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ABSTRACT-This research describes a novel,  alignment-free method of genomic sequence 

comparisons based on absent nucleotide words and expression levels. Testing this method on 

Influenza A virus isolates, three classifications are presented which successfully identify; 1) the 

geographic origins of domestic bird H5N1 isolates through China and Southeast Asia during 

2006, 2) the country of human H5N1 isolates crossing over from domestic bird hosts and, 3) the 

historical flu season from which human H3N2 isolates originated.  Because comparison 

methods used do not rely on alignment,  they are computationally efficient and well suited for 

large numbers of sequences in compehensive flu transmission network delineation. 
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1. INTRODUCTION 
 
  Half a million human global deaths per year have 

been attributed to influenza A virus [6]. In addition, 

the highly pathogenic H5N1 subtype has been 

predicted to cause the next worldwide pandemic 

while it currently compromises live bird trade 

economics. The 60% mortality rate found in human 

H5N1 cases is alarming [11] and its symptoms are 

similar to those found during the Spanish Flu 

epidemic [15] which caused acute illness in 25-30% 

of the world population [32]. Recent human 

infections with avian subtypes H7N7 and H9N2 

have been identified as well in China [18].  There is 

a pressing need to gain a clear understanding of the 

geographic routes through which H5N1 and other 

subtypes of influenza A virus spread and where they 

originate. Such efforts require a powerful method for 

building flu isolate associations which incorporate 

extensive numbers of genomic sequences. 

    We propose a novel and efficient sequence 

similarity detection method. Relationships between 

flu isolates can be determined through a highly 

computationally efficient genomic sequence 

comparison approach. Because of this efficiency, a 

large number of genomic sequences can be 

compared and distinguished in terms of lineage and 

place of origin. This offers a significant 

improvement over current methods available for 

influenza isolate comparisons which are not well 

suited for large amounts of data.  It is our overall 

goal to refine an efficient sequence comparisons 

technique which will allow the full utilization of 

existing flu sequence data to help answer many 

questions regarding the epidemic movement and 

transmission of this virus.   

The rest of this paper is structured as follows.  

Section 2 presents the background and significance 

of the work. Section 3 describes a novel sequence 

comparison measure. Section 4 present three 

classification schemes based on this measure. 

Section 5 presents our conclusions and future work. 

 

2. BACKGROUND and  

SIGNIFICANCE 
  

2.1  CURRENT KNOWLEDGE  
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   Much attention has been given to estimating the 

geographic transmission routes of influenza virus 

through both human and avian populations.  The 

overall global directionality of the human host H3N2 

subtype has most recently been described as starting 

in East-Southeast Asia, then passing to Oceania, and 

also through North America and Europe to South 

America [28]. The tools that researchers have to 

examine isolate relatedness strongly influence the 

strength and focus of any non-theoretical geospatial 

flu transmission mapping.  In [28], the majority of 

sequence comparisons were performed antigenically 

rather than genetically. Only 130 partial genomic 

sequences were compared in parallel with antigenic 

comparisons.  While antigenic comparisons 

elucidate how the virus evolves with regards to 

human host immunity, it focuses only on the 

functionality of specific region(s) of the entire flu 

genome.  In contrast, nucleotide sequence 

comparisons allow a finer level of differencing as 

information representing all point mutations and re-

assortments are included in complete genomic 

sequences. Standard genomic sequence comparison 

methods based on rooted phylogenetic trees are not 

designed to encompass such detail. In [22], 900 

complete genomes from the Northern and Southern 

hemispheres were compared and it is stated that 

even these did not suggest a specific network of viral 

movement.  In similar studies attempting to 

characterize the movement of flu viruses in China 

and Southeast Asia [7, 23, 35, 36], India [27], 

Europe [3,29] and Africa [9], even smaller sample 

sizes are generally used and compared via antigenic 

or genomic sequence differences. Consistent in most 

studies is a call for increased surveillance of 

influenza and more comprehensive data sets. Current 

studies are limited by the number of isolates that can 

be realistically included and interpreted in a 

phylogeny and the ability to display results in a 

geographical manner.  Their resolution is both 

blurred by lack of detail and is often incomplete due 

to the requirement of focusing on a limited number 

of isolates.   

