
not only improved performance and portability to MS Windowsand non-UNIX platforms, but will also allow
the use of alternate script parsers and user interfaces, as well as the ability to communicate with other modeling
programs and environments. The GENESIS development team isparticipating in the NeuroML (Goddard et

18

al., 2001; Crook et al., 2005) project9, along with the developers of NEURON. This will enable GENESIS 3 to
export and import model descriptions in a common simulator-independent XML format. Development versions
of GENESIS are available from the Sourceforge GENESIS development site10.

9http://www.neuroml.org
10http://sourceforge.net/projects/genesis-sim

19

3.3 NEST

3.3.1 The NEST initiative

The problem of simulating neuronal networks of biologically realistic size and complexity has long been un-
derestimated. This is reflected in the limited number of publications on suitable algorithms and data structures
in high-level journals. The lack of awareness of researchers and funding agencies of the need for progress in
simulation technology and sustainability of the investments may partially originate from the fact that a mathe-
matically correct simulator for a particular neuronal network model can be implemented by an individual in a
few days. However, this has routinely resulted in a cycle of unscalable and unmaintainable code being rewritten
in unmaintainable fashion by novices, with little progressin the theoretical foundations.

Due to the increased availability of computational resources, simulation studies are becoming ever more
ambitious and popular. Indeed, many neuroscientific questions are presently only accessible through simulation.
An unfortunate consequence of this trend is that it is becoming ever harder to reproduce and verify the results
of these studies. The ad hoc simulation tools of the past cannot provide us with the appropriate degree of
comprehensibility. Instead we require carefully crafted,validated, documented and expressive neuronal network
simulators with a wide user community. Moreover, the current progress towards more realistic models demands
correspondingly more efficient simulations. This holds especially for the nascent field of studies on large-scale
network models incorporating plasticity. This research isentirely infeasible without parallel simulators with
excellent scaling properties, which is outside the scope ofad hoc solutions. Finally, to be useful to a wide
scientific audience over a long time, simulators must be easyto maintain and to extend.

On the basis of these considerations, the NEST initiative was founded as a long term collaborative project
to support the development of technology for neural systemssimulations (Diesmann et al., 2002). The NEST
simulation tool is the reference implementation of this initiative. The software is provided to the scientific com-
munity under an open source license through the NEST initiative’s website11. The license requests researchers
to give reference to the initiative in work derived from the original code and, more importantly, in scientific re-
sults obtained with the software. The website also providesreferences to material relevant to neuronal network
simulations in general and is meant to become a scientific resource of network simulation information. Support
is provided through the NEST website and a mailing list. At present NEST is used in teaching at international
summer schools and in regular courses at the University of Freiburg.

3.3.2 The NEST simulation tool

In the following we give a brief overview of the NEST simulation tool and its capabilities.
Domain and design goals
The domain of NEST is large neuronal networks with biologically realistic connectivity. The software eas-

ily copes with the threshold network size of 105 neurons (Morrison et al., 2005) at which each neuron can be
supplied with the natural number of synapses and simultaneously a realistic sparse connectivity can be main-
tained. Typical neuron models in NEST have one or a small number of compartments. The simulator supports
heterogeneity in neuron and synapse types. In networks of realistic connectivity the memory consumption and
work load is dominated by the number of synapses. Therefore,much emphasis is placed on the efficient rep-
resentation and update of synapses. In many applications network construction has the same computational
costs as the integration of the dynamics. Consequently, NEST parallelizes both. NEST is designed to guarantee
strict reproducibility: the same network is required to generate the same results independent of the number of
machines participating in the simulation. It is consideredan important principle of the project that the develop-
ment work is carried out by neuroscientists operating on a joint code base. No developments are made without
the code being directly tested in neuroscientific research projects. This implements an incremental and iterative
development cycle. Extensibility and long-term maintainability are explicit design goals.

Infrastructure

11http://www.nest-initiative.org

20

The primary user interface is a simulation language interpreter which processes a rather high level expressive
language with an extremely simple syntax which incorporates heterogeneous arrays, dictionaries, and pure (i.e.
unnamed) functions and is thus suited for interactive work.There is no built-in graphical user interface as it
would not be particularly helpful in NEST’s domain: networkspecification is procedural, and data analysis is
generally performed off-line for reasons of convenience and efficiency. The simulation language is used for data
pre- and post-processing, specification of parameters, andfor the compact description of the network structure
and the protocol of the virtual experiment. The neuron models and synapse types are not expressed in the
simulation language as this would result in a slower performance. They are implemented as derived classes on
the C++ level such that all models provide the same minimal functionality and are thus easily interchangeable
on the simulation language level. A mechanism for error handling propagates errors messages through all levels
of the software. Connections between nodes (i.e. neurons, generators and recording devices) are checked for
consistency at the time of creation. User level documentation is provided in a browsable format (the “helpdesk”)
and is generated directly from source code.

The code of NEST is modularized to facilitate the development of new neuron models that can be loaded at
run time and to decouple the development of extensions from aspecific NEST release. In the framework of the
FACETS project a Python interface and a “facetsmodule” has been created. In addition to providing an interface
between user-defined modules and the core code, NEST can interface with other software - for example, in order
to provide a graphical user interface. The primary strategyused is interpreter-interpreter interaction, whereby
each interpreter emits code that the other interpreter accepts as its native language. This approach minimizes
the need to define protocols and the dependency of NEST on foreign libraries.

Kernel
There is a common perception that event-driven algorithms are exact and time-driven algorithms are approx-

imate. We have recently shown that both parts of this perception are generally false; it depends on the dynamics
of the neuron model whether an event-driven algorithm can find an exact solution, just as it does for time-driven
algorithms (Morrison et al., 2006b). NEST is designed for large scale simulations where performance is a crit-
ical issue. We have therefore argued that when comparing different integration strategies, one should evaluate
the efficiency, i.e. the simulation time required to achievea given integration error, rather than the plain simu-
lation time (Morrison et al., 2006b). This philosophy is reflected in the simulation kernel of NEST. Although it
implements a globally time-driven algorithm with respect to the ordering of neuron updates and the delivery of
events, spike times are not necessarily constrained to the discrete time grid. Neuron implementations treating
incoming and outgoing spikes in continuous time are seamlessly integrated into the time-driven infrastructure
with no need for a central event queue. This permits a great flexibility in the range of neuron models which
can be represented, including exactly solvable continuoustime neuron models, models requiring approximation
techniques to locate threshold passing and models with grid-constrained dynamics and spike times.

The simulation kernel of NEST supports parallelization by multi-threading and message passing, which
allows distribution of a simulation over multiple processors of an SMP machine or over multiple machines in a
cluster. Communication overhead is minimized by only communicating in intervals of the minimum propaga-
tion delay between neurons, and communication bulk is minimized by storing synapses on the machine where
the post-synaptic neuron is located (Morrison et al., 2005). This results in supra-linear speed-up in distributed
simulations; scaling in multi-threaded simulations is reasonable, but more research is required to understand and
overcome present constraints. The user only needs to provide a serial script, as the distribution is performed
automatically. Interactive usage of the simulator is presently only possible in purely multi-threaded operation.
Reproducibility of results independent of the number of machines/processors is achieved by dividing a simula-
tion task into a fixed number of abstract (virtual) processeswhich are distributed amongst the actual machines
used (Morrison et al., 2005).

3.3.3 Performance

The supplementary material contains simulation scripts for all of the benchmarks specified in Appendix 2.
Considering the domain of NEST, the benchmarks can only demonstrate NEST’s capabilities in a limited way.

21

Therefore, a fifth benchmark is included which is not only significantly larger than the other benchmarks (three
times as many neurons and forty times as many synapses), but also incorporates spike-timing dependent plas-
ticity in its excitatory-excitatory synapses. The neuron model for this benchmark is the same as for benchmark
2. All the benchmarks were simulated on a Sun Fire V40z equipped with four dual core AMD Opteron 875
processors at 2.2 GHz and 32 Gbytes RAM running Ubuntu 6.06.1 LTS with kernel 2.6.15-26-amd64-server.
Simulation jobs were bound to specific cores using thetaskset command. The simulations were performed
with a synaptic propagation delay of 0.1 ms and a computation time step of 0.1 ms unless otherwise stated.

Fig. 10A shows the simulation time for one biological secondof Benchmarks 1−3. To compare the bench-
marks fairly despite their different firing rates, the spiking was suppressed in all three benchmarks by removing
the initial stimulus, and in the case of Benchmark 2, the intrinsic firing was suppressed by setting the resting
potential to be lower than the threshold. For networks of integrate-and-fire neuons of this size and activity, the
delivery of spikes does not contribute significantly to the simulation times, which are dominated by the neuron
updates. If the spiking is not suppressed, the simulation times for Benchmarks 1 and 2 are less than because
of the computational cost associated with the integration of the action potential. Benchmark 2 (current-based
integrate-and-fire neuron model) is significantly faster than the other two as its linear subthreshold dynamics
permits the use of exact integration techniques (see Rotterand Diesmann, 1999). The non-linear dynamics
of the conductance based integrate-and-fire neuron model inBenchmark 1 and the Hodgkin-Huxley neuron in
benchmark 3 are propagated by one global computation time step by one or more function calls to the standard
adaptive time stepping method of the GNU Scientific Library (GSL; Galassi et al., 2001) with a required accu-
racy of 1µV . The ODE-solver used is the embedded Runge-Kutta-Fehlberg(4,5) provided by the GSL , but
this is not a constraint of NEST - a neuron model may employ anymethod for propagating its dynamics. In
a distributed simulation, processes must communicate in intervals of the minimum synaptic delay in order to
preserve causality (Morrison et al., 2005). It is thereforemore efficient to simulate with realistic synaptic de-
lays than with unrealistically short delays, as can be seen in Fig. 10A. The simulation times for the benchmark
networks incorporating a synaptic delay of 1.5 ms are in all cases significantly shorter than the simulation times
for the networks if the synaptic delay is assumed to be 0.1 ms.

Benchmark 4 (integrate-and-fire neuron model with voltage jump synapses) is ideal for an event-driven
simulation, as all spike times can be calculated analytically - they occur either when an excitatory spike is
received, or due to the relaxation of the membrane potentialto the resting potential, which is above the threshold.
Therefore the size of the time steps in which NEST updates theneuron dynamics plays no role in determining
the accuracy of the simulation. The primary constraint on the step size is that it must be less than or equal to
the minimum synaptic delay between the neurons in the network. Fig. 10B shows the simulation time for one
biological second of Benchmark 4 on two processors as a function of the minimum synaptic delay. Clearly, the
simulation time is strongly dependent on the minimum delay in this system. At a realistic value of 1 ms, the
network simulation is approximately a factor of 1.3 slower than real time; at a delay of 0.125 ms the simulation
is approximately 7.3 times slower than real time. In the case of neuron models where the synaptic time course is
not invertible, the computational time step determines theaccuracy of the calculation of the threshold crossing.
For a discussion of this case and the relevant quantitative benchmarks, see Morrison et al. (2006b).

Fig. 10C shows the scaling of an application which lies in thedomain of neural systems for which NEST
is primarily designed. The simulated network contains 11250 neurons, of which 9000 are excitatory and 2250
inhibitory. Each neuron receives 900 inputs randomly chosen from the population of excitatory neurons and
225 inputs randomly chosen from the inhibitory population.The scaling is shown for the case that all the
synapses are static, and for the case that the excitatory-excitatory synapses implement multiplicative spike-
timing dependent plasticity with an all-to-all spike pairing scheme (Rubin et al., 2001). For implementation
details of the STDP, see Morrison et al. (2006a), for furthernetwork parameters, see the supplementary material.
The network activity is in the asynchronous irregular regime at 10 Hz. Both applications scale supra-linearly
due to the exploitation of fast cache memory. When using eight processors, the static network is a factor of 6.5
slower than real time and the plastic network is a factor of 14slower. Compared to Benchmark 2, the network
contains 3 times as many neurons, 40 times as many synapses and the firing rate is increased by a factor of 2.
However, using the same number of processors (2), the staticnetwork simulation is only a factor of 17 slower,

22

and the plastic network simulation is only a factor of 32 slower. This demonstrates that NEST is capable of
simulating large, high-connectivity networks with computationally expensive synaptic dynamics with a speed
suitable for interactive work. Although for this network the presence of the STDP synapses increases the
simulation time by a factor of two, this factor generally depends on the number of synapses and the activity.

3.3.4 Perspectives

Future work on NEST will focus on an interactive mode for distributed computing, an improvement of perfor-
mance with respect to modern multi-core computer clusters,and a rigorous test and validation suite. Further
information on NEST and the current release can be found at the NEST web site12.

