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Abstract⎯This paper describes a novel algorithm for 

fragile watermarking of 3D models. Fragile water- 
marking requires detection of even minute intentional 
changes to the 3D model along with the location of the 
change. This poses a challenge since inserting random 
amount of watermark in all the vertices of the model 
would generally introduce perceptible distortion. The 
proposed algorithm overcomes this challenge by using 
genetic algorithm to modify every vertex location in the 
model so that there is no perceptible distortion. Various 
experimental results are used to justify the choice of the 
genetic algorithm design parameters. Experimental 
results also indicate that the proposed algorithm can 
accurately detect location of any mesh modification. 

 

Index Terms⎯3D mesh models, fragile water- 
marking, genetic algorithms, SNR. 

doi: 10.3969/j.issn.1674-862X.2010.03.008 
 

1. Introduction 
3D digital content has grown exponentially in the past 

few years. The designers exhibit, share, and sell this 
valuable artwork as 3D models or meshes. However, the 
duplication and unauthorized modification of these meshes 
have made watermarking an essential part of copyright 
protection while selling these models. Watermarking can be 
broadly classified into two types. Robust Watermarking is 
used to prove ownership. Thus, in such a type of 
watermarking scheme, the watermark should be preserved 
even after attacks. On the other hand, fragile watermarking 
is used to authenticate integrity of the model. It is required 
that fragile watermarking algorithm also locates the regions 
where the mesh has been modified intentionally. This can 
be achieved if the position of every vertex in the model is 
modified or watermarked. Thus, fragile watermarking is a 
commonly used technique for tamper detection. However, 
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watermarking all the vertices in a 3D model poses a 
challenge since perceptible distortion can be caused. The 
proposed algorithm successfully solves that challenge by 
watermarking all the vertices in a model without causing 
perceptible distortion. 

A comprehensive survey of 3D model watermarking 
techniques has been done by [1]. There has been a 
significant amount of research to embed watermarks in 
images, video sequences, and audio sequences using 
genetic algorithms (GA). Reference [2] used GA to find the 
optimum embedding density to modify the DCT coeffi- 
cients of the host image for image watermarking. GAs have 
also been used in frequency domain, DCT and DWT 
domain for image watermarking[3]-[6]. The fitness function 
is peak signal to noise ratio (PSNR) for imperceptibility of 
the watermark and normalized cross correlation (NCC) for 
the robustness of the watermark. GA has also been used in 
a dual image watermarking scheme[7]. The above scheme 
employs insertion of a robust watermark into a secondary 
image which acts as the fragile watermark for the host 
image. Embedding of fragile watermark uses a watermark 
embedding factor which is obtained using GA. Thus, the 
objective of the GA is to maximize PSNR. Reference [8] 
applied GA for fragile watermarking of images. In this 
algorithm, the block edge characteristics of an image are 
used and the edge information is used as the fitness 
function parameter. In audio watermarking[9], a pseudo 
noise (PN) sequence is embedded in the audio sequence. 
During extraction, GA is used with the fitness function 
being the cross correlation between estimated PN sequence 
and the spread spectrum. GAs have never been used for 
fragile watermarking of 3D models. The novelty of this 
paper lies in the use of GAs to generate a fragile watermark, 
which is inserted in all the vertices of the 3D model. 

Genetic algorithms are a branch of evolutionary 
algorithms that use evolution and Darwin’s theory of 
survival of the fittest as a source of inspiration to solve 
optimization problems[10]. In genetic algorithm, all the 
possible solutions to solve the given optimization problem 
are called chromosomes. Each generation has a specific 
number of chromosomes, which constitute the population 
of that generation. The fundamental block of GA is the 
fitness function. The fitness function defines the parameter 
that has to be optimized. Each chromosome is evaluated 
using the fitness function and returns a value known as the 
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fitness value of that chromosome. According to the best 
fitness values, some chromosomes are selected to reproduce 
the next generation. The most common operators used for 
reproduction are selection, mutation and crossover 
operators. 

2. Proposed Approach 
2.1 3D Model Representation 

A 3D mesh consists of a vertex list, which gives the 
co-ordinates in 3D space of every vertex in the model, and 
a face list, which describes how the vertices are connected 
to each other. Each vertex in the model is represented by (X, 
Y, Z) coordinates in the Cartesian axis and also represents a 
chromosome. The 1-ring neighborhood of a vertex V is 
defined as the surfaces formed by that vertex V with its 
neighbors as shown in Fig. 1.  