      The number of flu genomes made publicly 

available have increased exponentially over that last 

decade (Figure1). While a wealth of viral sequence 

data exists, software which enables researchers to 

incorporate this data into comprehensive studies is, 

to our knowledge, lacking.  This represents a 

common lag in the development of software to 

match the computational needs involved with 

analyzing newly available data.  

 

 
Figure1.  Growth of Flu Sequences over past decade 

(Influenza Resource, website). 

 

    This concern has been voiced in publications such 

as [14] and [37], which call for innovative methods 

to infer phylogenies and transmission networks 

respectively. In a recent influenza study conducted 

by [26], it is stated that there has been "no rigorous 

measurement of viral diversity across time, across 

space, and among subtypes" despite data availability. 

Researchers rely on the use of traditional 

phylogenetic tree building methods to attempt to 

elucidate comprehensive geographic transmission 

networks.  Phylogenetic tree building methods and 

their interpretations are better suited for relatively 

small numbers of sequences, rather than 

comprehensive networks spanning multiple 

continents and species groups. Building a 

phylogenetic tree requires the derivation of a 

complete tree structure from isolate relationships so 

that all isolates can be traced back to a common 

ancestor.  An estimate of the degree of divergence 

along branches which dictates its final structure is 

required as well. This presents a computational 

constraint on the number of sequences which can be 

included realistically.  It is also difficult to asses the 

accuracy of phylogenetic trees once they have been 

built as their structures are strongly influenced by 

both the methods used in preliminary sequence 

alignments [20] and the tree building algorithms 

applied afterwards. Even if the phylogenetic tree of 

large groups of sequences is created, the realistic 

interpretation of such a tree is a difficult task.  For 

example, in [22] flu sequence dynamics during the 

US epidemic season 2006-2007 were examined 

using data from 353 viral isolates.  This was 

described as the largest single season study to date 

of its kind and could identify no clear spatial 

patterns of spread.   

 

2.2  RE-ASSORTMENT DETECTION 
 

   When quantifying viral sequence similarities, it is 

optimal to construct comparison methods which are 

sensitive to the specific genomic characteristics of 

the virus in question.  Influenza genomes remain in 

eight noncontiguous segments throughout their 

lifetime.  Due to this, they are subject to re-

assortment in which the full complement of 

segments in an isolate may be composed of segment 
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subsets from multiple progenitors.  Our approach 

offers a second improvement over current methods 

for building influenza isolate relationships which 

includes the ability to clearly identify re-assortment 

events. Re-assortment plays an important role in 

influenza evolution and is quite frequent although 

not well quantified [26].  The Spanish flu which 

emerged in 1918 may have resulted from a re-

assortment of porcine and human flu segments [12] 

although this is not a uniformly accepted assertion 

[32]. Current phylogenetic tree building methods are 

not conducive to pinpointing exactly when and 

where re-assortment has occurred as they are limited 

in isolate numbers and segment distinctions.  The 

sequence comparison method described in this 

research is sensitive to both re-assortment and point 

mutations, or antigenic “shift” and “drift”. 

Examining re-assortment requires that each segment 

in each genome be compared separately rather than 

treating all segments as part of the same, contiguous 

sequence.  In the recent past, attempts to build 

influenza phylogenies either concatenated all 

segment sequences before building trees, or used 

specific gene segments to represent entire genomes. 

This obscures the effects of re-assortment.  Some 

more recent approaches have created separate 

phylogenetic trees for each of the twelve genes 

encoded in the viral RNA, or for each of the eight 

genome segments, and then tried to locate 

inconsistencies which may indicate re-assortment. 

Through this approach, pinpointing all instances of 

re-assortment has remained an elusive task, as 

reported in [17] because it requires trying to find 

similarities and differences in eight or twelve 

phlyogenetic trees.  Our proposed method for 

deriving sequence relationships has the potential to 

treat each segment group separately so that re-

assortment is clearly defined in each generational 

step.  Given adequate data, the methods proposed 

can elucidate the time and place of each re-

assortment event in a multi-species, comprehensive 

data set.  

