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Abstract⎯The use of support vector machines (SVM) 

for watermarking of 3D mesh models is investigated. 
SVMs have been widely explored for images, audio, and 
video watermarking but to date the potential of SVMs 
has not been explored in the 3D watermarking domain. 
The proposed approach utilizes SVM as a binary 
classifier for the selection of vertices for watermark 
embedding. The SVM is trained with feature vectors 
derived from the angular difference between the eigen 
normal and surface normals of a 1-ring neighborhood of 
vertices taken from normalized 3D mesh models. The 
SVM learns to classify vertices as appropriate or 
inappropriate candidates for modification in order to 
accommodate the watermark. Experimental results 
verify that the proposed algorithm is imperceptible and 
robust against attacks such as mesh smoothing, 
cropping and noise addition.  

Index Terms⎯3D mesh models, support vector 
machine, watermarking. 
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1. Introduction 
The market for 3D models has evolved tremendously 

over the past few years owing to the widespread 
applications of 3D models in virtual reality, e-commerce, 
computer aided design, medical science and entertainment 
industry, only to name a few application domains. Such 
widespread use of 3D multimedia has lately attracted the 
research community to explore watermarking techniques 
for the copyright protection of 3D models. Watermarking 
research during the past decade has mostly focused on text, 
images, audio and video. Machine learning techniques for 
embedding and extracting watermarks have been widely 
investigated for images[1]-[3], audio[4],[5], and video[6],[7] 

domain. Such techniques have yet to be explored for the 3D 
graphics domain. Towards this end, the presented work 
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aims at exploring the potential of support vector machines 
(SVM) in 3D watermarking.   

Organization of the paper is as follows. A brief theory 
of SVM and related work are presented in Section 2 and 3. 
The proposed approach is outlined in Section 4 and 
experimental results are given in Section 5. Finally, 
directions for future work are provided in Section 6.  

2. Support Vector Machines 
SVM classifiers[8] are based on a class of hyperplanes, 

i.e., a decision surface which characterizes the boundary 
between the classes of the data. A set of training data or 
feature vectors is used to create the SVM classifier which 
predicts the class label of future data sets that is not 
provided in the training set. The SVM tries to find the 
optimal hyperplane which gives the largest margin of 
separation between the classes. The optimal hyperplane is a 
weighted combination of a subset of the elements of the 
training data set known as support vectors. A linear 
decision surface is expressed by the equation: 

wx+b=0                    (1) 

where x is the input vector, b is the bias and w is computed 
by the following equation: 
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where α is the weight, si is the support vector, and y is the 
class label.  

A nonlinear decision surface makes use of a kernel 
function K(⋅,⋅) that transforms the data to a higher 
dimensional space where the data set is separable. The 
kernel function must satisfy the Mercer’s condition[9] and 
be expressed as a dot product in some space. The nonlinear 
decision surface is expressed by the equation: 
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The equations for the three basic kernels are: 

Linear: K(xi, xj) = xj

Polynomial: K(xi, xj)= (xixj+c)d

Radial basis: 
2

( , ) expi j i jK x x x x= − − . 
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The proposed approach makes use of SVM as a classifier to 
identify vertices in the 3D model that are optimal locations 
for embedding the watermark imperceptibly.  

3. Related Work 
SVM has not been used so far for watermarking of 3D 

objects. A review of literatures reveal that SVM has been 
used for various other applications in 3D such as object 
recognition, face detection, face recognition, texture 
classification, head pose estimation, content-based database 
search, and shape processing. This section reviews such 
literatures along with related works that utilize SVM for 
digital media watermarking. The purpose of the review is to 
determine what feature vectors are used for training the 
SVM, which kernel function is employed and what 
classification is achieved by the SVM. 

