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Abstract:   This research describes a novel,  alignment-free method of genomic sequence comparisons based 

on absent nucleotide words and expression levels. Testing this method on Influenza A virus isolates, three 

classifications are presented which successfully identify; 1) the geographic origins of domestic bird H5N1 

isolates through China and Southeast Asia during 2006, 2) the country of human H5N1 isolates crossing over 

from domestic bird hosts and, 3) the historical flu season from which human H3N2 isolates originated.  Because 

comparison methods used do not rely on alignment,  they are computationally efficient and well suited for large 

numbers of sequences in compehensive flu transmission network delineation. 
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1 INTRODUCTION 

 
  Half a million human global deaths per year have 

been attributed to influenza A virus [6]. In addition, 

the highly pathogenic H5N1 subtype has been 

predicted to cause the next worldwide pandemic 

while it currently compromises live bird trade 

economics. The 60% mortality rate found in human 

H5N1 cases is alarming [11] and its symptoms are 

similar to those found during the Spanish Flu 

epidemic [15] which caused acute illness in 25-30% 

of the world population [32]. Recent human 

infections with avian subtypes H7N7 and H9N2 have 

been identified as well in China [18].  There is a 

pressing need to gain a clear understanding of the 

geographic routes through which H5N1 and other 

subtypes of influenza A virus spread and where they 

originate. Such efforts require a powerful method for 

building flu isolate associations which incorporate 

extensive numbers of genomic sequences. 

    We propose a novel and efficient sequence 

similarity detection method. Relationships between 

flu isolates can be determined through a highly 

computationally efficient genomic sequence 

comparison approach. Because of this efficiency, a 

large number of genomic sequences can be compared 

and distinguished in terms of lineage and place of 

origin. This offers a significant improvement over 

current methods available for influenza isolate 

comparisons which are not well suited for large 

amounts of data.  It is our overall goal to refine an 

efficient sequence comparisons technique which will 

allow the full utilization of existing flu sequence data 

to help answer many questions regarding the 

epidemic movement and transmission of this virus.   

The rest of this paper is structured as follows.  

Section 2 presents the background and significance of 

the work. Section 3 describes a novel sequence 

comparison measure. Section 4 present three 

classification schemes based on this measure. Section 

5 presents our conclusions and future work. 

 

2. BACKGROUND and SIGNIFICANCE 
  

2.1  CURRENT KNOWLEDGE  
     

   Much attention has been given to estimating the 

geographic transmission routes of influenza virus 

through both human and avian populations.  The 

overall global directionality of the human host H3N2 

subtype has most recently been described as starting 

in East-Southeast Asia, then passing to Oceania, and 

also through North America and Europe to South 

America [28]. The tools that researchers have to 

examine isolate relatedness strongly influence the 

strength and focus of any non-theoretical geospatial 

flu transmission mapping.  In [28], the majority of 

sequence comparisons were performed antigenically 

rather than genetically. Only 130 partial genomic 

sequences were compared in parallel with antigenic 

comparisons.  While antigenic comparisons elucidate 

how the virus evolves with regards to human host 

immunity, it focuses only on the functionality of 

specific region(s) of the entire flu genome.  In 

contrast, nucleotide sequence comparisons allow a 

finer level of differencing as information representing 

all point mutations and re-assortments are included in 
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complete genomic sequences. Standard genomic 

sequence comparison methods based on rooted 

phylogenetic trees are not designed to encompass 

such detail. In [22], 900 complete genomes from the 

Northern and Southern hemispheres were compared 

and it is stated that even these did not suggest a 

specific network of viral movement.  In similar 

studies attempting to characterize the movement of 

flu viruses in China and Southeast Asia [7, 23, 35, 

36], India [27], Europe [3,29] and Africa [9], even 

smaller sample sizes are generally used and 

compared via antigenic or genomic sequence 

differences. Consistent in most studies is a call for 

increased surveillance of influenza and more 

comprehensive data sets. Current studies are limited 

by the number of isolates that can be realistically 

included and interpreted in a phylogeny and the 

ability to display results in a geographical manner.  