 

2.3 ALIGNMENT-FREE SEQUENCE 

COMPARISONS 
                  

    This paper describes alignment-free sequence 

comparison methods which optimizes computational 

time and space.  This works to remove the current 

ceiling on the number of sequences that can be 

incorporated into viral lineage studies.  In the field 

of bioinformatics, many methods of sequence 

comparison have been employed which include both 

alignment-based and alignment-free approaches.  

Alignment-based methods rely on the preliminary 

alignment of the sequences in question to enable 

their comparison.  Packages such as ClustalW, 

Probcons, T-coffee, and DALIGN utilize sequence 

alignment prior to quantifying sequence differences.  

Alignment-free methods compare sequences based 

on global characteristics such as k-nucleotide counts, 

codon transitional probabilities and complexity 

measures. A comprehensive review of alignment-

free methods is found in [34].  

While alignment-based methods are routinely 

employed in the building of phylogenies, one of the 

most glaring drawbacks is the computational 

expense incurred in aligning long and/or large 

numbers of sequences.  To align two sequences 

using brute force, all possible alignments of the 

sequence pairs must be tested before the best 

alignment can be chosen.  When multiple sequences 

are involved, the computational expense grows 

exponentially as all sequences must be compared 

against all other sequences in this manner. This 

presents an NP-hard problem [31], meaning that 

with large numbers, the problem is essentially 

unsolvable.  This has required that all current 

alignment-based methods rely on pre-alignment 

heuristics to reduce the effective number of 

sequences and sequence lengths to be compared. 

Often, these heuristics are based on alignment-free 

statistics. This fact illustrates the additional 

computation required in alignment-based approaches. 

The described alignment-free sequence comparison 

method to allows the processing of several thousand 

genomic sequences. 

 

3. METHODS 
 
    In the following sections, three classifications are 

presented which successfully identify; 1) the 

geographic origins of domestic bird H5N1 isolates 

through China and Southeast Asia during 2006, 2) 

the country of human H5N1 isolates crossing over 

from domestic bird hosts and, 3) the historical flu 

season from which human H3N2 isolates originated. 

The methods used for genomic sequence 

comparisons do not rely on alignment and are 

computationally efficient. Methods and results 

regarding classifications are presented in the 

following.   All influenza sequences were obtained 

through the Influenza Virus Resource which gives 

access to sequences collected by the National 

Institute of Allergy and Infectious Disease (NIAID) 

Genome Sequencing Project and those available 

through GenBank.   

 

3.1 OLIGONUCLEOTIDE  

SIGNATURES  
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If genomic sequences were randomly organized, 

most short nucleotide words would have an equal 

probability of being found within any given 

sequence of sufficient length. The study of short 

word frequencies has shown a biased distribution of 

words which deviates from random, with some 

words over- and some under- represented to 

differing levels [4, 5, 16]. A genomic signature 

derives frequency patterns by calculating the over- 

and under- representation of specific base pair 

sequences when compared to random expectations.  

Genomic signatures of short word lengths are similar 

for organisms within kingdom groupings [5] and are 

sometimes consistent enough to be used in the 

regrouping of mixed fragments from multiple 

species genomes [1, 21, 33].  

 

3.2 WORD ABSENCE 
 
     Some words have been found to be commonly 

absent from species groups [13] and have been 

referred to as nullomers and primes.  While the 

reason as to why certain words are absent and others 

present in particular genomes is most likely complex, 

the inheritance of absent words has been examined 

on a broad evolutionary scale.  It has been proposed 

that word absence is an inherited characteristic 

through the observation that human and chimp DNA 

contain 28 common absent words of length 11 and 

14 absent words which differ by only one nucleotide 

[2].  It could also be expected that word absence is 

inherited by the immediate progeny of microbial 

samples in a micro-evolutionary sense.  Absent 

words are an integral part of any genomic sequence 

as much as present words, and by inheriting a 

nucleotide sequence, or a close derivative of it, a 

microbial offspring should also inherit many of the 

words absent from that sequence as well. This may 

offer the delineation of closely related microbes, 

including viral pathogens. Researchers in [10] found 

word absence/presence to show more correlation 

between genomes within the same species than 

between genomes of different species. Even so, less 

correlation was found between same species 

genomes than was statistically expected, and it was 

suggested that word absences may offer delineation 

within species groups as well.    