12http://www.nest-initiative.org

23

3.4 NCS

The NeoCortical Simulator (NCS), as its name suggests, is optimized to model the horizontally dispersed,
vertically layered distribution of neurons characteristic of the mammalian neocortex. NCS development be-
gan in 1997, a time at which fascinating details of synaptic plasticity and connectivity were being discovered
(Markram et al., 1997a, 1997b) yet available simulators such as GENESIS and NEURON did not offer paral-
lel architectures nor the degree of neuronal compartmentalsimplification required for reasonable performance
times. Also emerging at the time were inexpensive clusters-of-workstations, also known as Beowulf clusters,
operating under the LINUX operating system. Following a 1997 neuroscience fellowship with Rodney Douglas
and Kevan Martin at the Institute for Neuroinformatics in Z¨urich, Philip Goodman programmed the first NCS
using Matlab in collaboration with Henry Markram (then at the Weizmann Institute, now at the Swiss EPFL)
and Thomas McKenna, Neural Computation Program Officer at the U.S. Office of Naval Research. Preliminary
results led to ONR funding (award N000140010420) in 1999, which facilitated the subsequent collaboration
with UNR computer scientists Sushil Louis and Frederick Harris, Jr. This led to a C++ implementation of NCS
using LINUX MPI on a Beowulf cluster. NCS was first made available to outside investigators beginning in
2000, with further development targeting the following specifications:

1. Compartments:sampling frequency and membrane compartmental realism sufficient to capture biologi-
cal response properties, arbitrary voltage- and ion-sensitive channel behaviors, and multicompartmental
models distributed in 3-D (dendritic, somatic, and axonal systems);

2. Synapses:short-term depression and facilitation (Markram et al., 1998a), augmentation (Wang et al.,
2006) and Hebbian spike-timing dependent plasticity (Markram et al., 1997b);

3. 3-D Connectionism:a layout to easily allocate neurons into subnetwork groupings, layers, column, and
sheets separated by real micron- or millimeter spacings, with realistic propagation distances and axonal
conduction speeds;

4. Parallelism:an inherently parallel, efficient method of passing messages of synaptic events among neu-
rons;

5. Reporting:an efficient way to collect, sample and analyze selected compartmental and neuronal behav-
iors;

6. Stimulation:ability to (a) specify fixed, standard neurophysiological stimulation protocols, (b) port sig-
nals from an external device, and (c) export neuronal responses and await subsequent replies from external
systems (e.g., dynamic clamps, in vitro or in vivo preparations, robotic emulations);

7. Freeze/resume system state:the ability to stop a simulation and hibernate all hardware and software pa-
rameters into a binary blob, for unpacking and resuming in later experiments;

8. Command files:simplicity in generating and modifying scripts.

As of 2005, NCS developers achieved all the objectives above, using an ASCII file based command input
file to define a hierarchy of reusable brain objects (Figure 11A). NCS uses a clock-based integrate and fire
neurons whose compartments contain conductance-based synaptic dynamics and Hodgkin-Huxley formulations
of ionic channel gating particles13. Although a user-specified active spike template is usuallyused for our large
simulations, Hodgkin-Huxley channel equations can be specified for the rapid sodium and delayed rectifier spike
behavior. No nonlinear simplifications, such as the Izhikevich formulation, are supported. Compartments are
allocated in 3-D space, and are connected by forward and reverse conductances without detailed cable equations.
Synapses are conductance-based, with phenomenological modeling of depression, facilitation, augmentation,
and STDP.

13http://brain.unr.edu/publications/thesis.ecw01.pdf

24

NCS runs on any LINUX cluster. We run NCS on our 200-CPU hybridof Pentium and AMD processors,
and also on the 8,000-CPU Swiss EPFL IBM Blue Brain. NCS can run in single-PC mode under LINUX or
LINUX emulation (e.g., Cygwin) and on the new Pentium-basedMacintosh.

Although NCS was motivated by the need to model the complexity of the neocortex and hippocampus,
limbic and other structures can be modeled by variably collapsing layers and specifying the relevant 3-D layouts.
Large-scale models often require repetitive patterns of interconnecting brain objects, which can be tedious using
only the basic ASCII command file. We therefore developed a suite of efficient Python-based scripting tools
called Brainlab (Drewes, 2005). An Internet-based libraryand control system was also developed (Waikul et
al., 2002).

NCS delivers reports on any fraction of neuronal cell groups, at any specified interval. Reports include
membrane voltage (current clamp mode), current (voltage clamp), spike-event-only timings (event-triggered),
calcium concentrations, synaptic dynamics parameter states, and any Hodgkin-Huxley channel parameter. Al-
though NCS does not provide any direct visualization software, report files are straightforward to view in any
graphics environment. Two such Matlab-based tools are available for download from the lab’s web site14.

Benchmark. We ran the Vogels and Abbot (2005) benchmark under the conditions specified for the conductance-
based integrate and fire model (see Benchmark 1 in Appendix 2), and obtained the expected irregularly-bursting
sustained pattern (first second shown in Figure 11B). At the default 10:1 ratio of inhibitory to excitatory synaptic
conductances, the overall mean firing rate was 15.9 Hz.

The largest simulations to-date have been on the order of a million single-compartment neurons using mem-
brane AHP, M, A-type channels. Neurons were connected by 1 trillion synapses using short-term and STDP
dynamics; this required about 30 minutes on 120 CPUs to simulate one biological second (Ripplinger et al.,
2004). Intermediate-complexity simulations have examined multimodal sensory integration and information
transfer15, and genetic algorithm search for parameter sets which support learning of visual patterns (Drewes
et al., 2004). Detailed work included evaluation of interneuronal membrane channels (Maciokas et al., 2005)
underlying the spectrum of observed firing behaviors (Guptaet al., 2000), and potential roles in speech recog-
nition (Blake and Goodman, 2002) and neuropathology (Kellogg et al., 1999; Wills et al., 1999; Wiebers et al.,
2003; Opitz and Goodman, 2005). Recent developments focus on IP port-based real time input-output of the
”brain” to remotely behaving and learning robots16.

The UNR Brain Computation Laboratory is presenting collaborating with the Brain Mind Institute of the
Swiss EPFL. Their 8,000-CPU Blue Brain cluster17 currently runs NCS alone or as in a hybrid configuration as
an efficient synaptic messaging system with CPU-resident instances of NEURON. The Reno and Swiss teams
are exploring ways to better calibrate simulated to living microcircuits, and to effect real-time robotic behaviors.
Under continuing ONR support, the investigators and two graduate students provide part-time assistance to
external users at no cost through e-mail and online documentation. User manual and programmer specifications
with examples are available18.

14http://brain.unr.edu/publications/neuroplot.m; http://brain.unr.edu/publications/EVALCELLTRACINGS.zip
15http://brain.unr.edu/publications/Maciokas Dissertation final.zip
16http://brain.unr.edu/publications/jcm.hierarch robotics.unr ms thesis03.pdf;

http://brain.unr.edu/publications/JGKingThesis.pdf (Macera-Rios et al., 2004)
17http://bluebrainproject.epfl.ch
18http://brain.unr.edu/ncsDocs

25

3.5 CSIM

3.5.1 Feature overview

The Circuit SIMulator CSIM is a tool for
simulating heterogeneous networks composed of (spike emitting) point neurons. CSIM is intended to simu-

late networks containing a few neurons, up to networks with afew thousand neurons and on the order of 100000
synapses. It was written to do modeling at the network level in order to analyze the computational effects which
can not be observed at the single cell level. To study single cell computations in detail we give the advice to use
simulators like GENESIS or NEURON.

Easy to use Matlab interface: The core of CSIM is written in C++ which is controlled by means of Matlab
(there is no standalone version of CSIM). We have chosen Matlab since it provides very powerful graphics and
analysis capabilities and is a widely used programming language in the scientific community. Hence it is not
necessary to learn yet another script language to set up and run simulations with CSIM. Furthermore the results
of a simulation are directly returned as Matlab arrays and hence any plotting and analysis tools available in
Matlab can easily be applied.

Until now CSIM does not provide a GUI. However one can easily use Matlab powerful GUI builder to make
a GUI for a specific application based on CSIM.

Object oriented design: We adopted an object oriented design for CSIM which is similar to the approaches
taken in GENESIS and NEURON. That is there are objects (e.g. aLifNeuron object implements the standard
leaky-integrate-and-fire model) which are interconnectedby means of well defined signal channels. The cre-
ation of objects, the connection of objects and the setting of parameters of the objects is controlled at the level
of Matlab whereas the actual simulation is done in the C++ core.

Fast C++ core: Since CSIM is implemented in C++ and is not as general as e.g.GENESIS simulations
are performed quite fast. We also implemented some ideas from event driven simulators which result in a
considerable speedup (up to a factor of three for low firing rates; see the subsection about implementation
aspects below).

Runs on Windows and Linux (Unix): CSIM is developed on Linux (Matlab 6.5 and 7.2, gcc 4.0.2). From
the sitewww.lsm.tugraz.at/csm precompiled versions for Linux and Windows are available. Since CSIM is
pure C++ it should not be hard to port it to other platforms forwhich Matlab is available.

Different levels of modeling: By providing different neuron models CSIM allows to investigate networks at
different levels of abstraction: sigmoidal neurons with analog output, linear and non-linear leaky-integrate-and-
fire neurons and compartmental based (point) neurons with spiking output. A broad range of synaptic models
is also available for both spiking and non-spiking neuron models: starting from simple static synapses ranging
over synapses with short-term plasticity to synapse modelswhich implement different models for long-term
plasticity.

3.5.2 Built-in models

Neuron models: CSIM provides two different classes of neurons: neurons with analog output and neurons with
spiking output. Neurons with analog output are useful for analyzing population responses in larger circuits. For
example CSIM provides a sigmoidal neuron with leaky integration. However, there are much more different
objects available to build models of spiking neurons:

• Standard (linear) leaky-integrate-and-fire neurons

• Non-linear leaky-integrate-and-fire neurons based on the models of Izhikevich

• Conductance based point neurons with and without a spike template. There are general conductance
based neurons where the user can insert any number of available ion-channel models to build the neuron
model. On the other hand there is a rich set of predefined pointneurons available used in several studies.

26

Spiking Synapses: As for the neurons CSIM also implements synapses which transmit analog values and
spike transmitting synapses. Two types of synapses are implemented: static and dynamic synapses. While
for static synapses the amplitude of each postsynaptic response (current of conductance change) is the same,
the amplitude of an postsynaptic response in the case of a dynamic synapse depends on the spike train that it
has seen so far, i.e. dynamic synapses implement a form of short term plasticity (depression, facilitation). For
synapses transmitting spikes the time course of a postsynaptic response is modeled byA×exp(−t/τsyn), where
τsyn is the synaptic time constant andA is the synaptic strength which is constant for static synapses and given
by the model described in (Markram et al., 1998b) for dynamicsynapses.

Note that static as well as dynamic synapses are available ascurrent supplying or conductance based models.
Analog Synapses: For synapses transmitting analog values, such as the output of a sigmoidal neuron, static

synapses are simply defined by their strength (weight), whereas for dynamic synapses we implemented a con-
tinuous version of the dynamic synapse model for spiking neurons (Tsodyks et al. 1998).

Synaptic plasticity: CSIM also supports spike time dependent plasticity, STDP,applying a similar model
as in (Song et al., 2000). STDP can be modeled most easily by making the assumption that each pre- and
postsynaptic spike pair contributes to synaptic modification independently and in a similar manner. Depending
on the time difference∆t = tpre− tpost between pre- and postsynaptic spike the absolute synaptic strength is
changed by an amountL(∆t). The typical shape for the functionL(∆t) as found for synapses in neocortex layer
5 (Markram et al., 1997) is implemented. Synaptic strengthening and weakening are subject to constraints so
that the synaptic strength does not go below zero or above a certain maximum value. Furthermore additional
variants as suggested in (Froemke and Dan, 2002) and (Gütiget al. 2003) are also implemented.

3.5.3 Implementation aspects

Network input and output: There are two forms of inputs which can be supplied to the simulated neural mi-
crocircuit: spike trains and analog signals. To record the output of the simulated model special objects called
Recorder are used. A recorder can be connected to any object to record any field of that object.

Simulation Strategy: CSIM employees a clock based simulation strategy with a fixed simulation step width
dt. Typically the exponential Euler integration method is used. A spike which occurs during a simulation time
step is assumed to occur at the end of that time step. That implies that spikes can only occur at multiples ofdt.

Efficient processing of spikes: In a typical simulation of a neural circuit based on simple neuron models
the CPU time spent in advancingall the synapses may by larger then the time needed to integrate the neuron
equations. However if one considers the fact that synapses are actually “idle” most of the time (at least in low
firing rate scenarios) it makes sense to update during one time step only those synapses whose postsynaptic
response is not zero, i.e. are active. CSIM implements this idea by dividing synapses into a list of idle and a
list of active synapses where only the latter is updated during a simulation time step. A synapse becomes active
(i.e. is moved from the idle list to the active list) if a spikearrives. After its postsynaptic response has vanished
the synapse becomes idle again (i.e. is moved back from the active list to the idle list). This trick can result in
considerable speed up for low firing rate scenarios.

3.5.4 Further information

CSIM ins distributed under the GNU General Public License and is available for download19. Support for CSIM
(and its related tools) can be obtained by writing email tolsm@igi.tu-graz.ac.at

At the sitehttp://www.lsm.tugraz.at one can find besides the download area for CSIM (including the
user manual and an object reference manual) a list of publications which used CSIM (and its related tools) and
also the code of published models.

Related tools: Furthermore the sitehttp://www.lsm.tugraz.at provides two sets of Matlab scripts and
objects which heavily build on CSIM. Thecircuit tool supports the construction of multi-column circuits by
providing functionality to connect pools of neurons to pools of neurons. Thelearning tool was developed

19http://www.lsm.tugraz.at/csim

27

to analyze neural circuits in the spirit of the liquid state machine (LSM) approach (Maass et al., 2002) and
therefore contains several machine learning methods (see (Natschläger et al., 2003) for more information about
this tools).

As of this writing resources are devoted to develop a parallel version of CSIM called PCSIM which al-
lows distributed simulation of large scale networks. PCSIMwill have a python interface which allows an
easy implementation of the upcoming PyNN application programming interface (see appendix 1). The current
development version of PCSIM can be obtained from the SourceForge site20.

3.5.5 CSIM implementations of the benchmark simulations

We implemented the benchmark networks 1 to 3 as specified in Appendix 2.
The integrate-and-fire benchmark networks (Benchmark 1 and2) are well suited to be simulated with CSIM

and can be implemented by only using built-in objects:CbNeuron andStaticSpikingCbSynapse as the
neuron and synapse model for the COBA network andLifNeuron andStaticSpikingSynapse as neuron
and synapse model for the CUBA network.

To implement Benchmark 3 (HH network) it is necessary to add the desired channel dynamics to CSIM by
implementing it at the C++ level. The user defined neuron model (TraubsHHNeuron) is easily implemented
in C++ (see the filestraubs_hh_channels.[cpp|h] andTraubsHHNeuron.[cpp|h]). After these files are
compiled and linked to CSIM they are available for use in the simulation. We refer the user to the CSIM manual
for details on how to add user defined models at C++ level to CSIM.

For each benchmark network we provide two implementations:the first implementation uses the plain
CSIM interface only while the second implementation makes use of thecircuit tool mentioned in the previous
subsection (filename suffix*_circuit.m).