Their resolution is both blurred by lack of detail and 

is often incomplete due to the requirement of 

focusing on a limited number of isolates.   

      The number of flu genomes made publicly 

available have increased exponentially over that last 

decade (Figure1). While a wealth of viral sequence 

data exists, software which enables researchers to 

incorporate this data into comprehensive studies is, to 

our knowledge, lacking.  This represents a common 

lag in the development of software to match the 

computational needs involved with analyzing newly 

available data.  

 

 
Figure1.  Growth of Flu Sequences over past decade 

(Influenza Resource, website). 

 

    This concern has been voiced in publications such 

as [14] and [37], which call for innovative methods to 

infer phylogenies and transmission networks 

respectively. In a recent influenza study conducted by 

[26], it is stated that there has been "no rigorous 

measurement of viral diversity across time, across 

space, and among subtypes" despite data availability. 

Researchers rely on the use of traditional 

phylogenetic tree building methods to attempt to 

elucidate comprehensive geographic transmission 

networks.  Phylogenetic tree building methods and 

their interpretations are better suited for relatively 

small numbers of sequences, rather than 

comprehensive networks spanning multiple 

continents and species groups. Building a 

phylogenetic tree requires the derivation of a 

complete tree structure from isolate relationships so 

that all isolates can be traced back to a common 

ancestor.  An estimate of the degree of divergence 

along branches which dictates its final structure is 

required as well. This presents a computational 

constraint on the number of sequences which can be 

included realistically.  It is also difficult to asses the 

accuracy of phylogenetic trees once they have been 

built as their structures are strongly influenced by 

both the methods used in preliminary sequence 

alignments [20] and the tree building algorithms 

applied afterwards. Even if the phylogenetic tree of 

large groups of sequences is created, the realistic 

interpretation of such a tree is a difficult task.  For 

example, in [22] flu sequence dynamics during the 

US epidemic season 2006-2007 were examined using 

data from 353 viral isolates.  This was described as 

the largest single season study to date of its kind and 

could identify no clear spatial patterns of spread.   

 

2.2  RE-ASSORTMENT DETECTION 

 

   When quantifying viral sequence similarities, it is 

optimal to construct comparison methods which are 

sensitive to the specific genomic characteristics of the 

virus in question.  Influenza genomes remain in eight 

noncontiguous segments throughout their lifetime.  

Due to this, they are subject to re-assortment in which 

the full complement of segments in an isolate may be 

composed of segment subsets from multiple 

progenitors.  Our approach offers a second 

improvement over current methods for building 

influenza isolate relationships which includes the 

ability to clearly identify re-assortment events. Re-

assortment plays an important role in influenza 

evolution and is quite frequent although not well 

quantified [26].  The Spanish flu which emerged in 

1918 may have resulted from a re-assortment of 

porcine and human flu segments [12] although this is 

not a uniformly accepted assertion [32]. Current 

phylogenetic tree building methods are not conducive 

to pinpointing exactly when and where re-assortment 

has occurred as they are limited in isolate numbers 

and segment distinctions.  The sequence comparison 

method described in this research is sensitive to both 

re-assortment and point mutations, or antigenic 

“shift” and “drift”. Examining re-assortment requires 

that each segment in each genome be compared 

separately rather than treating all segments as part of 

the same, contiguous sequence.  In the recent past, 

attempts to build influenza phylogenies either 

concatenated all segment sequences before building 

trees, or used specific gene segments to represent 

entire genomes. This obscures the effects of re-

assortment.  Some more recent approaches have 

created separate phylogenetic trees for each of the 

twelve genes encoded in the viral RNA, or for each 

of the eight genome segments, and then tried to locate 

inconsistencies which may indicate re-assortment. 