3.1 Use of SVM in Multimedia Watermarking 
The authors in [10] described a texture based image 

watermarking algorithm. A two-class SVM is used to 
distinguish the image’s texture. The proposed method 
divides the image into blocks, calculates the texture value 
for each block and uses these texture values for training the 
SVM. The blocks with class label=1 have a strong texture, 
and are used to embed the watermark with strong intensity 
while the blocks with class label= −1 have a weak texture, 
and are used to embed the watermark with weak intensity. 
In [11], an SVM was employed by the watermark detector 
to extract the watermark from digital images. The 
watermark consists of reference data and a digital signature. 
The reference data and the watermarked image are used for 
the training of the SVM. The SVM learns the relationship 
between the embedded watermark and the watermarked 
image in order to correctly recover the embedded 
information bits from a given image.  

The authors in [12] used a linear SVM for the 
extraction of watermark from digital images. The feature 
vectors used for training the SVM are derived from the 
watermark embedded positions and consist of a reference 
watermark and the deviation of the watermarked pixel from 
the mean of the value of its surrounding pixels. The trained 
SVM is then used to determine the value of the pixel under 
consideration during the watermark extraction phase.  

In [13], a two-class SVM was used to locate the optimal 
embedding positions for the watermark in an audio signal. 
The feature vectors for training are the means of the 
absolute value of the coarse signal and the local maximal 
peaks of the detail signal in each wavelet subband of an 
audio segment. For higher average and peak values, the 
feature vector belongs to class 1 that represents optimal 
location for watermark insertion. For lower average and 
peak values, the feature vector belongs to class 0 that is not 
suitable for watermark insertion. A radial basis kernel 
function is used for the SVM.  

In [14], a video watermarking approach was proposed 
by using SVM for watermark embedding and extraction. 
The watermark comprises of a training sequence and a 
digital signature. For training the embedding SVM, feature 
vectors are derived based on the difference of blue channels 
among a watermarked video frame and its neighbors. The 
trained SVM then embeds the watermark in the rest of 
frames. The detector takes frames and the training sequence 
from the watermark to train the extracting SVM and uses it 
to extract watermarks from the remaining frames. The final 
watermark is the average of these extracted watermarks. 

3.2 Use of SVM in 3D Graphics 
Researchers in [15] classified 3D aerial LiDAR data 

into four classes (buildings, trees, roads, and grass) using 
the SVM algorithm. They used five features - normalized 
height, height variation, normal variation, LiDAR return 
intensity, and image intensity. Linear, Gaussian, sigmoid, 
polynomial (degree 2-6) kernels were used for experiments. 
The authors in [7] used a multi-class SVM for classification 
of 3D textures using a histogram model. Invariant features 
are extracted from images of textured surfaces which are 
transformed by 3D translation and rotation, by means of a 
non-linear histogram model. These invariant features are 
used as input feature vectors of the SVM in order to do 
classification in high-dimensional spaces.  

In [16], the authors used SVMs to estimate the 3D head 
pose in video sequences. The feature vector is a 
displacement vector derived from a 3D physics-based 
deformable model created from each pixel’s location and 
intensity from every frame of the given video sequence. 
This feature vector is used to train a multi-class SVM to 
classify one of the three head pose angles (i.e. pan, tilt and 
roll angles of the head). A polynomial function kernel is 
used for the SVM classifier.  

The authors in [17] used a linear SVM for 3D object 
recognition and proposed an appearance based approach 
that learns from images of 3D objects in the COIL-100 
database. Images are regarded as points of a space of high 
dimensionality. Each image is converted to gray-scale with 
the spatial resolution reduced and the image is represented 
as a vector. An SVM is trained for each pair of 3D objects 
and a tennis game tournament strategy is used to classify a 
given test object using the various trained SVMs.  

The authors in [18] used SVM to iteratively refine 
results of a content-based search algorithm for a database of 
3D objects. The search result is given as several nearest 
neighbor objects to the query object. The weighted 
Euclidean distance measure between 3D object features is 
used to measure the similarity between objects. The 
features used are normalized moments estimated based on 
uniformly distributed random generation of points on the 
3D objects’ surface. SVM is trained with labeled 3D 
objects which are returned as results in search of the query 
object with binary labels representing similarity or 
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dissimilarity from the query object. A parameterized 
Euclidean distance based linear kernel function is used to 
adapt the weights of the distance measure causing similar 
objects to become nearer, and the dissimilar objects to 
become distant from the query object. Subsequent searches 
yield an improved set of results returning higher number of 
similar objects in response to the search query.  