    This prediction has been reinforced by our 

examinations of words absences across related 

influenza sequences. Cross genome word absence 

patterns were examined by reclassifying hexa-

nucleotide word frequencies into a binary format so 

that presence was indicated by a one and absence by 

a zero.  Human H3N2 influenza sequences from 

three distinct epidemics were clearly differentiated 

in this manner. Words which were distinctly absent 

or present for one of three epidemics accounted for 

82% of all words in signature sets.  The full 

absence/presence table is listed in Table 1 and the 

dataset description used for this table is provided in 

Section 4. 
 

3.3 MINIMAL MARKOV MODEL 
 
    In genomic word expression analysis, Markov 

Models are often used as a means of calculating the 

expected count of each word (E(w)) in a signature 

set [19, 24, 30].  In Markov chains, the current state 

of a system is predicted by its previous states. In 

word signature analysis, this translates to predicting 

a word frequency based on the observed frequencies 

of its sub words. Depending on the order of the 

Markov Model, bias contributed to a word of length 

m from sub words of lengths 1,…, m-1 can be 

 

Table 1:  Uniquely (0)absent/(1)present word counts. 

Inter-epidemic 

Hong 

Kong 

1980 

Nicaragua    

2007 

New South 

Wales       

1999  

s1 s2 s3 s4 s5 s6 s7 s8 
# 

words 

0 0 1 1 1 1 1 1 123 

1 1 0 0 0 0 0 0 109 

1 1 0 0 0 1 1 1 93 

0 0 1 1 1 0 0 0 71 

1 1 1 1 1 0 0 0 32 

0 0 0 0 0 1 1 1 19 

1 1 1 1 1 0 0 1 14 

0 0 0 0 0 0 0 1 13 

0 0 0 0 0 1 1 0 11 

0 0 1 1 1 0 0 1 11 

0 0 1 1 1 1 1 0 10 

1 1 0 0 0 1 1 0 9 

0 0 0 1 0 0 0 0 5 

1 1 0 0 0 0 0 1 5 

1 1 0 0 1 1 1 1 3 

0 0 0 0 1 0 0 0 2 

0 0 1 1 0 1 1 1 2 

1 1 1 0 1 1 1 1 2 

1 1 1 1 0 1 1 1 2 

0 1 0 0 0 0 0 0 1 

0 1 1 1 1 0 0 0 1 

1 0 1 1 1 0 0 0 1 

1 1 0 0 1 0 0 0 1 

1 1 0 1 0 0 0 0 1 

1 1 1 0 0 1 1 1 1 

1 1 1 1 0 0 0 0 1 

1 1 1 1 1 1 0 0 1 

      total 544 
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 removed. As an illustration, assume a sequence is 

dominated by di-nucleotides TA and AG.  Unless 

specifically selected against, TAA and AAG, which 

are the concatenations of the dominant sub words 

will naturally show high frequencies as well. 

Separating the degree of selection for or against 

exactly these tri-nucleotides from the contributions 

of their sub words may require the removal of their 

di-nucleotide sub word frequency bias. With the 

ultimate goal to match genomic internal word 

selection mechanisms, the optimal order of the 

Markov Model to use remains undetermined. 

Consistent with findings in [24] and [25], minimal 

order Markov Models allowed the most 

differentiation between genomic signatures of 

different prokaryotic species and were thus used to 

calculate expected values for signature calculations 

in this research. A minimal order Markov Model 

does not remove bias from sub words longer than 

one character.  The expected count of a word E(w), 

in a genomic sequence of length N is expressed as: 

 

E(w) = [(A
a
*C

c
*G

g
 *T

t
)* N] 

 

A, C, T and G represent specific nucleotide 

frequencies in the total sequence N and a, c, t, g are  

the number of each nucleotide in a word w.  As 

described in [24], the ratio of the observed word 

count over its expected count, O(w)/E(w) can be 

used to derive the degree of over- or under- 

representation of each word in a signature set.  This 

ratio is later referred to as an expression level. 