Through this approach, pinpointing all instances of 

re-assortment has remained an elusive task, as 

reported in [17] because it requires trying to find 
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similarities and differences in eight or twelve 

phlyogenetic trees.  Our proposed method for 

deriving sequence relationships has the potential to 

treat each segment group separately so that re-

assortment is clearly defined in each generational 

step.  Given adequate data, the methods proposed can 

elucidate the time and place of each re-assortment 

event in a multi-species, comprehensive data set.  

 

2.3 ALIGNMENT-FREE SEQUENCE 

COMPARISONS 
                  

    This paper describes alignment-free sequence 

comparison methods which optimizes computational 

time and space.  This works to remove the current 

ceiling on the number of sequences that can be 

incorporated into viral lineage studies.  In the field of 

bioinformatics, many methods of sequence 

comparison have been employed which include both 

alignment-based and alignment-free approaches.  

Alignment-based methods rely on the preliminary 

alignment of the sequences in question to enable their 

comparison.  Packages such as ClustalW, Probcons, 

T-coffee, and DALIGN utilize sequence alignment 

prior to quantifying sequence differences.  

Alignment-free methods compare sequences based on 

global characteristics such as k-nucleotide counts, 

codon transitional probabilities and complexity 

measures. A comprehensive review of alignment-free 

methods is found in [34].  

While alignment-based methods are routinely 

employed in the building of phylogenies, one of the 

most glaring drawbacks is the computational expense 

incurred in aligning long and/or large numbers of 

sequences.  To align two sequences using brute force, 

all possible alignments of the sequence pairs must be 

tested before the best alignment can be chosen.  

When multiple sequences are involved, the 

computational expense grows exponentially as all 

sequences must be compared against all other 

sequences in this manner. This presents an NP-hard 

problem [31], meaning that with large numbers, the 

problem is essentially unsolvable.  This has required 

that all current alignment-based methods rely on pre-

alignment heuristics to reduce the effective number 

of sequences and sequence lengths to be compared. 

Often, these heuristics are based on alignment-free 

statistics. This fact illustrates the additional 

computation required in alignment-based approaches. 

The described alignment-free sequence comparison 

method to allows the processing of several thousand 

genomic sequences. 

 

3 METHODS 

 
    In the following sections, three classifications are 

presented which successfully identify; 1) the 

geographic origins of domestic bird H5N1 isolates 

through China and Southeast Asia during 2006, 2) the 

country of human H5N1 isolates crossing over from 

domestic bird hosts and, 3) the historical flu season 

from which human H3N2 isolates originated. The 

methods used for genomic sequence comparisons do 

not rely on alignment and are computationally 

efficient. Methods and results regarding 

classifications are presented in the following.   All 

influenza sequences were obtained through the 

Influenza Virus Resource which gives access to 

sequences collected by the National Institute of 

Allergy and Infectious Disease (NIAID) Genome 

Sequencing Project and those available through 

GenBank.   

 
3.1 OLIGONUCLEOTIDE SIGNATURES  

 
If genomic sequences were randomly organized, 

most short nucleotide words would have an equal 

probability of being found within any given sequence 

of sufficient length. The study of short word 

frequencies has shown a biased distribution of words 

which deviates from random, with some words over- 

and some under- represented to differing levels [4, 5, 

16]. A genomic signature derives frequency patterns 

by calculating the over- and under- representation of 

specific base pair sequences when compared to 

random expectations.  Genomic signatures of short 

word lengths are similar for organisms within 

kingdom groupings [5] and are sometimes consistent 

enough to be used in the regrouping of mixed 

fragments from multiple species genomes [1, 21, 33].  

 
3.2 WORD ABSENCE 

 
     Some words have been found to be commonly 

absent from species groups [13] and have been 

referred to as nullomers and primes.  While the 

reason as to why certain words are absent and others 

present in particular genomes is most likely complex, 

the inheritance of absent words has been examined on 

a broad evolutionary scale.  It has been proposed that 

word absence is an inherited characteristic through 

the observation that human and chimp DNA contain 

28 common absent words of length 11 and 14 absent 

words which differ by only one nucleotide [2].  It 

could also be expected that word absence is inherited 

by the immediate progeny of microbial samples in a 

micro-evolutionary sense.  Absent words are an 

integral part of any genomic sequence as much as 

present words, and by inheriting a nucleotide 

sequence, or a close derivative of it, a microbial 

offspring should also inherit many of the words 

absent from that sequence as well. This may offer the 

delineation of closely related microbes, including 

viral pathogens. Researchers in [10] found word 
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absence/presence to show more correlation between 

genomes within the same species than between 

genomes of different species. Even so, less 

correlation was found between same species genomes 

than was statistically expected, and it was suggested 

that word absences may offer delineation within 

species groups as well.    