Researchers in [19] discussed 3D object classification 
with SVMs. COIL image library of 3D objects is used for 
experiments and three different pixel level representations 
of the images are used as feature vectors. Linear and 
polynomial kernels are used for the SVM. A multi-class 
pattern recognition system is obtained by combining binary 
SVMs. Each SVM is trained as a classifier for one class 
against another class. In order to classify test data, 
pair-wise competition between all the machines is 
performed and in analogy with a tennis tournament, each 
winner competes against another winner until a single 
winner remains. This final winner determines the class of 
the test data. 

In [20], an SVM based method was used for shape 
processing by approximating implicit surfaces from a point 
cloud data of a 3D object. The point cloud data of a 3D 
object surface and off-surface points area are used as 
training data and the SVM regression algorithm uses a 
radial basis kernel. The authors in [21] introduced an SVM 
based technique for 3D face recognition. The 3D face shape 
is normalized and a two-dimensional principal component 
analysis (PCA) is applied to get principal images which are 
used as the feature vectors. Classification is carried out by 
calculating the similarity score between the feature vectors. 
The SVM classifier is used in choosing the closest match 
for the face recognition. A radial basis kernel is used.   

4. Approach 
The proposed approach employs SVM for the 

watermark embedding phase. Fig. 1 gives an overview of 
the watermarking system. Since SVM is a supervised 
learning algorithm, it requires a training stage. The trained 
SVM is then used in the watermark embedder. Once the 
SVM is trained, feature vectors extracted from any 3D 
mesh model can be fed to the SVM classifier to decide 
which vertices are appropriate for watermark insertion. The 
watermark extractor retrieves the imperceptible watermark 
inserted during the insertion stage. Robustness of the 
watermark is evaluated by comparing the correlation 
between original watermark and attacked watermark using 
correlation.  

4.1 Feature Vectors 
   A 3D mesh model, shown in Fig. 2, is represented by a 
set of vertices and a collection of triangular faces formed by 
the vertices. The feature vectors used to train the SVM 
represent the curvature of the patch areas of the 3D mesh 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. System block diagram. 

 
Fig. 2. 3D mesh model and the 1-ring neighborhood (6 shaded 
triangles around vertex v).  

model. This curvature measure determines the eligibility of 
the patch area for watermark addition. The patch area is 
restricted to an 1-ring neighborhood for each vertex. 

The feature vector is a set of angles derived by 
computing the orientation of the surface normals to the 
eigen-normal of the triangular faces that form an 1-ring 
neighborhood for a vertex, as shown in Fig. 4 and 5. The 
length of the feature vector is equal to the valence of the 
vertex, which is the count of how many other vertices the 
vertex is connected to in the 3D model. Since feature 
vectors used for training of SVM have to be of fixed length, 
vertices with valence 6 are selected for feature extraction 
since most of the vertices in a 3D model have valence 6.  

The steps for extracting feature vectors are given 
below: 
   Step 1: consider a vertex v with valence equal to 6 from 
the 3D mesh model. Let M be the number of its adjacent 
faces which is equal to 6. Find normal’s ni to each face 
which is formed by v and its neighboring vertices, as shown 
in Fig. 3, by taking the cross-product of any two edges that 
form the face.  
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Fig. 3. Surface normals (ni) for an 1-ring vertex neighborhood.  

    
 

 

 

Fig. 4. Surface normals (ni) and eigen-normal (neigen) or an 1-ring 
vertex neighborhood. 

    
 
 
 
 
 

Fig. 5. Angular variation between surface normals and eigen 
normal. 

   Step 2: find the eigen normal neigen of all the above 
normal’s passing through v by computing the eigen-vectors 
from the eigen-decomposition of the covariance matrix of 
all these surface normals. The eigen-vector corresponding 
to the maximun eigen-value constitutes the eigen-normal. 
   Step 3: now compute angles αi between each pair of ni 
and neigen. 