 
Fig 1. Smiley triangular mesh model and one ring neighborhood 
of vertex V.  

2.2 Watermark Generation and Insertion 
Normalization of 3D models as a pre-processing step 

before insertion of watermark makes the watermark 
resilient to modifications in the 3D model due to affine and 
scaling transformations. The centre of mass of the 3D 
model is shifted to the origin and the model is scaled to fit 
in a unit cube. For each vertex in the 3D model, the 1-ring 
neighbourhood for the vertex is extracted. Modifying the 
coordinate position of centre vertex of the 1-ring 
neighborhood can be considered as adding random noise 
with reference to the original location of the vertex. Thus, 
the watermark added to a vertex is equivalent to noise being 
added to the vertex. The amount of distortion in the 1-ring 
can be measured by computing the signal to noise ratio 
(SNR)[11] as follows: 
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where N is the number of vertices in the 1-ring 
neighborhood of the centre vertex including the centre 
vertex, Xi, Yi, and Zi are the Cartesian coordinates of the 
vertices in the 1-ring neighborhood including the centre 
vertex, iX ′ , , and Y ′ iZ ′  are the modified coordinate of 
the centre vertex. 

The objective of the genetic algorithm is to maximize 

signal to noise ratio (SNR) for the 1-ring neighborhood. 
Fitness function chosen is  

1Fitness function
SNR

= .           (2) 

Genetic algorithm is used to compute the near optimal 
value of the amount of watermark to be added to the centre 
vertex of the 1-ring neighbourhood without causing any 
perceptible distortion. All the vertices in the 3D model are 
watermarked using GA. The model is then scaled back to 
the original size and shifted to its original position as well. 

The choice of fitness function determines what para- 
meter GA is going to optimize. Chromosome with the best 
fitness value at the end of pre-determined number of 
generations is considered as the optimized output of the 
algorithm. The best fitness value from a pool of chromo- 
somes corresponds to the chromosome with the least SNR. 

2.3 Watermark Extraction 
In non-blind approach, original model is subtracted 

from the watermarked model and thus the watermark is 
extracted. However, this approach is not restricted to 
non-blind watermarking. If a key is used to store the vertex 
index and the amount of watermark added by the above 
proposed algorithm using GA, the original model is not 
required. 

2.4 Genetic Algorithm Parameters 
Each chromosome is represented by (X, Y, Z) cartesian 

coordinates and a population of 100 such chromosomes is 
initially created near the centre vertex of the 1-ring 
neighborhood. The uniform creation function creates a 
normally distributed random population within the initial 
range. The initial range defines the upper bound and the 
lower bound of the X, Y, and Z co-ordinates while creating 
the initial population. These limits have been set to the 
maximum and the minimum value of the respective 
co-ordinates of the 1-ring. This ensures that the optimal 
chromosome does not move outside the 1-ring, thus 
avoiding perceptible distortion. The selection operator used 
is stochastic uniform. Stochastic uniform is used because it 
considers a certain value below which it does not allow to 
reproduce, i.e., it follows the basic rule of GA that ability to 
reproduce is directly proportional to its fitness value. In this 
type of selection, a threshold value is taken and this 
threshold value is equal to 1/no. of parents. This threshold 
value is also called the step size and if the fitness value of 
any chromosome lies below this step size, it is considered 
to be weak and hence not allowed to reproduce. Similarly, 
if the fitness value of a chromosome is greater than or equal 
to M times the threshold value, then that chromosome is 
selected to reproduce M times. M is determined by 

M= floor (fitness value/step size).        (3) 
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Table 1: Genetic algorithm parameters 
Population Size 100 
No. of generations 20 generations 
Initial range Upper bound Max value of the 

coordinates of 1-ring 
 Lower bound Min value of the 

coordinates of 1-ring 
Creation function Uniform 
Selection operator Stochastic uniform 
Crossover operator Scattered crossover 
Crossover rate 0.8 
Mutation operator Uniform mutation 
Mutation rate 0.001 
Elite count 2 
Fitness threshold value 10−9

Scattered crossover is used. The mutation operator used 
is uniform mutation operator. In this type of mutation 
operator, the X, Y, and Z co-ordinates of the chromosomes 
are randomly replaced by a value within the range. 
Stopping criteria is met when the algorithm encounters one 
of the following 2 conditions. 

1) Generation limit, i.e., the number of specified 
generations is exceeded, or 

2) Change in the fitness values between consecutive 
generations is less than the fitness threshold value. 