    This prediction has been reinforced by our 

examinations of words absences across related 

influenza sequences. Cross genome word absence 

patterns were examined by reclassifying hexa-

nucleotide word frequencies into a binary format so 

that presence was indicated by a one and absence by 

a zero.  Human H3N2 influenza sequences from three 

distinct epidemics were clearly differentiated in this 

manner. Words which were distinctly absent or 

present for one of three epidemics accounted for 82% 

of all words in signature sets.  The full 

absence/presence table is listed in Table 1 and the 

dataset description used for this table is provided in 

Section 4. 
 

3.3 MINIMAL MARKOV MODEL 

 
    In genomic word expression analysis, Markov 

Models are often used as a means of calculating the 

expected count of each word (E(w)) in a signature set 

[19, 24, 30].  In Markov chains, the current state of a 

system is predicted by its previous states. In word 

signature analysis, this translates to predicting a word 

frequency based on the observed frequencies of its 

sub words. Depending on the order of the Markov 

Model, bias contributed to a word of length m from 

sub words of lengths 1,…, m-1 can be removed. As 

an illustration, assume a sequence is dominated by di-

nucleotides TA and AG.  Unless specifically selected 

against, TAA and AAG, which are the concatenations 

of the dominant sub words will naturally show high 

frequencies as well. Separating the degree of 

selection for or against exactly these tri-nucleotides 

from the contributions of their sub words may require 

the removal of their di-nucleotide sub word 

frequency bias. With the ultimate goal to match 

genomic internal word selection mechanisms, the 

optimal order of the Markov Model to use remains 

undetermined. Consistent with findings in [24] and 

[25], minimal order Markov Models allowed the most 

differentiation between genomic signatures of 

different prokaryotic species and were thus used to 

calculate expected values for signature calculations in 

this research. A minimal order Markov Model does 

not remove bias from sub words longer than one 

character.  The expected count of a word E(w), in a 

genomic sequence of length N is expressed as: 

 

E(w) = [(A
a
*C

c
*G

g
 *T

t
)* N] 

 
A, C, T and G represent specific nucleotide 

frequencies in the total sequence N and a, c, t, g are  

the number of each nucleotide in a word w.  As 

described in [24], the ratio of the observed word 

count over its expected count, O(w)/E(w) can be used 

to derive the degree of over- or under- representation 

of each word in a signature set.  This ratio is later 

referred to as an expression level. 

 
3.4 GENOME COMPARISON METHOD 

     
    In our method the features, or defining 

characteristics used in genome comparisons are based 

on k-nucleotide signature absence subsets. More 

specifically, the expression level of any nucleotide 

word of length k which is absent from at least one 

genome in question is considered in genome 

difference calculations.  A measure for comparing 

Table 1:  Uniquely (0)absent/(1)present  

word counts. 

 