 

3.4 GENOME COMPARISON  

METHOD 
     
    In our method the features, or defining 

characteristics used in genome comparisons are 

based on k-nucleotide signature absence subsets. 

More specifically, the expression level of any 

nucleotide word of length k which is absent from at 

least one genome in question is considered in 

genome difference calculations.  A measure for 

comparing two sequences based on word expression 

levels constrained by word absence was derived.  To 

compare two sequences, s1 and s2, let AP be the set 

of all words present in only one sequence so that for 

all w є AP, O(ws1)/E(ws1)>0 and O(ws2) = 0, or   

O(ws2)/E(ws2)>0 and O(ws1) = 0. AA is the set of 

all words absent from both sequences so that for all 

w є AA, O(ws1) = O(ws2) = 0.  |AP| denotes the 

total number of words in AP and |AA| denotes the 

total number of words in AA. The difference 

between s1 and s2 is calculated as: 

                

||||

|)()()()(| 2211

AAAP

wEwOwEwO
AP

w

ssss

+

−∑
 

 

Thus the difference between two sequences is 

the sum of the observed to expected ratios for words 

which are absent from exactly one sequence divided 

by the total number of words absent from at least 

one sequence. This allows the comparison of only 

words which exhibit some degree of absence. In 

contrast to comparing only two sequences, if 

comparing relative similarities between a group of 

sequences, removing |AA| from the equation allows 

a higher degree of distinction between all pairs. This 

is because words absent from all sequences offer no 

inter-sequence differentiation and do not contribute 

to the derivation of relative differences. All ensuing 

classifications hinged on this differencing measure 

to compare genomes.  

Sections 4.1 and 4.2 describe supervised 

classifications. In supervised classifications, test data 

is comprised of “unknown” data from samples 

which must be classified.  Training data denotes 

“known” data which will be used as class identifiers.  

The supervised algorithm compares each test data 

sample to each class identifier, and assigns it to 

which ever class it is closest to. 

In Section 4.3, an unsupervised classification is 

described. In unsupervised classifications, data are 

not subdivided into test and training groups and each 

sample is assigned to the next closest sample in the 

data set.  

 

4. RESULTS 
 

4.1 AVIAN H5N1 GEOGRAPHIC 

ORIGIN DETECTION 
 
    This classification tests the proposed method in its 

ability to discriminate between individual avian 

H5N1 strain lineages and thereby determine their 

geographic origins. For this application, 94% 

accuracy is achieved in assigning all genomes to 

their correct place of origin. A word length of seven 

allows the highest degree of accuracy.  Isolates from 

domestic bird (chicken, duck, turkey, goose) 

outbreaks in China, Africa, Thailand, and Vietnam 

from 2004-2006 are used for this classification. 

Regions represented in the China dataset include 

Guanxi province, Hunan province, Guandong 

province, and HongKong.  Countries represented in 

African dataset include Afganistan, Nigeria and 

Sudan.  Specific regions of genomes collected in 

Thailand and Vietnam were not indicated on the 
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Influenza Resource website and are thus referred to 

by their country name.  Training genomes were not 

chosen randomly, but instead selected in attempts to 

represent major avian H5N1 outbreaks in each 

region of interest during specified time periods and 

included 17 genomes from domestic birds. Test 

genomes include 61 domestic avian H5N1 genomes 

from time periods corresponding with training 

genomes in the same regions. Out of 61 genomes, 57 

are accurately assigned to their exact collection 

region.      

     All misclassified genomes are assigned to regions 

directly adjacent to their true collection origins.  

This coupled with the high degree of accuracy 

achieved with all other samples suggest that 

“missclassifications” may indicate border crossing 

relationships rather than errors in the classification. 

Our classification associates one genome from 

Vietnam to China’s Guanxi province. The Guanxi 

province lies north of the Vietnamese border.  One 

genome from Thailand is matched to genomes 

originating in Vietnam.  These two countries are also 

directly adjacent. Within the Chinese genomes, one 

genome from the Hunan province is assigned to the 

Guanxi province while one genome from Shantou is 

assigned to the Hunan province. Hunan is next to 

Guanxi, and the Guandong province which contains 

Shantou is next to the Hunan province. Border 

crossing relationships are shown in Figure 2. 