The values of the above described parameters used in 
the algorithm have been tabularized in Table 1.  

3. Experimental Results 
3.1 Population Size and Number of Generations 

The algorithm is tested with many different shapes of 
1-ring neighbourhoods for deciding the parameters for the 
GA. The advantage of using 1-ring representation of the 
vertex is that it is easy to visualize the change in location of 
the vertex and the computation of distortion is local to the 
1-ring vertex. Different sets of experiments were conducted 
to determine the population size and the number of 
generations. Black markers in the figures correspond to the 

best fitness value from the pool of chromosomes for each 
generation whereas the mean fitness value is denoted by 
blue markers. 4 sets of experiments are performed on 3 
models to determine the optimum combination of 
population size and the number of generations.  

Fig. 2 to Fig. 5 and Table 2 and Table 3 indicate that a 
population size of 100 run for 20 generations is the most 
optimal value. When a GA is run for 20 generations with a 
population size of 20, the perceptible distortions is high. 
This is because the initial pool of chromosomes is scattered 
randomly within the range. Since the population size is just 
20, the chances of these chromosomes being closer to the 
centre vertex of the 1-ring are very low. When the 
algorithm with these parameters is run for only 20 
generations, there is not enough time for the GA to 
converge at a value close to the centre vertex. When the GA 
is run for 100 generations with population size of 100, the 
algorithm is computationally expensive. As seen in the Fig. 
6, the perceptible distortion with these parameters is very 
low. But the same degree of low perceptible distortion is 
achieved with a population size of 100 run for just 20 
generations and this also decreases the computational costs. 
When the population size is 20 and is run for 100 
generations, the initial pool of chromosomes is once again 
scattered within the range and the chances of them being 
close to the centre vertex are very low. Thus, over a period 
of 100 generations, much of the newer chromosomes are 
produced as a result of mutation, i.e., mutation will take 
place at least 100 times, once for each generation. Mutation 
is replacement of a chromosome with a random value. This 
random value may or may not have a good fitness value. 
Thus, as the results show, the performance of this 
combination is not as good as the performance of the 
combination of population size 100 run for 20 generations. 

The graphs in Fig. 2 to Fig. 5 show that there is no 
considerable change in the “best fitness value” after 20 
generations. Thus, the parameters chosen for embedding 
the watermark were population size=100 and number of 
generations=20.  
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(a)                                       (b)                                       (c) 

Fig. 2. In running for 100 generations with a population size of 100, the change in best fitness value and the mean fitness value: (a) for 
vertex index 10 of the Smiley, (b) for vertex index 10 of the Mannequin, and (c) for vertex index 20 of the Mechanical. 
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Fig. 3. In running for 100 generations with a population size of 20, the change in best fitness value and the mean fitness value: (a) for 
vertex index 10 of the Smiley, (b) for vertex index 10 of the Mannequin, and (c) for vertex index 20 of the Mechanical. 
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Fig. 4. In running for 20 generations with a population size of 20, the change in best fitness value and the mean fitness value: (a) for 
vertex index 10 of the Smiley, (b) for vertex index 10 of the Mannequin, and (c) for vertex index 20 of the Mechanical. 
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Fig. 5. In running for 20 generations with a population size of 100, the change in best fitness value and the mean fitness value: (a) for 
vertex index 10 of the Smiley, (b) for vertex index 10 of the Mannequin, and (c) for vertex index 20 of the Mechanical. 

Table 2: Average time per vertex                        Table 3: Vertex signal to noise ratio 

 
 

Model Mannequin 
(s) 

Smiley 
(s) 

Mechanical
(s) 

Population size 100 run for 
100 generations 1.340 1.330 1.090 

Population size 20 run for 
100 generations 0.420 0.480 0.325 

Population size 20 run for 
20 generations 0.240 0.200 0.110 

Population size 100 run for 
20 generations 0.480 0.320 0.285 

Model Mannequin 
(dB) 

Smiley 
(dB) 

Mechanical
(dB) 

Population size 100 run for 
100 generations 144.30 146.00 126.73 

Population size 20 run for 
100 generations 117.00 119.00 101.34 

Population size 20 run for 
20 generations 103.00 97.88 82.15 

Population size 100 run for 
20 generations 126.60 121.25 102.81 
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3.2 Analysis of Flat and Cylindrical Surfaces 

The algorithm should insert a watermark in 3D models 
that have flat surfaces as well. This is difficult because in 
that condition the chromosome has to move only on a flat 
surface on a 2D plane. Since the fitness function used is the 
SNR, every time the chromosome moves out of the plane, 
the SNR decreases. Thus, the objective of the GA is to 
maximize this SNR, due to which the vertex, V stays in the 
2D plane, as illustrated in Fig. 6.  