Inter-epidemic 

Hong 

Kong 

1980 

Nicaragua    

2007 

New South 

Wales       

1999  

s1 s2 s3 s4 s5 s6 s7 s8 
# 

words 

0 0 1 1 1 1 1 1 123 

1 1 0 0 0 0 0 0 109 

1 1 0 0 0 1 1 1 93 

0 0 1 1 1 0 0 0 71 

1 1 1 1 1 0 0 0 32 

0 0 0 0 0 1 1 1 19 

1 1 1 1 1 0 0 1 14 

0 0 0 0 0 0 0 1 13 

0 0 0 0 0 1 1 0 11 

0 0 1 1 1 0 0 1 11 

0 0 1 1 1 1 1 0 10 

1 1 0 0 0 1 1 0 9 

0 0 0 1 0 0 0 0 5 

1 1 0 0 0 0 0 1 5 

1 1 0 0 1 1 1 1 3 

0 0 0 0 1 0 0 0 2 

0 0 1 1 0 1 1 1 2 

1 1 1 0 1 1 1 1 2 

1 1 1 1 0 1 1 1 2 

0 1 0 0 0 0 0 0 1 

0 1 1 1 1 0 0 0 1 

1 0 1 1 1 0 0 0 1 

1 1 0 0 1 0 0 0 1 

1 1 0 1 0 0 0 0 1 

1 1 1 0 0 1 1 1 1 

1 1 1 1 0 0 0 0 1 

1 1 1 1 1 1 0 0 1 

      total 544 
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two sequences based on word expression levels 

constrained by word absence was derived.  To 

compare two sequences, s1 and s2, let AP be the set 

of all words present in only one sequence so that for 

all w є AP, O(ws1)/E(ws1)>0 and O(ws2) = 0, or   

O(ws2)/E(ws2)>0 and O(ws1) = 0. AA is the set of 

all words absent from both sequences so that for all w 

є AA, O(ws1) = O(ws2) = 0.  |AP| denotes the total 

number of words in AP and |AA| denotes the total 

number of words in AA. The difference between s1 

and s2 is calculated as: 

                

||||

|)()()()(| 2211

AAAP

wEwOwEwO
AP

w

ssss

+

−∑
 

 

Thus the difference between two sequences is the 

sum of the observed to expected ratios for words 

which are absent from exactly one sequence divided 

by the total number of words absent from at least one 

sequence. This allows the comparison of only words 

which exhibit some degree of absence. In contrast to 

comparing only two sequences, if comparing relative 

similarities between a group of sequences, removing 

|AA| from the equation allows a higher degree of 

distinction between all pairs. This is because words 

absent from all sequences offer no inter-sequence 

differentiation and do not contribute to the derivation 

of relative differences. All ensuing classifications 

hinged on this differencing measure to compare 

genomes.  

Sections 4.1 and 4.2 describe supervised 

classifications. In supervised classifications, test data 

is comprised of “unknown” data from samples which 

must be classified.  Training data denotes “known” 

data which will be used as class identifiers.  The 

supervised algorithm compares each test data sample 

to each class identifier, and assigns it to which ever 

class it is closest to. 

In Section 4.3, an unsupervised classification is 

described. In unsupervised classifications, data are 

not subdivided into test and training groups and each 

sample is assigned to the next closest sample in the 

data set.  

 

4 RESULTS 
 

4.1 AVIAN H5N1 GEOGRAPHIC ORIGIN 

DETECTION 

 
    This classification tests the proposed method in its 

ability to discriminate between individual avian 

H5N1 strain lineages and thereby determine their 

geographic origins. For this application, 94% 

accuracy is achieved in assigning all genomes to their 

correct place of origin. A word length of seven allows 

the highest degree of accuracy.  Isolates from 

domestic bird (chicken, duck, turkey, goose) 

outbreaks in China, Africa, Thailand, and Vietnam 

from 2004-2006 are used for this classification. 

Regions represented in the China dataset include 

Guanxi province, Hunan province, Guandong 

province, and HongKong.  Countries represented in 

African dataset include Afganistan, Nigeria and 

Sudan.  Specific regions of genomes collected in 

Thailand and Vietnam were not indicated on the 

Influenza Resource website and are thus referred to 

by their country name.  Training genomes were not 

chosen randomly, but instead selected in attempts to 

represent major avian H5N1 outbreaks in each region 

of interest during specified time periods and included 

17 genomes from domestic birds. Test genomes 

include 61 domestic avian H5N1 genomes from time 

periods corresponding with training genomes in the 

same regions. Out of 61 genomes, 57 are accurately 

assigned to their exact collection region.      