Though samples are limited, this image may indicate 

that transmission moves towards the coastal regions 

of Guanxi and Guandong, perhaps following 

movement towards port regions. Detailed 

classification results are given in Table 2. 

Misclassified genomes are indicated by bold 

lettering and an asterisk.  
 

4.2 AVIAN TO HUMAN H5N1 

TRANSMISSION 
 

This classification achieves a cross host species 

matching of individual strain lineages between avian 

and human cases. Human cases are assigned to their 

closest bird counterparts to determine whether the 

proposed method can point to the location of viral 

crossover from bird to human. This classification is 

100% accurate in matching 18 human cases of 

H5N1 to chicken cases in their correct countries. A 

word length of eight is used. Human host H5N1 

genomes from Indonesia in 2005, Thailand in 2004, 

and Vietnam in 2004 are used as test data. The 

training data set includes all H5N1 strains from 

domestic bird hosts in Indonesia, Thailand and 

Vietnam during the same years of 2005, 2004 and 

2004 respectively.  Accuracy at a higher spatial 

resolution than country can not be assessed due to a 

lack of data information. Classification results are 

given in Table 3.  

Table 2: Classification results for 61 domestic bird 

H5N1 isolates,  g = goose, d = duck, t = turkey, c = 

chicken. 

Isolate sequence Classified As.. 

China/Guangxi /1898/g China/Guangxi/150/g 

China/Guangxi /224/g China/Guangxi/150/g 

China/Guangxi /32/g China/Hunan/856/d * 

China/Guangxi /582/g China/Guangxi/150/d 

China/Guangxi /288/d China/Guangxi/150/g 

China/Guangxi /1830/d China/Guangxi/150/g 

China/Guangxi /2143/d China/Guangxi/150/g 

China/Guangxi /392/d China/Guangxi/150/g 

China/Guangxi /744/d China/Guangxi/150/d 

China/Guangxi /804/d China/Guangxi/150/d 

China/Guangxi /89/d Vietnam/10/c * 

Hong Kong /947/d Hong Kong/282/c 

China/Hunan /988/d China/Hunan/856/d 

China/Hunan /324/d China/Hunan/856/d 

China/Hunan /344/d China/Hunan/856/d 

China/Shantou /3295/d China/Shantou/1233/c 

China/Shantou /3265/d China/Hunan/856/d * 

China/Shantou /3840/d China/Shantou/1233/c 

China/Shantou /3923/d China/Shantou/1233/c 

Indonesia /175H/c Indonesia/CDC25/c 

Indonesia /PA/c Indonesia/CDC25/c 

Indonesia /Dairi/BPPVI/c Indonesia/CDC25/c 

Indonesi/Deli 

Serdang/BPPVI/c Indonesia/CDC25/c 

Indonesia/unung 

Kidal/BPPW/c Indonesia/CDC25/c 

Indonesia 

/Magetan/BPPW/c Indonesia/CDC25/c 

Indonesia 

/Parepare/BPPVM/c Indonesia/CDC25/c 

Indonesia 

/Purworejo/BPPW/c Indonesia/CDC25/c 

Indonesia 

imalanggang/BPPVI/c Indonesia/CDC25/c 

Indonesia 

/Tarutung/BPPVI/c Indonesia/CDC25/c 

Indonesia/TebingTinggi/

BPPVI/c Indonesia/CDC25/c 

Ivory Coast/4372-3/d Ivory Coast/4372-2/t 

Ivory Coast/4372-4/d Ivory Coast/4372-2/t 

Nigeria/1047-34/d Nigeria/1047-30/c 

Nigeria/1047-54/d Nigeria/1047-30/c 

Nigeria/1047-62/d Nigeria/1047-30/c 

Nigeria/1047-8/d Nigeria/1047-30/c 
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Nigeria/SO452/d Nigeria/SO300/c 