( ) ( )(1
eigen eigencosj i in n n nα −= ) .       (4) 

Feature vector F=[α1, α2, α3, α4, α5, α6] represents the 
curvature of the 1-ring vertex neighborhood. 

4.2 SVM Training 
During the training stage, feature vectors are fed to the 

SVM as input along with a corresponding class label of 
either 1 (vertex appropriate for watermark addition) or −1 
(vertex inappropriate for watermark addition). The class 
label for each feature vector is determined manually by a 
human operator. Random amount of information is added 
to a vertex and if the information added causes perceptible 
distortion, the vertex with valence 6 is labeled as −1. If the 
information added is imperceptible the vertex is labeled as 
1. 100 sets of vertex rings with different geometrical 
structures (see Fig. 6) are extracted from 7 normalized 3D 
objects and labeled appropriately deciding whether to insert 
the watermark or not. The labelings of output vectors is a 
manual process thereby transferring human intelligence to 
the classifier. The output of the training stage is the support  

 
 

 
 
 
 
 
 
 
Fig. 6. 1-Rings of different geometries used to train the SVM. 

vectors, the weight vector w and the bias b defining the 
optimal hyper plane for separation of the feature vectors in 
to class labels of 1 and −1. 

4.3 Watermark Insertion 
Initially, the 3D objects are normalized by scaling the 

size of the mesh to fit in a bounded cube with the vertices 
of the diagonal of the cube ranging from (−1, −1, −1) to (1, 
1, 1) and shifting the centre of mass of the vertices to the 
origin. The extracted feature vectors are then fed to the 
SVM classifier which was trained in the earlier stage. The 
SVM gives an output of −1 (corresponding to the decision 
that the vertex should not be selected for watermarking) or 
output of 1 (corresponding to the decision that the vertex 
should be selected for watermarking). The feature vectors 
extracted from the 3D model may not have been used in the 
training set. A random number sequence W (the watermark 
data) is added to the vertices which have SVM output of 1 
according to the following equation: 

( , , ) ( , , )v x y z v x y z KW′ = +              (5) 

where v' is the watermarked vertex, and K is the scaling 
factor.  
   The key stores the vertex indices for which the 
watermark has been added and also the original values of 
those vertices. The 3D model is then scaled back to its 
original size and the center shifted from origin to the 
original center. The watermark inserted in the 3D mesh 
models are randomly distributed throughout the model as 
shown in Fig. 7. 

 
 
 
 
 
 
 
 
 
 

Fig. 7. Watermark locations indicated by white regions (black 
regions denote vertices that are not modified by the watermarking 
algorithm). 
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4.4 Watermark Extraction 
To extract the watermark from a given watermarked or 

attacked 3D model, the model is normalized and scaled to 
the origin. Using the key generated by the watermark 
embedding phase, the difference in vertex coordinates 
determines the watermark. A correlation measure, as 
defined in (6) and (7), is used to get the degree of similarity 
between the extracted watermark and the watermark added 
during the embedding stage. 

correlationAmount of correlation= w w
W

′+ ×       (6) 

  
1

Correlation
N

i i

i i i

A A
A A=

′
=

′∑             (7) 

    ,   i i i i i i i iA x y z A x y z′ ′ ′= + + = + + ′            (8) 

where w is count of vertices not attacked in watermarked 
model, w' is count of vertices attacked in watermarked 
model, W is total number of vertices in the watermarked 
model, xi, yi, zi are co-ordinates of the ith vertex in the 
attacked model, and , ,i i ix y z′ ′ ′  are co-ordinates of the 
corresponding ith vertex in the watermarked model. 

5. Experiments 
The algorithm has been implemented in Matlab using 

the Least Squares SVM Toolbox. This section presents 
experiments to evaluate the robustness and imperceptibility 
of the embedded watermark. Fig. 8 shows the original and 
watermarked 3D models along with various attacks 
performed on the watermarked 3D models. The Hausdorff 
distance and vertex signal-to-noise ratio (VSNR) quantify 
the visual differences between the original and 
watermarked objects and are very low as shown in Table 1, 
indicating very good imperceptibility of the watermark. 