     All misclassified genomes are assigned to regions 

directly adjacent to their true collection origins.  This 

coupled with the high degree of accuracy achieved 

with all other samples suggest that 

“missclassifications” may indicate border crossing 

relationships rather than errors in the classification. 

Our classification associates one genome from 

Vietnam to China’s Guanxi province. The Guanxi 

province lies north of the Vietnamese border.  One 

genome from Thailand is matched to genomes 

originating in Vietnam.  These two countries are also 

directly adjacent. Within the Chinese genomes, one 

genome from the Hunan province is assigned to the 

Guanxi province while one genome from Shantou is 

assigned to the Hunan province. Hunan is next to 

Guanxi, and the Guandong province which contains 

Shantou is next to the Hunan province. Border 

crossing relationships are shown in Figure 2. Though 

samples are limited, this image may indicate that 

transmission moves towards the coastal regions of 

Guanxi and Guandong, perhaps following movement 

towards port regions. Detailed classification results 

are given in Table 2. Misclassified genomes are 

indicated by bold lettering and an asterisk.  

 
4.2 AVIAN TO HUMAN H5N1 TRANSMISSION 

 
This classification achieves a cross host species 

matching of individual strain lineages between avian 

and human cases. Human cases are assigned to their 

closest bird counterparts to determine whether the 

proposed method can point to the location of viral 

crossover from bird to human. This classification is 

100% accurate in matching 18 human cases of H5N1 

to chicken cases in their correct countries. A word 

length of eight is used. Human host H5N1 genomes 

from Indonesia in 2005, Thailand in 2004, and 

Vietnam in 2004 are used as test data. The training 
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data set includes all H5N1 strains from domestic bird 

hosts in Indonesia, Thailand and Vietnam during the 

same years of 2005, 2004 and 2004 respectively.  

Accuracy at a higher spatial resolution than country 

can not be assessed due to a lack of data information. 

Classification results are given in Table 3.  

 

Table 2: Classification results for 61 domestic bird 

H5N1 isolates,  g = goose, d = duck, t = turkey, c = 

chicken. 

Isolate sequence Classified As.. 