Nigeria/SO493/c Nigeria/SO300/c 

Nigeria/SO494/c Nigeria/SO300/c 

Sudan/1784-7/c Sudan/2115-10/c 

Sudan/1784-8/c Sudan/2115-10/c 

Sudan/2115-12/c Sudan/2115-10/c 

Sudan/2115-9/c Sudan/1784-10/c 

Thailand 

/Ayutthaya/CU23/c Thailand/39692/c 

Thailand/Kanchanburi/C

K-160/c 

Thailand/Nontaburi/C

K-162/c 

Thailand/Nakom 

Patom/CUK2/c Thailand/39692/c 

Vietnam/5/c Vietnam/10/c 

Vietnam/36/c Vietnam/10/c 

Vietnam/38/c Vietnam/10/c 

Vietnam/C57/c Thailand/39692/c * 

Vietnam/LD080/c Vietnam/10/c 

Vietnam/TG023/c Vietnam/10/c 

Vietnam/TN025/c Vietnam/10/c 

Vietnam /2/c Vietnam/10/c 

Vietnam/5/c Vietnam/10/c 

Vietnam/8/c Vietnam/10/c 

Vietnam /9/c Vietnam/10/c 

Figure 2:  Arrows point from collection region 

topotential origin. 

 

4.3 EPIDEMIC DISCRIMINATION 
 

   The discrimination of inter and intra-epidemic 

human host H3N2 isolates through unsupervised 

classifications is also examined. Inter-epidemic 

sequences are well delineated by difference 

measures into epidemic specific groups. Intra-

epidemic sequences are not consistently well 

separable in terms of their geographic origins, but 

show similarities across geographic regions.  Inter-

epidemic data include eight strains of human host 

H3N2 representing three distinct epidemics.  Two 

strains were from Hong Kong in 1980, three strains 

from Managua, Nicaragua in 2007, and three from 

New South Wales in 1999.  Intra-epidemic data 

include  nine human host H3N2 isolates collected in 

the United States within a three month period during 

the 2007 flu season.  Three are from New York 

collected between 3/5-3/6. Three isolates were 

collected in Colorado all on 1/8, and three are from 

Vermont collected between 2/27-3/1. Identifier 

strings are listed in Table 4. 

 

Table 3: Classification results, from human host to 

chicken host, h=human, c = chicken. 
 

Isolate sequence Classified As.. 

Indonesia/5/h Indo/Magetan/BPPW/c 

Indonesia/7/h Indo/Magetan/BPPW/c 

Indonesia/175H/h 

Indo/Gunung 

Kidal/BPPW/c 

Indonesia/239H/h Indo/Parepare/BPPVM/c 

Indonesia/245H/h Indo/Parepare/BPPVM/c 

Indonesia/CDC7/h Indo/Magetan/BPPW/c 

Indonesia/CDC184/h Indo/Magetan/BPPW/c 

Indonesia/CDC287/h Indo/Parepare/BPPVM/c 

Indonesia/CDC292T/h Indo/Parepare/BPPVM/c 

Thailand/1(KAN-1)/h Thailand/9/c 

Thailand/2(SP-33)/h Thailand/9/c 

Thailand/5(KK-494)/h Thailand/9/c 

Thailand/16/h Thailand/9/c 

Thailand/SP83/h Thailand/9/c 

Vietnam/1194/h Vietnam/TN025/c 

Vietnam/1203/h Vietnam/35/c 

Vietnam/3062/h Vietnam/35/c 

Vietnam/CL26/h Vietnam/35/c 

 

Difference metrics for the inter-and intra-epidemic 

sqeuences are shown in Tables 5 and 6. Table 5 

shows all squences having minimal difference 

measures with sequences within their respective 

epidemic groups. These values are highlighted in 

yellow.  For example, s1 is least different from s2, 

and these two sequences are both members of the 

Hong Kong 1980 epidemic.  This table suggests that 

samples from distantly related epidemics can be  

accurately delineated using the proposed measure.  

In Table 6, samples are not unanimously 

discriminated based on their geographic location.  In 
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this case, only four out of nine samples s4, s5, s7 

and s9 show the lowest difference values from same 

state samples. 

 

Table 4 : Isolate identifier strings. 