To provide the initial stimulation during the first 50 ms of the simulation we set up a pool of input neurons
(SpikingInputNeuron objects) which provide random spikes to the network.

Results of CSIM simulations of all implemented benchmarks are depicted in Figure 12. This figures were
produced by the simulation scripts provided for each benchmark using Matlab’s powerful graphics capabilities
(see the filemake_figures.m) and illustrate the sustained irregular activity described by Vogels and Abbott
(2005) for such networks.

The current development version of PCSIM has been used to perform scalability tests based on the CUBA
benchmark (Benchmark 2). The results are summarized in Figure 13. For the small 4000 neuron network the
speedup for more than four machines vanishes while for the larger networks a more than expected speedup
occurs up to six machines. This shows that PCSIM is scalable with regard to the problem size and the number
of available machines. The development version of PCSIM together with the python script for the CUBA
benchmark can be obtained from the SourceForge site21.

20http://sourceforge.net/projects/pcsim
21http://sourceforge.net/projects/pcsim

28

3.6 XPPAUT

XPPAUT is a general numerical tool for simulating, animating, and analyzing dynamical systems. These can
range from discrete finite state models (McCulloch-Pitts) to stochastic Markov models, to discretization of
partial differential and integrodifferential equations.XPPAUT was not specifically developed for neural sim-
ulations but because of its ability to provide a complete numerical analysis of the dependence of solutions on
parameters (“bifurcation diagrams”) it is widely used by the community of computational and theoretical neu-
roscientists. There are many online tutorials many of whichare geared to neuroscience. While it can be used
for modest sized networks, it is not specifically designed for this purpose and due to its history, there are limits
on the size of problems which can be solved (about 2000 differential equations is the current limit). The bench-
marks were not performed due to this limitation in size, however, a reduced version is included. Rather than a
pure simulator,XPPAUT is a tool for understanding the equations and the results of simulating the equations.
XPPAUT uses a highly optimized parser to produce a pseudocode whichis interpreted and runs very fast –
at about half the speed of directly compiled code. Since no compiler is required,XPPAUT is a stand alone
program and runs on all platforms which have an X-windows interface available (UNIX, MAC OSX, Windows,
etc.) The program is open source and available as source and various binary versions.

XPPAUT can be run interactively (the preferred method) but can alsobe run in batch mode with no GUI
with the results dumped to one or more files. Graphical outputin postscript, GIF, PBM, and animated GIF
is possible. (There are codecs available for AVI format but these are not generally included in the compiled
versions.) Numerous packages for controllingXPPAUT have been written, some stand-alone such as JigCell
and others using Matlab or PERL. Data from simulations can besaved for other types of analysis and or plotting
with other packages. The “state” of the program can be saved as well so that users can come back where they
let off.

There are no limits as far as the form of the equations is concerned since the actual equations that you
desire to solve are written down like you would write them in apaper. For example the voltage equation for a
conductance-based model would be written as:

dv/dt = (-gl*(v-el) - gna*m^3*h*(v-ena)-gk*n^4*(v-ek))/cm

There is a method for writing indexed networks as well, so that one does not have to write every equation.
Special operators exist for speeding up network functions like discrete convolutions and implementation of the
stochastic Gillespie algorithm. Furthermore, the user canlink the right-hand sides of differential equations to
external C libraries to solve complex equations (for example, equation-free firing rate models, Laing JCNS
2006). Because it is a general purpose solver, the user can mix different types of equations for example stochas-
tic discrete time events with continuous ODEs. Event drivensimulations are also possible and can be performed
in such as way that output occurs only when an event happens. There are many ways to display the results of
simulations including color-coded plots showing space-time behavior, a built-in animation language, and one-
two- and three-dimensional phase-space plots.

XPPAUT provides a variety of numerical methods for solving differential equations, stochastic systems,
delay equations, Volterra integral equations, and boundary-value problems (BVP). The numerical integrators
are very robust and vary from the simple Euler method to the standard method for solving stiff differential
equations, CVODE. The latter allows the user to specify whether the system is banded and thus can improve
calculation speed by up to two orders of magnitude. The use ofBVP solvers is rare in neuroscience applications
but they can be used to solve, for example, the steady-state behavior of Fokker-Planck equations for noisy
neurons and to find the speed of traveling waves in spatially distributed models.

Tools for analysis dynamical properties such as equilibria, basins of attraction, Lyapunov exponents, Poincare
maps, embedding, and temporal averaging are all available via menus. Some statistical analysis of simulations
is possible such as power spectra, mean and variance, correlation analysis and histograms are also included in
the package. There is a very robust parameter fitting algorithm (Marquardt-Levenburg) which allows the user
to find parameters and initial conditions which best approximate specified data.

One part ofXPPAUT which makes it very popular is the inclusion of the continuation package, AUTO.
This package allows the user to track equilibria, limit cycles, and solutions to boundary-value problems as

29

parameters vary. The stability of the solutions is irrelevant so that users can track the entire qualitative behavior
of a differential equation.XPPAUTprovides a simple to use GUI for AUTO which allows the user to seamlessly
switch back and forth between simulation and analysis.

XPPAUT is used in many different courses and workshops including the Methods in Computational Neu-
roscience course at the Marine Biological Laboratory (where it was developed 15 years ago), various European
CNS courses as well as in classroom settings. Since equations are written for the software as you would write
them on paper, it is easy to teach students how to useXPPAUT for their own problems. There are many fea-
tures for the qualitative analysis of differential equations such as direction fields, nullclines and color coding of
solutions by some property (such as energy or speed).

XPPAUTcan be considered a stable mature package. It is developed and maintained by the author. While
a list of users is not maintained, a recent Google search revealed 38500 hits and a search on Google Scholar
showed over 250 papers citing the software. In the future, the parser will be rewritten so that there will be no
limit to the number of equations and methods for implementing large spatially distributed systems will also
be incorporated. Parts of the analysis code inXPPAUT may possible be included in NEURON in the near
future. A book has been written on the use of the program (Ermentrout, 2004) and it comes with 120 pages of
documentation and dozens of examples.

30

3.7 SPLIT

3.7.1 Parallel simulators

The development of parallel simulation in computational neuroscience has been relatively slow. Today there
are a few publicly available parallel simulators, but they are far from as general, flexible, and documented
as commonly used serial simulators such as Neuron (Hines andCarnevale, 1997) and Genesis ([Bower and
Beeman, 1998). For Genesis there is PGENESIS and the development of a parallel version of Neuron has
started. In addition there exists simulators like NCS22 (see Frye, 2005), NEST (Morrison et al., 2005), and our
own parallelizing simulator SPLIT (Hammarlund and Ekeberg, 1998). However, they are in many ways still on
the experimental and developmental stage.

3.7.2 The simulator

SPLIT is a tool specialized for efficiently simulating large-scale multicompartmental models based on Hodgkin-
Huxley formalism. It should be regarded as experimental software for demonstrating the possibility and use-
fulness of very large scale biophysically detailed neuronal network simulations. Recently, this tool was used
for one of the largest cortex simulations ever performed (Djurfeldt et al., 2005). It supports massive paral-
lelism on cluster computers using MPI. The model is specifiedby a C++ program written by the SPLIT user.
This program is then linked with the SPLIT library to obtain the simulator executable. Currently, there is no
supported graphical interface, although an experimental Java/QT-based graphical interface has been developed.
There is no built-in support for analysis of results. Rather, SPLIT should be regarded as a pure, generic, neu-
ral simulation kernel with the user program adapting it intoa simulator specific to a certain model. Although
this approach is in some sense “raw”, this means that the model specification benefits from the full power of a
general purpose programming language.

SPLIT provides conductance-based synaptic interactions with short-term plasticity (facilitation and depres-
sion). Long-term plasticity (such as STDP) and integrate-and-fire formalism have not yet been implemented,
although this is planned for the future.

The user program specifies the model through the SPLIT API which is provided by the classsplit. The
user program is serial and parallelism is hidden from the user. The program can be linked with either a serial
or parallel version of SPLIT. In the parallel case, some or all parts of the program run in a master node on the
cluster while SPLIT internally sets up parallel execution on a set of slave nodes. As an option, parts of the user
program can execute distributed onto each slave via a callback interface. However, SPLIT provides a set of
tools which ensures that also such distributed code can be written without explicit reference to parallelism.

The SPLIT API provides methods to dynamically inject spikesto an arbitrary subset of cells during a
simulation. Results of a simulation are logged to file. Most state variables can be logged. This data can be
collected into one file at the master node or written down at each slave node. In the latter case, a separate
program might be used to collect the files at each node after the simulation terminates.

3.7.3 Large scale simulations

Recently, Djurfeldt et al., 2005 have described an effort tooptimize SPLIT for the Blue Gene/L supercomputer.
BG/L (Gara et al., 2005) represents a new breed of cluster computers where the number of processors, instead
of the computational performance of individual processors, is the key to higher total performance. By using
a lower clock frequency, the amount of heat generated decreases dramatically. Therefore, CPU chips can be
mounted more densely and need less cooling equipment. A nodein the BG/L cluster is a true “system on a
chip” with two processor cores, 512 MiB of on chip memory and integrated network logic. A BG/L system can
contain up to 65536 processing nodes.

During this work, simulations of a neuronal network model oflayers II/III of the neocortex were performed
using conductance-based multicompartmental model neurons based on Hodgkin-Huxley formalism. These

22http://brain.cse.unr.edu/ncsdocs

31

simulations comprised up to 8 million neurons and 4 billion synapses. After a series of optimization steps, per-
formance measurements showed linear scaling behavior bothon the Blue Gene/L supercomputer (see Figure 1)
and on a more conventional cluster computer. Optimizationsincluded parallelization of model setup and do-
main decomposition of connectivity meta data. Computationtime was dominated by the synapses which allows
for a “free” increase of cell model complexity. Furthermore, communication time was hidden by computation.

3.7.4 Implementation aspects

SPLIT has so far been used to model neocortical networks (Fransén and Lansner, 1998; Lundqvist et al., 2006),
the Lamprey spinal cord (Kozlov et al., 2003; 2006) and the olfactory cortex (Sandström et al., 2006).

The library exploits data locality for better cache-based performance. In order to gain performance on vector
architectures, state variables are stored as sequences. Ituses techniques such as adjacency lists for compact
representation of projections and AER (Address Event Representation; Bailey and Hammerstrom, 1988) for
efficient communication of spike events.

Perhaps the most interesting concept in SPLIT is its asynchronous design: On a parallel architecture, each
slave process has its own simulation clock which runs asynchronously with other slaves. Any pair of slaves
only need to communicate at intervals determined by the smallest axonal delay in connections crossing from
one slave to the other.

The neurons in the model can be distributed arbitrarily overthe set of slaves. This gives great freedom in
optimizing communication so that densely connected neurons reside on the same CPU and so that axonal delays
between neurons simulated on different slaves are maximized. The asynchronous design, where a slave process
does not need to communicate with all other slaves at each time step, gives two benefits: 1. By communicating
more seldom, the communication overhead is reduced. 2. By allowing slave processes to run out of phase, to a
degree determined by the mutually smallest axonal delay, the waiting time for communication is decreased.

3.7.5 Benchmark

The SPLIT implementation of the HH benchmark (Benchmark 3 inAppendix 2) consists of a C++ program
which specifies what entities are to be part of the simulation(cell populations, projections, noise-generators,
plots), makes a call which distributes these objects onto the cluster slaves (in the parallel case), sets the param-
eters of the simulation objects, initializes, and simulates. While writing the code, close attention needs to be
payed to which parameters are scalar and which are vectorized over the sets of cells or axons. Channel equations
are pre-compiled into the library, and a choice of which set of equations to use needs to be made. Parameters
are specified using SI units.

The Benchmark 3 simulation (4000 cells, 5 s of simulated time) took 386 s on a 2 GHz Pentium M machine
(Dell D810). Outputs are written in files on disk and can easily be displayed usinggnuplot. Figure 17 shows
a raster of spiking activity in 100 cells during the first second of activity. Figure 18 shows membrane potential
traces of 3 of the cells during 5 s (left) and 100 ms (right).

3.7.6 Future plans

Ongoing and possible future developments of SPLIT include:

• a revision of the simulation kernel API

• the addition of a Python interpreter interface

• compatibility with channel models used in popular simulators such as Neuron and Genesis, enabling easy
transfer of neuron models

• gap junctions

• graded transmitter release

32

• better documentation and examples

Currently, SPLIT is developed, in part time, by two people. There exists some limited documentation and
e-mail support.

33

3.8 Mvaspike

3.8.1 Modelling with events

It has been argued many times that action potentials as produced by many types of neurones can be considered
asevents: they consist of stereotypical impulses that appear superimposed on the internal voltage dynamics
of the neurons. As a result, many models of neurons offer waysof defining event times associated with each
emitted action potential, often through the definition of a firing threshold23. Neural simulation tools have taken
advantage of this for a long time, through the use ofevent driven algorithms(see section 1). Indeed, when one
speaks ofeventsin the context of simulation of neural networks,event-drivenalgorithms come to mind and it it
the author impression that the use of events upstream, during the modeling stage, is often understated.