China/Guangxi /1898/g China/Guangxi/150/g 

China/Guangxi /224/g China/Guangxi/150/g 

China/Guangxi /32/g China/Hunan/856/d * 

China/Guangxi /582/g China/Guangxi/150/d 

China/Guangxi /288/d China/Guangxi/150/g 

China/Guangxi /1830/d China/Guangxi/150/g 

China/Guangxi /2143/d China/Guangxi/150/g 

China/Guangxi /392/d China/Guangxi/150/g 

China/Guangxi /744/d China/Guangxi/150/d 

China/Guangxi /804/d China/Guangxi/150/d 

China/Guangxi /89/d Vietnam/10/c * 

Hong Kong /947/d Hong Kong/282/c 

China/Hunan /988/d China/Hunan/856/d 

China/Hunan /324/d China/Hunan/856/d 

China/Hunan /344/d China/Hunan/856/d 

China/Shantou /3295/d China/Shantou/1233/c 

China/Shantou /3265/d China/Hunan/856/d * 

China/Shantou /3840/d China/Shantou/1233/c 

China/Shantou /3923/d China/Shantou/1233/c 

Indonesia /175H/c Indonesia/CDC25/c 

Indonesia /PA/c Indonesia/CDC25/c 

Indonesia /Dairi/BPPVI/c Indonesia/CDC25/c 

Indonesi/Deli 

Serdang/BPPVI/c Indonesia/CDC25/c 

Indonesia/unung 

Kidal/BPPW/c Indonesia/CDC25/c 

Indonesia 

/Magetan/BPPW/c Indonesia/CDC25/c 

Indonesia 

/Parepare/BPPVM/c Indonesia/CDC25/c 

Indonesia 

/Purworejo/BPPW/c Indonesia/CDC25/c 

Indonesia 

imalanggang/BPPVI/c Indonesia/CDC25/c 

Indonesia 

/Tarutung/BPPVI/c Indonesia/CDC25/c 

Indonesia/TebingTinggi/

BPPVI/c Indonesia/CDC25/c 

Ivory Coast/4372-3/d Ivory Coast/4372-2/t 

Ivory Coast/4372-4/d Ivory Coast/4372-2/t 

Nigeria/1047-34/d Nigeria/1047-30/c 

Nigeria/1047-54/d Nigeria/1047-30/c 

Nigeria/1047-62/d Nigeria/1047-30/c 

Nigeria/1047-8/d Nigeria/1047-30/c 

Nigeria/SO452/d Nigeria/SO300/c 

Nigeria/SO493/c Nigeria/SO300/c 

Nigeria/SO494/c Nigeria/SO300/c 

Sudan/1784-7/c Sudan/2115-10/c 

Sudan/1784-8/c Sudan/2115-10/c 

Sudan/2115-12/c Sudan/2115-10/c 

Sudan/2115-9/c Sudan/1784-10/c 

Thailand 

/Ayutthaya/CU23/c Thailand/39692/c 

Thailand/Kanchanburi/C

K-160/c 

Thailand/Nontaburi/C

K-162/c 

Thailand/Nakom 

Patom/CUK2/c Thailand/39692/c 

Vietnam/5/c Vietnam/10/c 

Vietnam/36/c Vietnam/10/c 

Vietnam/38/c Vietnam/10/c 

Vietnam/C57/c Thailand/39692/c * 

Vietnam/LD080/c Vietnam/10/c 

Vietnam/TG023/c Vietnam/10/c 

Vietnam/TN025/c Vietnam/10/c 

Vietnam /2/c Vietnam/10/c 

Vietnam/5/c Vietnam/10/c 

Vietnam/8/c Vietnam/10/c 

Vietnam /9/c Vietnam/10/c 

 

Figure 2:  Arrows point from collection region to 

potential origin. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 EPIDEMIC DISCRIMINATION 
 

   The discrimination of inter and intra-epidemic 

human host H3N2 isolates through unsupervised 

classifications is also examined. Inter-epidemic 
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sequences are well delineated by difference measures 

into epidemic specific groups. Intra-epidemic 

sequences are not consistently well separable in terms 

of their geographic origins, but show similarities 

across geographic regions.  Inter-epidemic data 

include eight strains of human host H3N2 

representing three distinct epidemics.  Two strains 

were from Hong Kong in 1980, three strains from 

Managua, Nicaragua in 2007, and three from New 

South Wales in 1999.  Intra-epidemic data include  

nine human host H3N2 isolates collected in the 

United States within a three month period during the  

2007 flu season.  Three are from New York collected 

between 3/5-3/6. Three isolates were collected in 

Colorado all on 1/8, and three are from Vermont 

collected between 2/27-3/1. Identifier strings are 

listed in Table 4. 

 
Table 3: Classification results, from human host to 

chicken host, h=human, c = chicken. 

 

 

 

  Difference metrics for the inter- and intra-epidemic 

sequences are shown in Tables 5 and 6.  Table 5 

shows all sequences having minimal difference 

measures with sequences within their respective 

epidemic groups. These values are highlighted in 

yellow.  For example, s1 is least different from s2, 

and these two sequences are both members of the 

Hong Kong 1980 epidemic.  This table suggests that 

samples from distantly related epidemics can be  

accurately delineated using the proposed measure.  In 

Table 6, samples are not unanimously discriminated 

based on their geographic location.  In this case, only 

four out of nine samples s4, s5, s7 and s9 show the 

lowest difference values from same state samples. 

 

   
 

  It is to be expected that intra-epidemic sequences, 

particularly within a well traveled country such the 

United States, be highly related.  Similarly, it is not 

surprising that sequences from geographically and 

temporally distant epidemics show more differences.  

The clear distinction between sequences from distant 

epidemics is slightly more surprising and 

encouraging. 

Isolate sequence Classified As.. 