Inter-epidemic 

sequences 

Intra-epidemic 

sequences 

A/Hong Kong/46/1980 A/NewYork/UR06-

0510/2007 

A/Hong Kong/45/1980  

A/NewYork/UR06-

0515/2007 

A/Managua/14/2007  

A/NewYork/UR06-

0529/2007 

A/Managua/15/2007  

A/Vermont/UR06-

0469/2007 

A/Managua/16/2007  

A/Vermont/UR06-

0470/2007 

A/New          S. 

Wales/20/1999  

A/Vermont/UR06-

0471/2007 

A/New S. 

Wales/21/1999  

A/Colorado/UR06-

022/2007 

A/New S. 

Wales/22/1999   

A/Colorado/UR06-

023/2007 

 

A/Colorado/UR06-

024/2007 

 

   

  It is to be expected that intra-epidemic sequences, 

particularly within a well traveled country such the 

United States, be highly related.  Similarly, it is not 

surprising that sequences from geographically and 

temporally distant epidemics show more differences.  

The clear distinction between sequences from distant 

epidemics is slightly more surprising and 

encouraging. 

 

5. CONCLUSIONS/FUTURE  

WORK 

 
   In sumary, research presented here give examples 

of k-nucleotide signature subsets enabling the 

detection of the geographic origins of influenza A 

viral isolates in supervised and unsupervised 

classifications. These subsets only include 

nucleotide words which are absent from at least one 

genome in question and present in another while 

multiple genomes may be included in a classification 

schema.  Although difference measures have only 

been derived for a small number of samples, they are 

suggestive a highly detailed and quantifiable 

network among Influenza viral isolates. Large flu 

transmission networks may become latent through a 

similar classification scheme which points each 

isolate to its most similar temporal predecessor.  In 

addition, the described method does not rely on 

sequence alignment which is computationally 

expensive. Instead, the differences between closely 

related genomes are extracted in a relatively 

inexpensive manner.  

     Future work will involve the optimization of this 

comparison method with regards to accuracy and 

efficiency. We would then like to compare large 

numbers of sequences to estimate flu networks over 

large geographic regions. This could prove useful 

for epidemiological studies, particularly with regards 

to understanding global transmission networks and 

the origins of new flu strains.   

 

 

 

 

Table 5: Inter-epidemic isolate difference matrix. 

Inter-epidemic 

 
Hong Kong 

1980 
Nicaragua     

2007 
New South Wales 

1999 

 s1 s2 s3 s4 s5 s6 s7 s8 

s1 0.00 0.01 0.51 0.52 0.51 0.43 0.43 0.44 

s2 0.01 0.00 0.51 0.52 0.51 0.42 0.43 0.44 

s3 0.51 0.51 0.00 0.01 0.02 0.34 0.35 0.34 

s4 0.52 0.52 0.01 0.00 0.03 0.35 0.35 0.34 

s5 0.51 0.51 0.02 0.03 0.00 0.35 0.35 0.34 

s6 0.43 0.42 0.34 0.35 0.35 0.00 0.00 0.13 

s7 0.43 0.43 0.35 0.35 0.35 0.00 0.00 0.13 

s8 0.44 0.44 0.34 0.34 0.34 0.13 0.13 0.00 

Table 6: Intra-epidemic isolate difference matrix. 

  Intra-epidemic 

  
New York           

2007 
Vermont            

2007 
Colorado            

2007 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 

s1 0.00 0.42 0.31 0.30 0.30 0.31 0.31 0.22 0.31 

s2 0.42 0.00 0.38 0.37 0.37 0.38 0.36 0.38 0.36 

s3 0.31 0.38 0.00 0.10 0.11 0.06 0.07 0.27 0.07 

s4 0.30 0.37 0.10 0.00 0.02 0.10 0.09 0.26 0.09 

s5 0.30 0.37 0.11 0.02 0.00 0.11 0.10 0.27 0.10 

s6 0.31 0.38 0.06 0.10 0.11 0.00 0.07 0.27 0.07 

s7 0.31 0.36 0.07 0.09 0.10 0.07 0.00 0.26 0.00 

s8 0.22 0.38 0.27 0.26 0.27 0.27 0.26 0.00 0.26 

s9 0.31 0.36 0.07 0.09 0.10 0.07 0.00 0.26 0.00 
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