Mvaspike was designed as an event-based modeling and simulation framework. It is grounded on a well
established set-theoretic modeling approach (DEVS: Discrete EVent system Specification (Zeigler and Vahie,
1993; Zeigler et al., 2000). Target models are discrete events systems: their dynamics can be described by
changes of state variables at arbitrary moments in time24. One aspect of Mvaspike is to bridge the gap between
the more familiar expression of continuous dynamics, generally in use in the neuroscience community, and
the event-centric use of models in the simulator (see figure 19). This is conveniently easy for many simple
models that represent the models of choice in Mvaspike (mostly integrate-and-fire or phase models, and SRMs).
Watts (1994) already noted that many neuronal properties can be explicitly and easily represented in discrete
event systems. Think of absolute refractoryperiods, rising timeof PSPs, axonal propagationdelays, these are
notions directly related to time intervals (and therefore,events) that are useful to describe many aspects of
the neuronal dynamics. This being obviously quite far from the well established, more electro-physiologically
correct conductance based models, another aim of Mvaspike is therefore to take into account as much as possible
of these more complex models, through the explicit support of discrete-time events, and, possibly, state space

discretization for the integration of continuous or hybriddynamics.
The DEVS formalism makes also possible the modeling of large, hierarchical or modular systems (e.g. net-

works of coupled populations of neurons, or micro-circuits, cortical columns etc.), through a well-defined cou-
pling and composition system. This helps modeling large andcomplex networks, but also favor code reusability,
prototyping, and the use of different levels of modeling. Additional tools have been implemented in Mvaspike
to take into account e.g. synaptic or axonal propagation delays, the description of structured or randomly con-
nected networks in an efficient way, through the use of generic iterators to describe the connectivity (Rochel
and Martinez, 2003).

3.8.2 The simulator

The core simulation engine in Mvaspike is event-driven, meaning that is is aimed at simulating networks of
neurons where event-times can be computed efficiently. Firing times will then be calculated exactly (in fact, to
the precision of the machine). This does not mean however that it is restricted to models that offer analytical
expressions of the firing times, as numerical approximations can be used in many situations.

Mvaspike consists of a core C++ library, implementing a few generic classes to describe networks, neurons
and additional input/output systems. It has been designed to be easy to access from other programming lan-
guages (high level or scripting languages, e.g. Python) andextensible. Well established simulation algorithms
are provided, based on state of the art priority queue data structures. They have been found to be sufficiently
efficient on average; however, the object-oriented approach has been designed to permit the use of dedicated,
optimized sub-simulators when possible.

On top of the core engine lies a library that includes a few common models of neurons, including linear or
quadratic integrate-and-fire (or SRM) neurons, with Dirac synaptic interactions, or various forms of piecewise

23The firing threshold here has to be taken in a very broad sense,from a simple spike detection threshold in a continuous model (e.g.
Hodgkin-Huxley) to an active threshold that is uses in the mathematical expression of the dynamics (integrate-and-firemodel)

24as opposed to discrete time systems, in which state changes occurs periodically, and continuous systems where state changes
continuously.

34

linear and exponential PSPs. Other available ingredients include plasticity mechanisms (STDP), refractory
periods, input spike trains generation (Poisson). Some connectivity patterns (e.g. all-to-all, ring, etc) are also
included.

There is no graphical user interface, nor pre- and post-processing tools included, as these are elements of
the modeling and simulation work-flow that we believe to be easy to handle using third-party environments or
high level languages, tailored to the needs and habits of theuser.

3.8.3 Benchmarks

The simplest model available in Mvaspike corresponds to theone defined for Benchmark 4 (see Appendix 2).
A straightforward implementation of the corresponding network can be done using only available objects from
the library.

The typical output of a Mvaspike simulation is a list of events, corresponding e.g. to spikes emitted (or
received) by the neurons. In particular, the membrane potential is not available directly. In order to obtain
the voltage trace presented in figure 20, a simple post-processing stage was necessary in order to obtain values
for the membrane potential at different instants between the event times. To this aim, the differential equation
governing the dynamics between events is used (in a integrated form), together with the values already available
at each event times, to find new intermediary values. Here, this is as simple as computing the effect of the leak
(exponential) and the refractory period. As this only has tobe done between events, each neuron can be treated
independently of the others. In a sense, this illustrates how the hybrid formalism (as presented in section 1.1)
is handled in Mvaspike: the flow of discrete events is the mainpoint of interest, continuous dynamics come
second.

3.8.4 Current status and further perspectives

Mvaspike is currently usable for the modeling of medium to large scale networks of spiking neurons. It is
released under the GPL license, maintained and supported byits main author and various contributors.

It has been used to model networks of integrate-and-fire neurons, for e.g. modeling the early stages of the
visual system (see eg. Hugues et al., 2002; Wohrer et al., 2006), and more theoretical research on computing
paradigms offered by spiking neurons (for instance, Rocheland Cohen, 2005; Rochel and Vieville, 2006). A
partial parallel implementation was developed and successfully tested on small clusters of PCs and parallel
machines (16 processors max), and should be completed to take into account all aspects of the framework and
more ambitious hardware platforms.

Work is ongoing to improve the interface of the simulator regarding input and output data formatting,
through the use of structured data language (XML). While a proof-of-concept XML extension has already been
developed, this is not a trivial task, and further work is needed in the context of existing initiatives (such as
NeuroML).

Meanwhile, it is expected that the range of models availableto the user will be extended, for instance
through the inclusion of models of stochastic point processes, and generic implementation of state space dis-
cretization methods.

35

4 Discussion

We have presented here an overview of different strategies and algorithms for simulating spiking neural net-
works, as well as an overview of most of the presently available simulation environment to implement such
simulations. We also have conceived a set of benchmark simulations of spiking neural networks (Appendix 2)
and provide as supplementary material (linked to ModelDB) the codes for implementing the benchmarks in the
different simulators. We believe this should constitute a very useful resource, especially for new researchers in
the field of computational neuroscience.

We voluntarily did not approach the difficult problem of simulation speed and comparison of different
simulators in this respect. Evidently, each simulation environment is optimal for a given problem, as discussed
in Section 3 for each specific case. It is interesting to note that the different simulation environments are
obviously able to simulate the same models, but unfortunately the codes are not compatible with each-other.
This underlines the need for a more transparent communication channel between simulators. Related to this,
the present efforts with simulator-independent codes (such as NeuroML, see Appendix 1) constitutes the main
advance for a future inter-operability. We illustrated here that, using a Python-based interface, one of the
benchmarks can be run in either NEURON or NEST using the same code (see Fig. 24 and Appendix 1).

Thus, future work should focus on obtaining a full compatibility between simulation environments and
XML-based specifications. Importing and exporting XML should enable to convert simulation codes between
simulators, and thereby provide very efficient means of combining existing models. A second direction for
future investigations is to adapt simulation environmentsto current hardware constraints, such as parallel com-
putations on clusters. Finally, more work is also needed to clarify the differences between simulation strategies
and integration algorithms, which may considerably differfor cases where the timing of spikes is important
(Fig. 4).

Acknowledgments

Research supported by the European Community (FACETS project, IST 15879), NIH (NS11613), CNRS and
HFSP. We are also grateful for the feedback and suggestions from users that have led to improvements of the
simulators reviewed here.

36

Appendix 1: Simulator-independent model specification

As we have seen, there are many freely-available, open-source and well-documented tools for simulation of
networks of spiking neurons. There is considerable overlapin the classes of network that each is able to simu-
late, but each strikes a different balance between efficiency, flexibility, scalability and user-friendliness, and the
different simulators encompass a range of simulation strategies. This makes the choice of which tool to use for
a particular project a difficult one. Moreover, we argue thatusing just one simulator is an undesirable state of
affairs. This follows from the general principle that scientific results must be reproducible, and that any given
instrument may have flaws or introduce a systematic bias. Thesimulators described here are complex soft-
ware packages, and may have hidden bugs or unexamined assumptions that may only be apparent in particular
circumstances. Therefore it is desirable that any given model should be simulated using at least two different
simulators and the results cross-checked.

This is, however, more easily said than done. The configuration files, scripting languages or graphical
interfaces used for specifying model structure are very different for the different simulators, and this, together
with subtle differences in the implementation of conceptually-identical ideas, makes the conversion of a model
from one simulation environment to another an extremely non-trivial task; as such it is rarely undertaken.

We believe that the field of computational neuroscience has much to gain from the ability to easily simulate
a model with multiple simulators. First, it would greatly reduce implementation-dependent bugs, and possible
subtle systematic biases due to use of an inappropriate simulation strategy. Second, it would facilitate com-
munication between investigators and reduce the current segregation into simulator-specific communities; this,
coupled with a willingness to publish actual simulation code in addition to a model description, would perhaps
lead to reduced fragmentation of research effort and an increased tendency to build on existing models rather
than redevelop them de novo. Third, it would lead to a generalimprovement in simulator technology since
bugs could be more easily identified, benchmarking greatly simplified, and hence best-practice more rapidly
propagated.

This goal of simulator independent model specification is some way off, but some small steps have been
taken. There are two possible approaches (which will probably prove to be complementary) to developing
simulator-independent model specification, which mirror the two approaches taken to model specification by
individual simulators: declarative and programmatic. Declarative model specification is exemplified by the use
of configuration files, as used for example by NCS. Here there is a fixed library of neuron models, synapse
types, plasticity mechanisms, connectivity patterns, etc., and a particular model is specified by choosing from
this library. This has the advantages of simplicity in setting up a model, and of well-defined behaviors for
individual components, but has less flexibility than the alternative, programmatic model specification. Most
simulators reviewed here use a more or less general purpose programming language, usually an interpreted one,
which has neuroscience specific functions and classes together with more general control and data structures.
As noted, this gives the flexibility to generate new structures beyond those found in the simulator’s standard
library, but at the expense of the very complexity that we identified above as the major roadblock in converting
models between simulators.

Declarative model specification using NeuroML

The NeuroML project25 is an open-source collaboration26 whose stated aims are:

1. To support the use of declarative specifications for models in neuroscience using XML.

2. To foster the development of XML standards for particularareas of computational neuroscience model-
ing.

The following standards have so far been developed:

25http://www.neuroml.org (Crook et al., 2005)
26http://sourceforge.net/projects/neuroml

37

• MorphML : specification of neuroanatomy (i.e. neuronal morphology)

• ChannelML : specification of models of ion channels and receptors (see Figure 21 for an example)

• Biophysics: specification of compartmental cell models, building on MorphML and ChannelML

• NetworkML : specification of cell positions and connections in a network.

The common syntax of these specifications is XML (ExtensibleMarkup Language27). This has the advan-
tages of being both human- and machine-readable, and standardized by an international organization, which in
turn has led to wide uptake and developer participation.

Other XML-based specifications that have been developed in neuroscience and in biology more generally
include BrainML28 for exchanging neuroscience data, CellML29 for models of cellular and subcellular pro-
cesses and SBML30 for representing models of biochemical reaction networks.

Although XML has become the most widely used technology for the electronic communication of hierar-
chically structured information, the real standardization effort is orthogonal to the underlying technology, and
concerns the structuring of domain-specific knowledge, i.e. a listing of the objects and concepts of interest in
the domain and of the relationships between them, using a standardized terminology. To achieve this, NeuroML
uses the XML Schema Language31 to define the allowed elements and structure of a NeuroML document. The
validity of a NeuroML document may be checked with referenceto the schema definitions. The NeuroML
Validation service32 provides a convenient way to do this.

Using NeuroML for specifying network models

In order to use NeuroML to specify spiking neuronal network models we require detailed descriptions of

1. point spiking neurons (integrate and fire neurons and generalizations thereof),

2. compartmental models with Hodgkin-Huxley-like biophysics,

3. large networks with structured internal connectivity related to a network topology (e.g.: full-connectivity,
1D or 2D map with local connectivity, synfire chains patterns, with/without randomness) and structured
map to map connectivity (e.g., point-to-point, point-to-many, etc.).

At the time of writing, NeuroML supports the second and thirditems, but not the first. However, an ex-
tension to support specification of integrate-and-fire-type neuron models is currently being developed, and will
hopefully be incorporated into the NeuroML standard in the near future.

Specification of Hodgkin-Huxley-type models uses the MorphML, ChannelML and Biophysics standards of
NeuroML (see Fig. 21 for an example. We focus here only on specification of networks, using the NetworkML
standard.

A key point is that a set of neurons and network connectivity may be defined either byextension(providing
the list of all neurons, parameters and connections), for example:

<population name="PopulationA">

<cell_type>CellA</cell_type>

<instances>

<instance id="0"><location x="0" y="0" z="0"/></instance>

<instance id="1"><location x="0" y="10" z="0"/></instance>

<instance id="2"><location x="0" y="20" z="0"/></instance>

. . .

</instances>

</population>

27http://www.w3.org/XML
28http://brainml.org
29http://www.cellml.org
30http://sbml.org
31http://www.w3.org/XML/Schema
32http://morphml.org:8080/NeuroMLValidator

38

(note thatCellA is a cell model described earlier in the NeuroML document), or by specification, i.e. an implicit
enumeration, for example:

<population name="PopulationA">

<cell_type>CellA</cell_type>

<pop_location>

<random_arrangement>

<population_size>200</population_size>

<spherical_location>

<meta:center x="0" y="0" z="0" diameter="100"/>

</spherical_location>

</random_arrangement>

</pop_location>

</population>

Similarly, for connectivity, one may define an explicit listof connections,

<projection name="NetworkConnection1">

<source>PopulationA</source>

<target>PopulationB</target>

<connections>

<connection id="0">

<pre cell_id="0" segment_id = "0"/>

<post cell_id="1" segment_id = "1"/>

</connection>

<connection id="1">

<pre cell_id="2" segment_id = "0"/>

<post cell_id="1" segment_id = "0"/>

</connection>

. . .

</connections>

</projection>

or specify an algorithm to determine the connections:

<projection name="NetworkConnection1">

<source>PopulationA</source>

<target>PopulationB</target>

<connectivity_pattern>

<num_per_source>3</num_per_source>

<max_per_target>2</max_per_target>

</connectivity_pattern>

</projection>

Using NeuroML with a specific simulator

One very interesting feature of XML is that any language suchas NeuroML is not fixed for ever:

• it may be adapted to your own33 way of presenting data and models (e.g. words may be written in your
own native language) as soon as the related logical-structure can be translated to/from standard NeuroML

33Pragmatic generic coding-rules.There are always several ways to represent information as a logical-structure. Here are a few
key ideas to make such choices:
* Maximizing atomicity.i.e. structure the data with a maximal decomposition (e.g. atomic values must only contain “words” else there
is still a “structure” and is thus to be decomposed itself in terms of elements).
* Maximizing factorization.i.e. prohibit data redundancy, but use references to index adata fragment from another part of the data.
This saves place and time, but also avoid data inconsistency.
* Maximizing flat representation.i.e. avoid complex tree structures, when the data can be represented as uniform lists of data, i.e. tables
with simple records, such as a field-set.
* Maximizing generic description.i.e. abstract representation, without any reference to fileformat or operating-system syntax: inde-
pendent of how the data is going to be used.
* Maximizing parameterization of functionality.i.e. specify, as much as possible, the properties (i.e. characteristics / parameters /
options) of a software module or a function as a static set of data (instead of “putting-it-in-the-code”).