Indonesia/5/h Indo/Magetan/BPPW/c 

Indonesia/7/h Indo/Magetan/BPPW/c 

Indonesia/175H/h 

Indo/Gunung 

Kidal/BPPW/c 

Indonesia/239H/h Indo/Parepare/BPPVM/c 

Indonesia/245H/h Indo/Parepare/BPPVM/c 

Indonesia/CDC7/h Indo/Magetan/BPPW/c 

Indonesia/CDC184/h Indo/Magetan/BPPW/c 

Indonesia/CDC287/h Indo/Parepare/BPPVM/c 

Indonesia/CDC292T/h Indo/Parepare/BPPVM/c 

Thailand/1(KAN-1)/h Thailand/9/c 

Thailand/2(SP-33)/h Thailand/9/c 

Thailand/5(KK-494)/h Thailand/9/c 

Thailand/16/h Thailand/9/c 

Thailand/SP83/h Thailand/9/c 

Vietnam/1194/h Vietnam/TN025/c 

Vietnam/1203/h Vietnam/35/c 

Vietnam/3062/h Vietnam/35/c 

Vietnam/CL26/h Vietnam/35/c 

Table 5: Inter-epidemic isolate difference matrix. 

Inter-epidemic 

 
Hong Kong 

1980 
Nicaragua     

2007 
New South Wales 

1999 

 s1 s2 s3 s4 s5 s6 s7 s8 

s1 0.00 0.01 0.51 0.52 0.51 0.43 0.43 0.44 

s2 0.01 0.00 0.51 0.52 0.51 0.42 0.43 0.44 

s3 0.51 0.51 0.00 0.01 0.02 0.34 0.35 0.34 

s4 0.52 0.52 0.01 0.00 0.03 0.35 0.35 0.34 

s5 0.51 0.51 0.02 0.03 0.00 0.35 0.35 0.34 

s6 0.43 0.42 0.34 0.35 0.35 0.00 0.00 0.13 

s7 0.43 0.43 0.35 0.35 0.35 0.00 0.00 0.13 

s8 0.44 0.44 0.34 0.34 0.34 0.13 0.13 0.00 

Table 4:  Isolate identifier strings. 

Inter-epidemic 

sequences 

Intra-epidemic 

sequences 

A/Hong Kong/46/1980 

A/NewYork/UR06-

0510/2007 

A/Hong Kong/45/1980  

A/NewYork/UR06-

0515/2007 

A/Managua/14/2007  

A/NewYork/UR06-

0529/2007 

A/Managua/15/2007  

A/Vermont/UR06-

0469/2007 

A/Managua/16/2007  

A/Vermont/UR06-

0470/2007 

A/New S. 

Wales/20/1999  

A/Vermont/UR06-

0471/2007 

A/New S. 

Wales/21/1999  

A/Colorado/UR06-

022/2007 

A/New S. 

Wales/22/1999   

A/Colorado/UR06-

023/2007 

  

A/Colorado/UR06-

024/2007 
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5 CONCLUSIONS/FUTURE WORK 
 

   In sumary, research presented here give examples 

of k-nucleotide signature subsets enabling the 

detection of the geographic origins of influenza A 

viral isolates in supervised and unsupervised 

classifications. These subsets only include nucleotide 

words which are absent from at least one genome in 

question and present in another while multiple 

genomes may be included in a classification schema.  

Although difference measures have only been derived 

for a small number of samples, they are suggestive a 

highly detailed and quantifiable network among 

Influenza viral isolates. Large flu transmission 

networks may become latent through a similar 

classification scheme which points each isolate to its 

most similar temporal predecessor.  In addition, the 

described method does not rely on sequence 

alignment which is computationally expensive. 

Instead, the differences between closely related 

genomes are extracted in a relatively inexpensive 

manner.  

     Future work will involve the optimization of this 

comparison method with regards to accuracy and 

efficiency. We would then like to compare large 

numbers of sequences to estimate flu networks over 

large geographic regions. This could prove useful for 

epidemiological studies, particularly with regards to 

understanding global transmission networks and the 

origins of new flu strains.   
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