Cylindrical surfaces are formed by the intersection of 2 
planes. Thus while watermarking the vertex of the cylinder, 
it is required that the chromosome should move along the 
line of intersection of these two planes. Mechanical Fig. 7 
(e) is a combination of both cylindrical as well as flat 
surfaces. Fig. 7 (e) shows genetic algorithm watermarks the 
mechanical model without any perceptible distortion. Thus, 
the GA works for flat as well as cylindrical surfaces.  

3.3 Watermarking the Models 
The algorithm was run with a population size of 100 

for 20 generations. The algorithm was tested for 5 different 
models: bunny, mannequin, smiley, horse, and mechanical. 
The results in Table 4 and Fig. 8 indicate there is no 
perceptible distortion between watermarked and original 
models. 

3.4 Attacks on the Model 
The attacks for fragile watermarking of 3D model 

differ from the attacks for robust watermarking. The 
attacks on the fragile watermarked 3D model deal only 
with unauthorized modification of any region in the model. 

Due to normalization of the model as a preprocessing 
step, the watermark is not affected by attacks such as 
translation, rotation and scaling as shown in Fig. 9 to Fig. 
11. Correlation of 100% is obtained for affine 
transformations. Note that the model has not been 
tampered with since there are no colored (red) patches in 
Fig. 9 (c).  

The other type of attacks are deformation or cropping 
attacks, where the vertices are deformed as shown in Fig. 
10 (b). In such a case, the algorithm is able to find out the 
location at which the deformation or cropping has taken 
place as shown in Fig. 10 (c). 

Apart from these attacks, simultaneous modifications at 
more than one location can be detected due to the fragile 
watermarking as shown in Fig. 12. 

Table 4: The algorithm test results for 5 different models 

 

 
Fig. 6. Vertex 10 of the cube: V moves to on the surface of 
the plane, preventing perceptible distortion. 

V′

 
Fig. 7. Watermarked 3D models: (a) original model, (b) 
watermarked model with a population size of 100, run for 100 
generations, (c) watermarked model with a population size of 20, 
run for 100 generations, (d) watermarked model with a population 
size of 20, run for 20 generations, and (e) watermarked model 
with a population size of 100, run for 20 generations. 
 

 
(a) 

    
(b)                            (c) 

     

Model Bunny Mannequin Smiley Horse Mechanical
No. of vertices 17446 6743 8194 19851 175 
No. of vertices 
watermarked 17446 6743 8194 19851 175 

SNR (dB) 137.75 126.64 121.5 132.5 102.81 (d)                            (e) 
Average time per 
vertex (s) 0.43 0.48 0.32 0.37 0.285 Fig. 8. Comparison between watermarked and original models: (a) 

bunny, (b) mannequin, (c) smiley, (d) horse, and (e) mechanical.  
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(a)                        (b) 

 
(c) 

Fig. 9. Attacks on bunny: a) watermarked bunny, (b) translated 
model, and (c) tamper region detection. 

     
(a)                  (b)                  (c) 

Fig. 10. Attacks on bunny: (a) original bunny, (b) deformed 
bunny, and (c) modified region shown by colored (red) patch. 
 
 
 
 
 
 
 
 
 
 

(a)                           (b) 

 
(c) 

Fig. 11. Attacks on horse: (a) original horse, (b) rotate by 250˚, 
and (c) no red patches indicating the model has not been 
modified. 

   
(a)                           (b) 

Fig. 12. Modification detection: (a) horse deformed and (b) 
deformed regions. 

4. Conclusions 
In this paper, a fragile watermarking technique using 

genetic algorithms has been proposed. The algorithm 
generates and embeds a watermark in each and every 
vertex of the model. The use of signal to noise ratio as the 
fitness function prevents any perceptible distortion in the 
model. Also, genetic algorithms are known to be slow, but 
the method of premature convergence used in this paper 
makes the proposed algorithm computationally inexpensive. 
The premature convergence was achieved by running the 
algorithm with a population size of 100 for 20 generations 
and was found to provide satisfactory results. The analysis 
of the working of this algorithm on flat and cylindrical 
surfaces has also been covered. The algorithm also detects 
any unauthorized structural modifications in the model. 
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