39

• add-ons are always easily defined, as soon as they are compatible with the original NeuroML specifica-
tions.

Then using NeuroML simply means editing such data-structures using a suitable XML editor, validating
them (i.e. verify that the related logical-structures are well-formed and valid with respect to the specification,
conditions, etc.) and normalizing them (i.e. translate it to an equivalent logical-structure but without redundancy,
while some factorization simplifies subsequent manipulation).

Translation from this validated normalized form is efficient and safe. Translation can be achieved by one
of two methods: Either a simulator may accept a NeuroML document as input, and translation from NeuroML
elements to native simulator objects is performed by the simulator, or the XSL Transformation language34

may be used to generate native simulator code (e.g.hoc or NMODL in the case of NEURON). For example, the
NeuroML Validator service provides translation of ChannelML and MorphML files to NEURON and GENESIS
formats.

The process of editing, validating, normalizing and translating NeuroML data-structures is summarized in
Figure 22.

Future extensions

The NetworkML standard is at an early stage of development. Desirable future extensions include:

• specification of point spiking models, such as the integrate-and-fire model.

• more flexible specification of numerical parameters. Numerical parameter values are not simple “num-
bers” but satisfy certain standard conditions (parameter values are physical quantities with a unit, may
take a default value, have values bounded within a certain range with minimal/maximal values and are
defined up to a certain precision) or specific conditions defined by a boolean expression, and may have
their default value not simply defined by a constant but from an algebraic expression. In the current Neu-
roML standards all numerical parameters are simple numbers, and all units must be consistent with either
a “physiological units” system or the SI system (they may notbe mixed in a single NeuroML document).

• specifying parameter values as being drawn from a defined random distribution.

Programmatic model specification using Python

For network simulations, we may well require more flexibility than can easily be obtained using a declarative
model specification, but we still wish to obtain simple conversion between simulators, i.e. to be able to write the
simulation code for a model only once, then run the same code on multiple simulators. This requires first the
definition of an API (Application Programming Interface) ormeta-language, a set of functions/classes which
provides a superset of the capabilities of the simulators wewish to run on35. Having defined an API, there are
two possible next stages: (i) each simulator implements a parser which can interpret the meta-language; (ii)
a separate program either translates the meta-language into simulator-specific code or controls the simulator
directly, giving simulator-specific function calls.

In our opinion, the second of these possibilities is the better one, since

1. it avoids replication of effort in writing parsers,

2. we can then use a general purpose, state-of-the-art interpreted programming language, such as Python
or Ruby, rather than a simulator-specific language, and thusleverage the effort of outside developers in
areas that are not neuroscience specific, such as data analysis and visualization36

34http://www.w3.org/TR/xslt
35Note that since we choose a superset, the system must emit a warning/error if the underlying simulator engine does not support a

particular feature.
36For Python, examples include efficient data storage and transfer (HDF5, ROOT), data analysis (SciPy), parallelization(MPI), GUI

toolkits (GTK, QT).

40

The PyNN project37 has begun to develop both the API and the binding to individual simulation engines,
for both purposes using the Python programming language. The API has two parts, a low-level, procedu-
ral API (functionscreate(), connect(), set(), record()), and a high-level, object-oriented API (classes
Population andProjection, which have methods likeset(), record(), setWeights(), etc.). The low-
level API is good for small networks, and perhaps gives more flexibility. The high-level API is good for
hiding the details and the book-keeping, and is intended to have a one-to-one mapping with NeuroML, i.e. a
population element in NeuroML will correspond to aPopulation object in PyNN.

The other thing that is required to write a model once and run it on multiple simulators is standard cell mod-
els. PyNN translates standard cell-model names and parameter names into simulator-specific names, e.g. stan-
dard modelIF curr alpha isiaf neuron in NEST andStandardIF in NEURON, whileSpikeSourcePoisson
is apoisson generator in NEST and aNetStim in NEURON.

An example of the use of the API to specify a simple network is given in Figure 23.
Python bindings currently exist to control NEST (PyNEST38) and Mvaspike, and Python can be used as an

alternative interpreter for NEURON (nrnpython), althoughthe level of integration (how easy it is to access the
native functionality) is variable. Currently PyNN supports PyNEST and NEURON (via nrnpython), and there
are plans to add support for other simulators with Python bindings, initially Mvaspike and CSIM, and to add
support for the distributed simulation capabilities of NEURON and NEST.

Example simulations

Benchmarks 1 and 2 (see Appendix 2) have been coded in PyNN andrun using both NEURON and NEST
(Fig. 24). The results for the two simulators are not identical, since we used different random number sequences
when determining connectivity, but the distributions of inter-spike intervals (ISIs) and of the coefficient of
variation of ISI are almost indistinguishable. All the celland synapse types used in the benchmarks are standard
models in PyNN. Where these models do not come as standard in NEURON or NEST, the model code is
distributed with PyNN (in the case of NEURON) or with PyNEST (in the case of NEST). We do not report
simulation times, as PyNN has not been optimized for either simulator.

37pronounced ‘pine’
38a Python interface to NEST

41

Appendix 2: Benchmark simulations

In this appendix, we present a series of “benchmark” networksimulations using both integrate-and-fire (IF)
or Hodgkin-Huxley (HH) type neurons. They were chosen such that at least one of the benchmark can be
implemented in the different simulators (the code corresponding to these implementations will be provided in
the ModelDB database39.

The models chosen were networks of excitatory and inhibitory neurons inspired from a recent study (Vogels
and Abbott, 2005). This paper considered two types of networks of leaky IF neurons, one with current-based
synaptic interactions (CUBA model), and another one with conductance-based synaptic interactions (CUBA
model; see below). We also introduce here a HH-based versionof the COBA model, as well as a fourth model
consisting of IF neurons interacting through voltage deflections (“voltage-jump” synapses).

Network structure

Each model consisted of 4,000 IF neurons, which were separated into two populations of excitatory and in-
hibitory neurons, forming 80% and 20% of the neurons, respectively. All neurons were connected randomly
using a connection probability of 2%.

Passive properties

The membrane equation of all models was given by:

Cm
dV
dt

= −gL(V−EL) + S(t) + G(t) , (5)

whereCm = 1 µF/cm2 is the specific capacitance,V is the membrane potential,gL = 5×10−5 S/cm2 is the leak
conductance density andEL = -60 mV is the leak reversal potential. Together with a cell area of 20,000µm2,
these parameters give a resting membrane time constant of 20ms and an input resistance at rest of 100 MΩ.
The functionS(t) represents the spiking mechanism andG(t) stands for synaptic interactions (see below).

Spiking mechanisms

IF neurons

In addition to passive membrane properties, IF neurons had afiring threshold of -50 mV. Once the Vm reaches
threshold, a spike is emitted and the membrane potential is reset to -60 mV and remains at that value for a
refractory period of 5 ms.

HH neurons

HH neurons were modified from Traub and Miles (1991) and were described by the following equations:

Cm
dV
dt

= −gL(V−EL) − ḡNa m3h (V−ENa)− ḡKd n4 (V−EK) + G(t) (6)

dm
dt

= αm(V) (1−m)−βm(V) m

dh
dt

= αh(V) (1−h)−βh(V) h

dn
dt

= αn(V) (1−n)−βn(V) n ,

39http://senselab.med.yale.edu/senselab/ModelDB

42

where ḡNa = 100 mS/cm2 and ḡKd = 30 mS/cm2 are the maximal conductances of the sodium current and
delayed rectifier with reversal potentials ofENa = 50 mV andEK = −90 mV. m, h, andn are the activation
variables which time evolution depends on the voltage-dependent rate constantsαm, βm, αh, βh, αn and βn.
The voltage-dependent expressions of the rate constants were modified from the model described by Traub and
Miles (1991):

αm = 0.32∗ (13−V +VT)/[exp((13−V +VT)/4)−1]

βm = 0.28∗ (V −VT −40)/[exp((V−VT −40)/5)−1]

αh = 0.128∗exp((17−V +VT)/18)

βh = 4/[1+exp((40−V +VT)/5)]

αn = 0.032∗ (15−V +VT)/[exp((15−V +VT)/5)−1]

βn = 0.5∗exp((10−V +VT)/40) ,

whereVT = -63 mV adjusts the threshold (which was around -50 mV for theabove parameters).

Synaptic interactions

Conductance-based synapses

For conductance-based synaptic interactions, the membrane equation of neuroni was given by:

Cm
dVi

dt
= −gL(Vi −EL) + S(t) − ∑

j

g ji (t)(Vi −E j) , (7)

whereVi is the membrane potential of neuroni, g ji (t) is the synaptic conductance of the synapse from neuronj
to neuroni, andE j is the reversal potential of that synapse.E j was of 0 mV for excitatory synapses, or -80 mV
for inhibitory synapses.

Synaptic interactions were implemented as follows: when a spike occurred in neuronj, the synaptic con-
ductanceg ji was instantaneously incremented by a quantum value (6 nS and67 nS for excitatory and inhibitory
synapses, respectively) and decayed exponentially with a time constant of 5 ms and 10 ms for excitation and
inhibition, respectively.

Current-based synapses

For implementing current-based synaptic interactions, the following equation was used:

Cm
dVi

dt
= −gL(Vi −EL) + S(t) − ∑

j

g ji (t)(V̄−E j) , (8)

whereV̄ = -60 mV is the mean membrane potential. The conductance quanta were of 0.27 nS and 4.5 nS for
excitatory and inhibitory synapses, respectively. The other parameters are the same as for conductance-based
interactions.

Voltage-jump synapses

For implementing voltage-jump type of synaptic interactions, the membrane potential was abruptly increased
by a value of 0.25 mV for each excitatory event, and it was decreased by 2.25 mV for each inhibitory event.

43

Benchmarks

Based on the above models, the following four benchmarks were implemented.

Benchmark 1: Conductance-based IF network. This benchmark consists of a network of IF neurons
connected with conductance-based synapses, according to the parameters above. It is equivalent to
the COBA model described in Vogels and Abbott (2005).

Benchmark 2: Current-based IF network. This second benchmark simulates a network of IF neurons
connected with current-based synapses, which is equivalent to the CUBA model described in Vo-
gels and Abbott (2005). It has the same parameters as above, except that every cell needs to be
depolarized by about 10 mV, which was implemented by settingEL = -49 mV (see Vogels and
Abbott, 2005).

Benchmark 3: Conductance-based HH network. This benchmark is equivalent to Benchmark 1, except
that the HH model was used.

Benchmark 4: IF network with voltage-jump synapses. This fourth benchmark used voltage-jump synapses,
and has a membrane equation which is analytically solvable,and can be implemented using event-
driven simulation strategies.

For all four benchmarks, the models simulate a self-sustained irregular state of activity, which is easy to
identify: all cells fire irregularly and are characterized by important subthreshold voltage fluctuations. The
neurons must be randomly stimulated during the first 50 ms in order to set the network in the active state.

Supplementary material

The supplementary material to the paper contains the codes for implementing those benchmarks in the different
simulators reviewed here (see Section 3 for details on specific implementations). We provide the codes for those
benchmarks, implemented in each simulator, and this code ismade available in the ModelDB database40.

In addition, we provide a clock-driven implementation of Benchmarks 1 and 2 with Scilab, a free vector-
based scientific software. In this case, Benchmark 1 is integrated with Euler method, second order Runge-Kutta
and Euler with spike timing interpolation (Hansel et al, 1998), while Benchmark 2 is integrated exactly (with
spike timings aligned to the time grid). The event-driven implementation (Benchmark 4) is also possible with
Scilab but very inefficient because the programming language is interpreted, and since the algorithms are asyn-
chronous, the operations cannot be vectorized. Finally, wealso provide a C++ implementation of Benchmark 2
and of a modified version of the COBA model (Benchmark 1, with identical synaptic time constants for excita-
tion and inhibition).

40https://senselab.med.yale.edu/senselab/modeldb/ShowModel.asp?model=83319 (if necessary,

use "reviewme" as password).

44

References

[1] Abbott LF, Nelson SB (2000). Synaptic plasticity: taming the beast. Nat Neurosci, 3 Suppl:1178-1283.
[2] Arnold L (1974). Stochastic Differential Equations: Theory and Applications . J. Wiley and Sons.
[3] Azouz R. (2005) Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal gain, revisited. J. Neu-

rophysiol. 94: 2785-2796.
[4] Badoual M, Rudolph M, Piwkowska Z, Destexhe A and Bal T. (2005) High discharge variability in neurons driven

by current noise. Neurocomputing 65: 493-498.
[5] Bailey, J. and Hammerstrom, D. (1988) Why VLSI Implementations of Associative VLCNs Require Connection

Multiplexing. International Conference on Neural Networks (ICNN 88, IEEE): 173-180, San Diego, USA.
[6] Banitt Y, Martin KAC and Segev I. (2005) Depressed responses of facilitatory synapses. Journal of Neurophysiology

94: 865-870.
[7] Beeman D (2005) GENESIS Modeling Tutorial. Brains, Minds, and Media. 1: bmm220 (urn:nbn:de:0009-3-2206).
[8] Bernard C, Ge YC, Stockley E, Willis JB, Wheal HV (1994) Synaptic integration of NMDA and non-NMDA recep-

tors in large neuronal network models solved by means of differential equations. Biol. Cybern. 70(3): 267-73.
[9] Bhalla U, Bilitch D, Bower JM (1992) Rallpacks: A set of benchmarks for neuronal simulators. Trends in Neurosci.