The following attacks are simulated on the 
watermarked 3D models. The correlation coefficient 
between the attacked watermark and the original one is 
shown in Table 2. A threshold value of 0.7 is used to 
determine survival of the watermark. 

Table 1: Comparison of original model with watermarked model 

Model name Number of 
vertices 

Number of 
modified 
vertices 

VSNR 
(dB) 

Hausdorff 
distance 

Hand 26000 4026 122.86 0.001729 

Baby 5075 1212 108.65 0.004079 

Mechanical 175 79 106.13 0.003492 

Venus 711 241 124.63 0.001574 

Smiley 1026 378 111.73 0.002146 

Mannequin 1681 1106 113.57 0.003029 

 

   1) Translation, rotation, and scaling. The algorithm is 
completely resistant to uniform scaling and affine attacks 
since the model is normalized prior to watermark insertion. 
Any uniform rotation, translation, and scaling operations on 
the watermarked models gives correlation coefficient of 
1.0.  
   2) Noise on geometry. Addition of Gaussian noise 
consists of adding random noise with mean 0 and variance 
0.0035 to vertex coordinates (see Fig. 8). A noise level of 
100%, i.e. all vertices modified by additive noise, destroys 
the watermark yielding lower than 0.7 correlation values. 
However, the watermark survives noise levels of 20% or 
less. 
   3) Mesh smoothing. Laplacian smoothing when applied 
to the watermarked model smooths the sharp edges in the 
model by applying a low pass gradient filter to the vertices. 
The watermark does not survive mesh smoothing 
operations. 
   4) Cropping. Various experiments that crop sections of 
the 3D model verified that the watermarked can be 
recovered even when a part of the mesh is removed, as 
shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Attacks on watermarked 3D models. 
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Table 2: Correlation results for various attacks 

Correlation value 
3D Model 

Name 
  Smoothing        Cropping         Noise 

Hand 

0.4813 
(Laplacian 
smoothing 

1 time) 

0.8840 
(3607 vertices 

cropped) 

0.6542 
(Gaussian noise 
added to 3900 

vertices) 

Baby 

0.6407 
(Laplacian 
smoothing 

1 time) 

0.8261 
(811 vertices 

cropped) 

0.7017 
(Gaussian noise 

added to 761 
vertices) 

Mechanical 

0.6714 
(Laplacian 

smoothing 1 
time) 

0.7012 
(48 vertices 

cropped) 

0.7283 
(Gaussian noise 

added to 175 
vertices) 

Venus 

0.5234 
(Laplacian 
smoothing 

1 time) 

0.8946 
(193 vertices 

cropped) 

0.6719 
(Gaussian noise 

added to 711 
vertices) 

Smiley 

0.4325 
(Laplacian 
smoothing 

1 time) 

0.9217 
(301 vertices 

cropped) 

0.5758 
(Gaussian noise 

added to 153 
vertices) 

Mannequin 

0.5493 
(Laplacian 
smoothing 

1 time) 

0.9083 
(627 vertices 

cropped) 

0.5349 
(Gaussian noise 
added to 1681 

vertices) 

6. Summary and Future Work 
This paper has investigated and illustrated the potential 

of SVM for embedding a watermark in 3D mesh objects. 
The performance of the algorithm is heavily dependent on 
the quality of training feature vectors and the size of the 
training set. Experimental results show good performance 
in terms of imperceptibility and robustness for the 
watermarking algorithm. Future work will include 
experimenting the use of various kernel functions for the 
SVM and deriving feature vectors of different lengths for 
vertices with different valence. SVM will also be evaluated 
in future work for not only selecting the vertices to be 
watermark but also determining how much watermark to 
add to the selected vertex[22]. Using SVM in the watermark 
detection phase is an additional task to explore. 
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