15: 453-458.
[10] Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283: 381-

387.
[11] Bhalla US (2004) Signaling in small subcellular volumes: II. Stochastic and diffusion effects on synaptic network

properties. Biophs. J. 87: 745-753.
[12] Blake JL, Goodman PH (2002) Speech perception simulated in a biologically-realistic model of auditory neocortex.

(Abstract) J. Investig. Med. 50: 193S.
[13] Bower JM (1995) Reverse engineering the nervous system: An in vivo, in vitro, and in computo approach to under-

standing the mammalian olfactory system. In: SF Zornetzer,JL Davis and C Lau, eds.An Introduction to Neural
and Electronic Networks, second edn. Academic Press, New York. pp. 3-28.

[14] Bower JM, Beeman D (1998)The Book of GENESIS: Exploring Realistic Neural Models withthe GEneral NEural
SImulation System, second edition.Springer, New York.

[15] Brette R (2006a). Exact simulation of integrate-and-fire models with exponential currents. Neural Computation (in
press).

[16] Brette R (2006b) Exact simulation of integrate-and-fire models with synaptic conductances. Neural Computation
18: 2004-2027.

[17] Brette R, Gerstner W (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal
activity. J Neurophysiol, 94: 3637-3642.

[18] Brown R (1988). Calendar queues: a fast 0(1) priority queue implementation for the simulation event set problem. J
Commun. ACM, 31(10):1220-1227.

[19] Carnevale NT and Hines ML. (2006)The NEURON Book.Cambridge University Press, Cambridge, UK.
[20] Carriero, N. and Gelernter, D. (1989) Linda in context.Communications of the ACM 32: 444-458.
[21] Claverol E, Brown A, Chad J (2002). Discrete simulationof large aggregates of neurons. Neurocomputing, 47:277-

297.
[22] Connollly C, Marian I, Reilly R (2003). Approaches to efficient simulation with spiking neural networks. In WSPC

.
[23] Cormen T, Leiserson C, Rivest R, Stein C (2001).Introduction to Algorithms, Second Edition.MIT Press.
[24] Crook S, Beeman D, Gleeson P, Howell F (2005) XML for model specification in neuroscience. Brains, Minds and

Media 1: bmm228 (urn:nbn:de:0009-3-2282)
[25] Daley D, Vere-Jones D (1988).An Introduction to the Theory of Point processes.Springer, New-York.
[26] Day, M., Carr, D.B., Ulrich, S., Ilijic, E., Tkatch, T.,and Surmeier, D.J. (2005) Dendritic excitability of mouse

frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and k(leak) channels. J. Neurosci.
25: 8776-8787.

[27] Delorme A, Thorpe SJ (2003). Spikenet: an event-drivensimulation package for modelling large networks of spiking
neurons. Network, 14(4):613-627.

[28] De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current
clamps in slice. J. Neurophysiol. 71: 375-400.

[29] Destexhe A, Mainen Z, Sejnowski T (1994a). An efficient method for computing synaptic conductances based on a
kinetic model of receptor binding. Neural Computation 6: 14-18.

[30] Destexhe A, Mainen Z, Sejnowski T (1994b). Synthesis ofmodels for excitable membranes, synaptic transmission
and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1: 195-230.

45

[31] Destexhe, A. and Sejnowski, T.J. (2001)Thalamocortical Assemblies.Oxford University Press, New York.
[32] Diesmann, M. and Gewaltig, M.-O. (2002). NEST: An environment for neural systems simulations. In T. Plesser and

V. Macho (Eds.), Forschung und wisschenschaftliches Rechnen, Beitrage zum Heinz-Billing-Preis 2001, Volume 58
of GWDG-Bericht, pp. 43-70. Gottingen: Ges. fur Wiss. Datenverarbeitung.

[33] Djurfeldt, M., Johansson, C., Ekeberg,Ö., Rehn, M., Lundqvist, M., and Lansner, A. (2005). Massively parallel sim-
ulation of brain-scale neuronal network models. TechnicalReport TRITA-NA-P0513, School of Computer Science
and Communication, Stockholm.

[34] Drewes R, Maciokas JB, Louis SJ, Goodman PH (2004) An evolutionary autonomous agent with visual cortex and
recurrent spiking columnar neural network. Lecture Notes in Computer Science 3102: 257-258.

[35] Drewes R (2005) Modeling the brain with NCS and Brainlab. LINUX Journal online.
http://www.linuxjournal.com/article/8038

[36] Ermentrout B. (2002) Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers
and students. SIAM

[37] Ermentrout B, Kopell N (1986). Parabolic bursting in anexcitable system coupled with a slow oscillation. Siam J
Appl Math 46: 233-253.

[38] Ferscha, A. (1996). Parallel and distributed simulation of discrete event systems. In A. Y. Zomaya (Ed.),Parallel
and Distributed Computing Handbook, Chapter 35, pp. 1003–1041. McGraw-Hill.

[39] Fransén, E. and Lansner, A. (1998). A model of corticalassociative memory based on a horizontal network of
connected columns.Network: Computation in Neural Systems9: 235-264.

[40] Froemke RC, Dan Y (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature
416: 433-438.

[41] Fujimoto, R. M. (2000).Parallel and distributed simulation systems. New York: Wiley.
[42] Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M. and Rossi, F. (2001)Gnu Scientific Library:

Reference Manual.Bristol: Network Theory Limited.
[43] Gara, A., Blumrich, M. A., Chen, D., Chiu, G. L.-T., Coteus, P., Giampapa, M. E., Haring, R. A., Heidelberger, P.,

Hoenicke, D., Kopcsay, G. V., Liebsch, T. A., Ohmacht, M., Steinmacher-Burow, B. D., Takken, T., and Vranas, P.
(2005). Overview of the Blue Gene/L system architecture.IBM Journal of Reasearch and Development49: 195-212.

[44] Gerstner W, Kistler WM (2002). Mathematical formulations of hebbian learning. Biol Cybern, 87: 404-415.
[45] Giugliano M (2000). Synthesis of generalized algorithms for the fast computation of synaptic conductances with

markov kinetic models in large network simulations. NeuralComputation 12: 903-931.
[46] Giugliano M, Bove M, Grattarola M (1999). Fast calculation of short-term depressing synaptic conductances. Neural

Computation 11: 1413-1426.
[47] Goddard N, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D (2001) Towards NeuroML: Model Description

Methods for Collaborative Modelling in Neuroscience. Phil. Trans. Royal Society B. 356: 1209-1228.
[48] Gupta A, Wang Y, Markram H (2000) Organizing principlesfor a diversity of GABAergic interneurons and synapses

in the neocortex. Science 287: 273-278.
[49] Gütig R, Aharonov R, Rotter S, Sompolinsky H (2003). Learning input correlations through non-linear asymmetric

hebbian plasticity. J. Neurosci. 23: 3697-3714.
[50] Gütig R, Sompolinsky H (2006). The tempotron: a neuronthat learns spike timing-based decisions. Nat Neurosci 9:

420-428.
[51] Hammarlund, P. and Ekeberg,Ö. (1998). Large neural network simulations on multiple hardware platforms.J.

Comput. Neurosci.5: 443-459.
[52] Hansel D, Mato G, Meunier C, Neltner L (1998). On numerical simulations of integrate-and-fire neural networks.

Neural Computation 10: 467-483.
[53] Hereld M, Stevens RL, Teller J, van Drongelen W (2005) Large Neural Simulations on Large Parallel Computers.

Int. J. Bioelectromagnetism 7: 44-46.
[54] Hindmarsh, A.C, Brown, P.N., Grant, K.E., Lee, S.L, Serban, R., Shumaker, D.E., Woodward, C.S. (2005) SUNDI-

ALS: suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software
31: 363-396.

[55] Hines, M. (1984) Efficient computation of branched nerve equations. Int. J. Bio-Med. Comput. 15: 69-76.
[56] Hines, M. (1989) A program for simulation of nerve equations with branching geometries. Int. J. Bio-Med. Comput.

24: 55-68.
[57] Hines, M. and Carnevale, N. T. (1997). The neuron simulation environment.Neural Computation9: 1179-1209.
[58] Hines, M.L. and Carnevale, N.T. (2000) Expanding NEURON’s repertoire of mechanisms with NMODL. Neural

Computation 12: 995-1007.
[59] Hines, M.L. and Carnevale, N.T. (2001) NEURON: a tool for neuroscientists. The Neuroscientist 7: 123-135.
[60] Hines, M.L. and Carnevale, N.T. (2004) Discrete event simulation in the NEURON environment. Neurocomputing

46

58-60: 1117-1122.
[61] Hirsch M, Smale S (1974).Differential Equations, Dynamical Systems, and Linear Algebra. Pure and Applied

Mathematics.Academic Press.
[62] Honeycutt RL (1992). Stochastic runge-kutta algorithms. I. White noise. Physical Review A 45: 600-603.
[63] Houweling, A.R., Bazhenov, M., Timofeev, I., Steriade, M., and Sejnowski, T.J. (2005) Homeostatic synaptic plas-

ticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb. Cortex 15: 834-845.
[64] Hugues E, Guilleux F, Rochel O (2002) Contour detectionby synchronization of Integrate-and-Fire neurons. Pro-

ceedings of the 2nd Workshop on Biologically Motivated Computer Vision - BMCV 2002, Tbingen, Germany.
Lecture Notes in Computer Science 2525: 60-69.

[65] Izhikevich EM (2003). Simple model of spiking neurons.IEEE Transactions on Neural Networks 14: 1569-1572.
[66] Jahnke A, Roth U, Schoenauer T (1998) Digital simulation of spiking neural networks. In: Maass W, Bishop CM,

editors,Pulsed Neural Networks, MIT Press.
[67] Johnston, D. and Wu, S.M.-S. (1995)Foundations of Cellular Neurophysiology.MIT Press, Cambridge, MA.
[68] Kanold, P.O. and Manis, P.B. (2005) Encoding the timingof inhibitory inputs. J. Neurophysiol. 93: 2887-2897.
[69] Kellogg MM, Wills HR, Goodman PH (1999) Cumulative synaptic loss in aging and Alzheimer’s dementia: A

biologically realistic computer model. (Abstract) J Investig Med 47: 17S.
[70] Kernighan, B.W. and Pike, R. (1984) Appendix 2: Hoc manual. In: The UNIX Programming Environment.Engle-

wood Cliffs, NJ: Prentice-Hall, pp. 329-333.
[71] Kohn J, Wörgötter F (1998). Employing the Z-transform to optimize the calculation of the synaptic conductance of

NMDA and other synaptic channels in network simulations. Neural Computation 10: 1639-1651.
[72] Kozlov, A., Lansner, A., and Grillner, S. (2003). Burstdynamics under mixed nmda and ampa drive in the models

of the lamprey spinal cpg.Neurocomputing52-54: 65-71.
[73] Kozlov, A., Lansner, A., Grillner, S., and Kotaleski, J. H. (2006). Locomotor rhythm generation in a population of

excitatory interneurons of the lamprey hemicord network-acomputer simulation study.Submitted.
[74] Laing CR. (2006) On the application of ”equation-free”modelling to neural systems. J. Comput. Neurosci., in press.
[75] Lee G, Farhat NH (2001). The double queue method: a numerical method for integrate-and-fire neuron networks.

Neural Networks 14: 921-932.
[76] Lundqvist, M., Rehn, M., Djurfeldt, M., and Lansner, A.(2006). Attractor dynamics in a modular network model of

neocortex.Network, in press.
[77] Lytton WW (1996). Optimizing synaptic conductance calculation for network simulations. Neural Computation 8:

501-509.
[78] Lytton, W.W. (2002)From Computer to Brain.Springer-Verlag, New York.
[79] Lytton WW, Hines ML (2005). Independent variable time-step integration of individual neurons for network simu-

lations. Neural Computation 17: 903-921.
[80] Macera-Rios JC, Goodman PH, Drewes R, Harris FC Jr (2004) Remote-Neocortex Control of Robotic Search and

Threat Identification. Robotics and Autonomous Systems 46:97-110.
[81] Maciokas JB, Goodman PH, Kenyon JL, Toledo-Rodriquez M, Markram H (2005) Accurate dynamical model of

interneuronal GABAergic channel physiologies. Neurocomputing 65: 5-14.
[82] Makino T (2003). A discrete-event neural network simulator for general neuron models. Neural Comput. and Applic.

11: 210-223.
[83] Marian I, Reilly R, Mackey D (2002). Efficient event-driven simulation of spiking neural networks. Proceedings of

the 3rd WSEAS International Conference on Neural Networks and Applications.
[84] Markram H, Lubke J, Frotscher M, Roth A, Sakmann B (1997a) Physiology and anatomy of synaptic connections

between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500: 409-440.
[85] Markram H, Lubke J, Frotscher M, Sakmann B (1997b) Regulation of synaptic efficacy by coincidence of postsy-

naptic APs and EPSPs. Science 275: 213-215.
[86] Markram H, Dimitri P, Gupta A, Tsodyks M. (1998a) Potential for multiple mechanisms, phenomena and algorithms

for synaptic plasticity at single synapses. Neuropharmacology 37: 489-500.
[87] Markram H, Wang Y, Tsodyks M (1998b). Differential signaling via the same axon of neocortical pyramidal neurons.

Proc. Natl. Acad. Sci. 95: 5323-5328.
[88] Mattia M, Del Giudice P (2000). Efficient event-driven simulation of large networks of spiking neurons and dynam-

ical synapses. Neural Computation 12: 2305-2329.
[89] Markaki, M., Orphanoudakis, S., and Poirazi, P. (2005)Modelling reduced excitability in aged CA1 neurons as a

calcium-dependent process. Neurocomputing 65: 305-314.
[90] Mayrhofer R, Affenzeller M, Prähofer H, Hfer G, Fried A(2002). Devs simulation of spiking neural networks.

In Proceedings of Cybernetics and Systems (EMCSR), volume 2, pages 573-578. Austrian Society for Cybernetic
Studies.

47

[91] Migliore, M., Hines, M.L., and Shepherd, G.M. (2005) The role of distal dendritic gap junctions in synchronization
of mitral cell axonal output. J. Computat. Neurosci. 18: 151-161.

[92] Migliore, M., Cannia, C., Lytton, W.W., Markram, H. andHines, M.L. (2006) Parallel network simulations with
NEURON. J. Comput. Neurosci. 21: 119-129.

[93] Moffitt, M.A. and McIntyre, C.C. (2005) Model-based analysis of cortical recording with silicon microelectrodes.
Clin. Neurophysiol. 116: 2240-2250.

[94] Moore, J.W. and Stuart, A.E. (2000)Neurons in Action: Computer Simulations with NeuroLab.Sinauer Associates,
Sunderland, MA.

[95] Morrison, A., Aertsen, A. and Diesmann, M. (2006). Spike-timing dependent plasticity in balanced random net-
works. Neural Computation, in press.

[96] Morrison, A., Mehring, C., Geisel, T., Aertsen, A. and Diesmann, M. (2005). Advancing the boundaries of high
connectivity network simulation with distributed computing. Neural Computation 17: 1776-1801.

[97] Morrison, A., Straube, S., Plesser, H. E. and Diesmann,M. (2006). Exact subthreshold integration with continuous
spike times in discrete time neural network simulations. Neural Computation, in press.

[98] Natschläger T, Markram H, Maass W (2003). Computer models and analysis tools for neural microcircuits. In:
Kötter, R, editor,Neuroscience Databases. A Practical Guide, chapter 9, pp. 123–138. Kluwer Academic Publishers,
Boston, MA.

[99] Nenadic Z, Ghosh BK, Ulinski P (2003) Propagating wavesin visual cortex: A large scale model of turtle visual
cortex. J. Comput. Neurosci. 14: 161-184.

[100] Olshausen BA, Field DJ (2005). How close are we to understanding V1? Neural Computation 17: 1665-1699.
[101] Opitz BA, Goodman PH (2005) In silico knockin/knockout in model neocortex suggests role of Ca-dependent K+

channels in spike-timing information. (Abstract) J. Investig. Med. 53: 193S.
[102] Prescott, S.A. and De Koninck, Y. (2005) Integration time in a subset of spinal lamina I neurons is lengthened by

sodium and calcium currents acting synergistically to prolong subthreshold depolarization. J. Neurosci. 25: 4743-
4754.

[103] Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1993).Numerical Recipes in C: The Art of Scientific Com-
puting.Cambridge University Press.

[104] Reutimann J, Giugliano M, Fusi S (2003). Event-drivensimulation of spiking neurons with stochastic dynamics.
Neural Computation 15: 811-830.

[105] Ripplinger MC, Wilson CJ, King JG, Frye J, Drewes R, Harris FC, Goodman PH. (2004) Computational model of
interacting brain networks. (Abstract) J. Investig. Med. 52: 155S.

[106] Rochel O, Martinez D (2003) An event-driven frameworkfor the simulation of networks of spiking neurons. in
proc. 11th European Symposium On Artificial Neural Networks- ESANN’2003, Bruges, Belgium. pp. 295-300

[107] Rochel O, Vieville T (2006) One step towards an abstract view of computation in spiking neural networks (abstract).
10th international conference on cognitive and neural systems, Boston , Massachusetts 02215 USA.

[108] Rochel O, Cohen N (2006) Real time computation: zooming in on population codes. BioSystems, in press
(doi:10.1016/j.biosystems.2006.09.021).

[109] Rotter S, Diesmann M (1999). Exact digital simulationof time-invariant linear systems with applications to neu-
ronal modeling. Biol. Cybern. 81: 381-402.

[110] Rubin, J., Lee, D. and Sompolinsky, H. (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity.
Phys. Rev. Lett. 86: 364367.

[111] Rudolph M, Destexhe A (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for
event-driven simulation strategies. Neural Computation 18: 2146-2210.

[112] Rudolph M, Destexhe A (2007). How much can we trust neural simulation strategies ? Neurocomputing, in press.
[113] Saghatelyan, A., Roux, P., Migliore, M., Rochefort, C., Desmaisons, D., Charneau, P., Shepherd, G.M., and Lledo,

P.M. (2005) Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal
deprivation. Neuron 46: 103-116.

[114] Sanchez-Montanez M (2001). Strategies for the optimization of large scale networks of integrate and fire neurons.
In Mira J, Prieto A, editors, IWANN, volume 2084/2001 of Lecture Notes in Computer Science. Springer-Verlag.

[115] Sandström, M., Kotaleski, J. H., and Lansner, A. (2006). Scaling effects in a model of the olfactory bulb.Neuro-
computing, in press.

[116] Shelley, MJ, Tao, L (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.
J Comput. Neurosci. 11: 111-119.

[117] Sleator, D. and Tarjan, R. (1983) Self-adjusting binary trees. Proceedings of the 15th ACM SIGACT Symposium
on Theory of Computing, pp. 235-245.

[118] Sloot, A., Kaandorp, J. A., Hoekstra, G., & Overeinder, B. J. (1999). Distributed simulation with cellular automata:
Architecture and applications. In J. Pavelka, G. Tel, & M. Bartosek (Eds.),SOFSEM’99, LNCS, Berlin, Heidelberg,

48

pp. 203–248. Springer-Verlag.
[119] Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron

32: 339-350.
[120] Song S, Miller KD, Abbott LF (2000). Competitive hebbian learning through spike-timing-dependent synaptic

plasticity. Nature Neurosci. 3: 919-926.
[121] Stricanne B, Bower JM (1998) A network model of the somatosensory system cerebellum, exploring recovery from

peripheral lesions at various developmental stages in rats. (Abstract) Soc. Neurosci. Abstr. 24: 669.
[122] Tonnelier A, Belmabrouk H, Martinez D (2006). Event-driven simulations of nonlinear integrate-and-fire neurons.

Submitted.
[123] Traub, R.D. and Miles, R. (1991)Neuronal Networks of the Hippocampus.Cambridge University Press, Cambridge

UK.
[124] Traub, R.D., Contreras, D., Cunningham, M.O., Murray, H., LeBeau, F.E.N., Roopun, A., Bibbig, A., Wilent,

W.B., Higley, M.J., and Whittington, M.A. (2005) Single-column thalamocortical network model exhibiting gamma
oscillations, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93: 2194-2232.

[125] Tsodyks M, Pawelzik K, Markram H (1998). Neural networks with dynamic synapses. Neural Computation 10:
821-835.

[126] Tuckwell H (1988)Introduction to Theoretical Neurobiology, Vol 1: Linear Cable Theory and Dendritic Structure.
Cambridge University Press, Cambridge UK.

[127] van Emde Boas P, Kaas R, Zijlstra E (1976). Design and implementation of an efficient priority queue. Theory of
Computing Systems 10: 99-127.

[128] Vitko, I., Chen, Y.C., Arias, J.M., Shen, Y., Wu, X.R.,and Perez-Reyes, E. (2005) Functional characterization and
neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J.
Neurosci. 25: 4844-4855.

[129] Vogels TP, Abbott LF. (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J.
Neurosci. 25: 10786-10795.

[130] Waikul KK, Jiang, LJ, Wilson, EC, Harris, FC Jr, Goodman, PH. (2002) Design and implementation of a web portal
for a NeoCortical Simulator. Proceedings of the 17th International Conference on Computers and Their Applications
(CATA 2002), pp. 349-353.

[131] Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS (2006) Heterogeneity in the pyramidal
network of the medial prefrontal cortex. Nat. Neurosci. 9: 534-542.

[132] Watts L (1994). Event-driven simulation of networks of spiking neurons. Advances in Neural Information Process-
ing Systems, pages 927-934.

[133] Wiebers JL, Goodman PH, Markram H. (2000) Blockade of A-type potassium channels recovers memory impair-
ment caused by synaptic loss: Implications for Alzheimer’sdementia. (Abstract) J. Investig. Med. 48: 283S.

[134] Wills HR, Kellogg MM, Goodman PH. (1999) A biologically realistic computer model of neocortical associative
learning for the study of aging and dementia. (Abstract) J. Investig. Med. 47: 11S.

[135] Wilson, MA, Bower, JM (1989) The simulation of large-scale neural networks. InMethods in neuronal modeling:
From synapses to networks, eds C Koch and I Segev, MIT Press, 291-333.

[136] Wohrer A, Kornprobst P, Vieville T (2006) From Light toSpikes: a Large-Scale Retina Simulator. Proceedings of
the IJCNN 2006, Vancouver, Canada. pp. 8995–9003, ISBN: 0-7803-9490-9.

[137] Wolf, J.A., Moyer, J.T., Lazarewicz, M.T., Contreras, D., Benoit-Marand, M., O’Donnell, P., and Finkel, L.H.
(2005) NMDA/AMPA ratio impacts state transitions and entrainment to oscillations. J. Neurosci. 25: 9080-9095.

[138] Zeigler B, Praehofer H, Kim T (2000).Theory of Modeling and Simulation. Second Edition. Integrating Discrete
Event and Continuous Complex Dynamic Systems.Academic Press.

[139] Zeigler BP, Vahie S (1993) DEVS formalism and methodology: unity of conception/diversity of application. In.
Proceedings of the 1993 Winter Simulation Conference, Los Angeles, CA, December 12-15. pp. 573-579.

49

Question NEURON GENESIS NEST NCS CSIM XPP SPLIT Mvaspike

HH B.I. B.I. YES B.I. B.I. YES B.I. POSS
leaky IF B.I. POSS YES B.I. B.I. YES POSS** B.I.
Izhikevich IF YES B.I. YES NO B.I. YES POSS** POSS**
Cable eqs B.I. B.I. NO NO NO YES B.I. NO
ST plasticity YES B.I. YES B.I. B.I. YES B.I. YES
LT Plasticity YES YES YES B.I. B.I. YES NO** YES
Event-based B.I. NO YES NO NO YES NO YES
exact B.I. - YES - - NO - YES
Clock-based B.I. B.I. YES B.I. YES YES YES POSS**
extrapolated B.I. NO YES NO ? YES B.I. POSS
G synapses B.I. B.I. YES B.I. B.I. YES B.I. POSS**
parallel B.I. YES B.I. B.I. NO** NO B.I. NO**
graphics B.I. B.I. NO(*) NO(*) NO(*) YES NO NO
simple analysis B.I. B.I. YES NO(*) NO(*) YES NO NO
complx analysis B.I. YES NO(*) NO(*) NO(*) YES NO NO
development YES YES YES YES YES YES YES YES
how many p. 3 2-3 4 2-3 2 1 2 1
support YES YES YES YES YES YES YES YES
type e,p,c e e e e e e e
user forum YES YES YES NO NO YES YES NO
publ list YES YES YES YES YES NO NO NO
codes YES YES YES YES YES YES NO NO
online manual YES YES YES YES YES YES YES YES
book YES YES NO NO NO YES NO NO
XML import NO** POSS NO** NO** NO YES NO NO**
XML export B.I. NO** NO** NO** NO NO NO NO**
web site YES YES YES YES YES YES YES YES
LINUX YES YES YES YES YES YES YES YES
Windows YES YES YES YES YES YES NO NO
Mac-Os YES YES YES NO NO YES NO NO
Interface B.I. B.I. POSS B.I YES POSS POSS POSS
Save option B.I. YES NO** B.I. NO NO NO NO

Table 1: Comparison of features of the different simulators.

50

Table caption

Table 1: Comparison of features of the different simulators

Different questions were asked (see below), and for each question, the answer is either:
B.I. = Built-in feature, incorporated in the simulator without need to load additional mechanisms;
YES = feature very easy to simulate or implement (ie., a few minutes of programming);
POSS = feature possible to implement, but requires a bit of user programming;
NO = feature not implemented, would require modifying the code;
** = feature planned to be implemented in a future version of the simulator;
(*) graphical interface and analysis possible via front-ends like Python or MATLAB.

The list of questions were:
HH: can it simulate HH models?;
leaky IF: can it simulate leaky IF models?;
Izhikevich IF: can it simulate multivariable IF models, forexample Izhikevich type?;
Cable eqs: can it simulate compartmental models with dendrites?;
ST plasticity: can it simulate short-term synaptic plasticity? (facilitation, depression);
LT Plasticity: can it simulate long-term synaptic plasticity? (LTP, LTD, STDP);
Event-based: can it simulate event-based strategies?;
exact: in this case, is the integration scheme exact?;
Clock-based: can it simulate clock-based strategies? (e.g., Runge-Kutta);
interpolated: in this case, does it use extrapolation for spike times?;
G synapses: can it simulate conductance-based synaptic interactions?;
parallel: does it support parallel processing?;
graphics: does it have a graphical interface?;
simple analysis: is it possible to use the interface for simple analysis? (spike count, correlations, etc);
complx analysis: can more complex analysis be done? (parameter fitting, fft, matrix operations, ...);
development: is it currently developed?;
how many p.: if yes, how many developers are working on it?;
support: is it supported? (help for users);
type: what type of support (email, phone, consultation?);
user forum: is there a forum of users or mailing list?;
publ list: is there a list of publications of articles that used it?;
codes: are there codes available on the web of published models?;
online manual: are there tutorials and reference material available on the web?;
book: are there published books on the simulator?
XML import: can it import model specifications in XML?
XML export: can it export model specifications in XML?
web site: is there a web site of the simulator where all can be found? (including help and source codes)
LINUX: does it run on LINUX?
Windows: does it run on Windows? (98, 2K, XP)
Mac-Os: does it run on Mac-OS X?
Interface: Is there a possibility to interface the simulator to outside signals ? (such as a camera, or a real neuron)
Save option: Does it have a ”save option”, (different than ctrl-z), allowing the user to interrupt a simulation,
and continue it later on ? (this feature is important on a cluster when simulations must be interrupted)

51

t=0

while t<duration

for every neuron State updates
process incoming spikes

advance neuron dynamics by dt

end

for every neuron

if vm>threshold

reset neuron Propagation
for every connection of spikes

send spike

end

end

end

t=t+dt

end

Figure 1: A basic clock-driven algorithm

while queue not empty and t<duration

extract event with lowest timing Process event
(= timing t, target i, weight w)

compute state of neuron i at time t

update state of neuron i (+w)

if vm>threshold

for each connection i->j Propagate spike
insert event in the queue

end

reset neuron i

end

end

Figure 2: A basic event-driven algorithm with instantaneous synaptic interactions

52

for every neuron i

compute timing of next spike Initialization
insert event in priority queue

end

while queue not empty and t<duration

extract event with lowest timing Process spike
(event = timing t, neuron i)

compute state of neuron i at time t

reset membrane potential

compute timing of next spike

insert event in queue

for every connection i->j Communicate spike
compute state of neuron j at time t

change state with weight w(i,j)

compute timing of next spike

insert/change/suppress event in queue

end

end

Figure 3: A basic event-driven algorithm with non-instantaneous synaptic interactions

53

Figure 4: Modelling strategies and dynamics in neuronal systems without STDP.
A: Small differences in spike times can accumulate and lead to severe delays or even cancellation (see arrows)
of spikes, depending on the simulation strategy utilized orthe temporal resolution within clock-driven strategies
used. B: Rasterplots of spike events in a small neuronal network of LIF neurons simulated with event-driven and
clock-driven approaches with different temporal resolutions. Observed differences in neural network dynamics
include delays, cancellation or generation of synchronousnetwork events (Figure modified from Rudolph &
Destexhe, 2007).

A B C

22

25
avg rate (kHz)

20

ra
te

 (
H

z
)

10

30

time (s)
200 400 600 800

cd 0.1 ms
cd 0.01 ms
cd 0.001 ms
ed

re
la

ti
v
e

p

ro
b

a
b

ili
ty

weight
0.1 0.3

10

20
after
500 s

2

4

6
after
1000 s

STDP

STDP

spike threshold

t+dtt

ed
cd

Figure 5: Dynamics in neuronal systems with STDP.
A: Impact of the simulation strategy (clock-driven:cd; event-driven:ed) on the facilitation and depression of
synapses. B: Time course and average rate (inset) in a LIF model with multiple synaptic input channels for
different simulation strategies and temporal resolution.C: Synaptic weight distribution after 500 s and 1,000 s
(Figure modified from Rudolph & Destexhe, 2007).

54

Figure 6: NEURON graphical user interface.
In developing large scale networks, it is helpful to start bydebugging small prototype nets. NEURON’s GUI,
especially its Network Builder (shown here), can simplify this task. Also, at the click of a button the Network
Builder generates hoc code that can be reused as the buildingblocks for large scale nets (see chapter 11,
Modeling networksin Carnevale and Hines 2006).

55

Figure 7: Parallel simulations using NEURON.
A. Four benchmark network models were simulated on 1, 2, 4, 6,8, and 12 CPUs of a Beowulf cluster (6 nodes,
dual CPU, 64-bit 3.2 GHz Intel Xeon with 1024 KB cache). Dashed lines indicate ”ideal speedup” (run time
inversely proportional to number of CPUs). Solid symbols are run time, open symbols are average computation
time per CPU, and vertical bars indicate variation of computation time. The CUBA and CUBADV models
execute so quickly that little is gained by parallelizing them. The CUBA model is faster than the more efficient
CUBADV because the latter generates twice as many spikes (spike counts are COBAHH 92,219, COBA 62,349,
CUBADV 39,280, CUBA 15,371). B. The Pittsburgh Supercomputing Center’s Cray XT3 (2.4 GHz Opteron
processors) was used to simulate a NEURON implementation ofthe thalamocortical network model of Traub
et al. (2005). This model has 3,560 cells in 14 types, 3,500 gap junctions, 5,596,810 equations, and 1,122,520
connections and synapses, and 100 ms of model time it generates 73,465 spikes and 19,844,187 delivered
spikes. The dashed line indicates ”ideal speedup” and solidcircles are the actual run times. The solid black
line is the average computation time, and the intersecting vertical lines mark the range of computation times
for each CPU. Neither the number of cell classes nor the number of cells in each class were multiples of the
number of processors, so load balance was not perfect. When 800 CPUs were used, the number of equations per
CPU ranged from 5954 to 8516. Open diamonds are average spikeexchange times. Open squares mark average
voltage exchange times for the gap junctions, which must be done at every time step; these lie on vertical bars
that indicate the range of voltage exchange times. This range is large primarily because of synchronization time
due to computation time variation across CPUs. The minimum value is the actual exchange time.

56

Figure 8: The GUI for the GENESIS implementation of the HH benchmark, using the dual-exponential form
of synaptic conductance.

Figure 9: Membrane potentials for four selected neurons of the Instantaneous Conductance VA HH Model in
GENESIS.
A. The entire 5 seconds of the simulation. B. Detail of the interval 3.2–3.4 sec.

57

1 2 3
0

25

50

75

100

125

benchmark

si
m

ul
at

io
n

tim
e

[s
]

0.125 0.25 0.5 1
0.5

1

2

5

10

benchmark 4

Synaptic delay [ms]

si
m

ul
at

io
n

tim
e

[s
]

1 2 4 6 8
3

10

30

100

300

machines

tim
e

[s
]

A B

C

Figure 10: Performance of NEST on Benchmarks 1-4 and an additional benchmark (5) with spike timing
dependent plasticity (STDP).
A. Simulation time for one biological second of Benchmarks 1-3 distributed over two processors, spiking su-
pressed, with a synaptic delay of 0.1 ms. The horizontal lines indicate the simulation times forthe benchmarks
with the synaptic delay increased to 1.5 ms. B. Simulation time for one biological second of Benchmark 4 as a
function of the minimum synaptic delay in double logarithmic representation. The gray line indicates a linear
fit to the data (slope−0.8). C. Simulation time for one biological second of Benchmark 5, a network of 11250
neurons and connection probability of 0.1 (total number of synapses: 12.7×106) as a function of the number of
processors in double logarithmic representation. All synapses static, triangles; excitatory-excitatory synapses
implementing multiplicative STDP with an all-to-all spikepairing scheme, circles. The gray line indicates a
linear speed-up.

58

Figure 11: NCS file specifications and example of simulation.
A. Hierarchy of the NCS Command File Objects. The file is ASCII-based with simple object delimiters. Brain-
lab scripting tools are available for repetitive structures (Drewes, 2005). B. 1-second spike rastergram of 100
arbitrarily selected neurons in the benchmark simulation.

0 0.1 0.2 0.3 0.4

−70
−60
−50

0 0.1 0.2 0.3 0.4
0

50

100

0 0.1 0.2 0.3 0.4

−70
−60
−50

0 0.1 0.2 0.3 0.4
0

100

200

0 0.1 0.2 0.3 0.4
−80

−60

−40

−20

0

time [sec]
0 0.1 0.2 0.3 0.4

0

50

100

time [sec]

Figure 12: Results of CSIM simulations of the benchmarks 1 to3 (top to bottom).
The left panels show the voltage traces (in mV) of a selected neuron. For Benchmark 1 (COBA) and Bench-
mark 2 (CUBA) models (top two rows), the spikes superimposedas vertical lines. The right panels show the
spike raster for randomly selected neurons for each of the three benchmarks.

59

1 2 3 4 5 6

1

4

8

16

32

machines

si
m

ul
at

io
n

tim
e

[s
ec

]

Figure 13: Performance of PCSIM.
The time needed to simulate the Benchmark 2 (CUBA) network (1ms synaptic delay, 0.1ms time step) for one
second of biological time (solid line) as well as the expected times (dashed line) are plotted against the number
of machines (Intel Xeon, 3.4 Ghz, 2 Mb cache). The CUBA model was simulated for three different sizes: 4000
neurons and 3.2×105 synapses (stars), 10000 neurons and 2×106 synapses (circles), and 20000 neurons and
20×106 synapses (diamonds).

Figure 14:XPPAUT interface for a network of 200 excitatory and 50 inhibitory Hodgkin-Huxley neurons with
random connectivity, conductance-based dynamical synapses.
Each neuron is also given a random drive. Main window, a three-dimensional phase plot, and an array plot are
shown.

60

-70

-65

-60

-55

-50

-45

0 5 10 15 20 25 30 35 40 45 50

time

tim
e

inhibitoryexcitatory

V(t)

Figure 15: Persistent state in an integrate-and-fire network with 400 excitatory and 100 inhibitory cell.
XPPAUT simulation with exponential conductance-based synapses,sparse coupling and random
drive.Excitatory and inhibitory synapses are shown as wellas voltages traces from 3 neurons.

 0

 1

 2

 3

 4

 500 1000 1500 2000

sp
ee

du
p

co
m

pa
re

d
to

 5
11

 ta
sk

s:
 T

(5
11

)/
T

(P
)

number of MPI tasks: P

ideal
actual

Figure 16: Speedup for model with 4 million cells and 2 billion synapses simulated with SPLIT on BG/L (from
Djurfeldt et al., 2005).

61

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
el

l #

Time (s)

Figure 17: Raster plot showing spikes of 100 cells during thefirst second of activity (SPLIT simulation of
Benchmark 3).

0 mV

-80 mV
 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73

M
em

br
an

e
po

te
nt

ia
l

Time (s)

Figure 18: Plots of the membrane potential for 3 of the 4000 cells.
The right plot shows a subset of the data in the left plot, withhigher time resolution (SPLIT simulation of
Benchmark 3).

62

Figure 19: Neuronal dynamics from a discrete-event dynamical systems perspective.
Events (t1-t4), corresponding to the state variable switching from the sub-threshold to the firing dynamics, can
occur at any arbitrary point in time. They correspond here tochange of the neuron output that can be passed
to the rest of the systems (e.g. other neurons). Internal changes (e.g. end of the refractory period) can also be
described in a similar way.

Figure 20: Membrane potential of a single neuron, from a Mvaspike implementation of Benchmark 4.
Top: membrane potential dynamics (impulses have been superimposed at firing time to make them more appar-
ent). Bottom: Mvaspike simulation result typically consists of lists of events (here, spiking and reception time,
top and middle panels) and the corresponding state variables at these instants (not shown). In order to obtain the
full voltage dynamics, a post-processing stage is used to add new intermediary values between events (bottom
trace).

63

<?xml version="1.0" encoding="UTF-8"?>

<channelml xmlns="http://morphml.org/channelml/schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:meta="http://morphml.org/metadata/schema"

xsi:schemaLocation="http://morphml.org/channelml/schema

../../Schemata/v1.1/Level2/ChannelML_v1.1.xsd"

units="Physiological Units">

<ion name="k" default_erev="-77.0" charge="1"/> <!-- phys units: mV -->

<channel_type name="KChannel" density="yes">

<meta:notes>Simple example of K conductance in squid giant axon.

Based on channel from Hodgkin and Huxley 1952</meta:notes>

<current_voltage_relation>

<ohmic ion="k">

<conductance default_gmax="36"> <!-- phys units: mS/cm2-->

<gate power="4">

<state name="n" fraction="1">

<transition>

<voltage_gate>

<alpha>

<parameterised_hh type="linoid" expr="A*(k*(v-d))/(1 - exp(-(k*(v-d))))">

<parameter name="A" value="0.1"/>

<parameter name="k" value="0.1"/>

<parameter name="d" value="-55"/>

</parameterised_hh>

</alpha>

<beta>

<parameterised_hh type="exponential" expr="A*exp(k*(v-d))">

<parameter name="A" value="0.125"/>

<parameter name="k" value="-0.0125"/>

<parameter name="d" value="-65"/>

</parameterised_hh>

</beta>

</voltage_gate>

</transition>

</state>

</gate>

</conductance>

</ohmic>

</current_voltage_relation>

</channel_type>

</channelml>

Figure 21: Example of Hodgkin-Huxley K+ conductance specified in ChannelML, a component of NeuroML.

64

.../...

NeuroML Validation
 edition +

Normalization

Translation

Translation

Translation

Neuronal simulator

Hardware implementation

Biological data analysis

edit
correct

translate application

(XSchema + XSL)

(XSLT)

Figure 22: From NeuroML to simulator

cell_params = { ’tau_m’ : 20.0, ’tau_syn’ : 2.0, ’tau_refrac’: 1.0,

’v_rest’: -65.0, ’v_thresh’: -50.0, ’cm’: 1.0}

populationA = Population((10,), "IF_curr_alpha", cell_params)

populationB = Population((5,5), "IF_curr_alpha", cell_params)

populationA.randomInit(’uniform’, v_reset, v_thresh)

connAtoB = Projection(populationA, populationB, ’fixedProbability’, 0.2)

connAtoA = Projection(populationA, populationA, ’distanceDependentProbability’, "exp(-abs(d))")

connBtoA = Projection(populationB, populationA, ’allToAll’)

connAtoB.setWeights(w_AB)

connAtoA.setWeights(w_AA)

connBtoA.setWeights(w_BA)

populationA.record()

populationB.record()

run(1000.0)

populationA.printSpikes("populationA.spiketimes")

populationB.printSpikes("populationA.spiketimes")

Figure 23: Example of the use of the PyNN API to specify a network that can then be run on multiple simulators.

65

Figure 24: Same network model run on two different simulators using the same source code.
The model considered was the Vogels-Abbott integrate-and-fire network with current-based synapses and dis-
playing self-sustained irregular activity states (benchmark 2 in Appendix 2). This network implemented with the
PyNN simulator-independent network modelling API, and simulated using NEST (left column) and NEURON
(right column) as the simulation engines. The same sequenceof random numbers was used for each simula-
tor, so the connectivity patterns were rigorously identical. The membrane potential trajectories of individual
neurons simulated in different simulators rapidly diverge, as small numerical differences are rapidly amplified
by the large degree of recurrency of the circuit, but the interspike interval (ISI) statistics of the populations are
almost identical for the two simulators. (Top row) Voltage traces for two cells chosen at random from the pop-
ulation. (Second row) Spike raster plots for the first 320 neurons in the population. (Third row) Histograms of
ISIs for the excitatory and inhibitory cell populations. (Bottom row) Histograms of the coefficient of variation
(CV) of the ISIs.

66

