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Abstract

The destruction caused by wildfires has led to the development of various models that try to predict the effects
of this phenomenon. However, as the computational complexity of these models increases, their utility for real-time
applications diminishes. Fortunately, the burgeoning processing power of the graphics processing unit can not only
mitigate these concerns but also allow for high-fidelity visualization. We present VFire, an immersive wildfire simu-
lation and visualization system. Users are placed in a virtual environment generated from real-world data regarding
topology and vegetation. There they can simulate wildfires in real-time under various conditions. They can then
experiment with various suppression techniques, such as fire breaks and water drops. The simulation is performed
on the graphics card, which then provides visualization of the results. The system is intended to train fire chiefs in
planning containment efforts and to educate firefighters, policymakers, and the general public about wildfire behavior
and the effects of preventative measures.
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1. Introduction

Every year, wildfires destroy millions of acres of
land and cost millions if not billions of dollars to con-
trol. From 2000 to 2002, over 18 million acres were
burned, over 2,000 structures were destroyed, and over
3.4 billion dollars were expended just for suppression
efforts. Beyond the immediate damage caused by wild-
fires, there are also lingering effects that are not only
environmental, but social and economical as well [1].

To better understand wildfires, scientists have devel-
oped methods for modeling wildfire behavior. These
models vary in terms of the types of spreading behaviors
simulated and the simulation domain used [2, 3]. Some
models simulate the spread of fire across surface fuels
while others simulate fire propagating into the canopies
and possibly moving from tree top to tree top without
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interacting with the surface fuels. Still others simulate
embers being lofted through the air and igniting spot
fires potentially vast distances away from the source.
These models take into account a variety of factors in-
cluding wind, weather conditions, fuel types, and slope.

Visualization of wildfire behavior can provide a num-
ber of benefits. First of all this allows scientists to verify
the accuracy of these models by comparing the results
of an actual fire with the output of a simulated version.
Once the model is validated, it can then be used to pre-
dict not only the behavior of an existing fire, but also the
consequences of preventative measures, such as vegeta-
tion thinning and prescribed burns.

Displaying these predictions in a visually informative
manner allows for community planners and/or city offi-
cials to better educate the public on existing fire haz-
ards. Furthermore, enabling interactive manipulation of
the simulation along with the visualization allows for
training of fire bosses with respect to resource alloca-
tion and fire behavior. While experimentation would be
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dangerous and costly to perform in a real-life situation,
these risks can be mitigated by simulating untested ap-
proaches first.

Virtual Reality (VR) technology allows users to im-
merse themselves in their data. Stereoscopy provides
depth information that is usually lost with standard
desktop displays. This depth information enables the
creation of 3D user interfaces, which can provide a more
intuitive form of interaction. Additionally, combining
depth information with high fidelity graphics can allow
an observer to better compare a simulated fire to a his-
toric fire.

VFire is a wildfire simulation and visualization tool
built for an immersive virtual environment. Users are
able to load data about a geographical region and then
experiment on this region by starting fires, manipulating
fuels, and altering weather conditions. Fire simulation
is performed on the Graphics Processing Unit (GPU) to
enable real-time simulation and visualization.

The remainder of this paper is structured as follows.
Section 2 provides background information, while Sec-
tion 3 gives an overview of the system. Section 4 out-
lines how the fire simulation is performed on the GPU
and Section 5 describes the methods used to visualize
the simulation. Section 6 discusses the interaction of
the user with the system while Section 7 details the cur-
rent state of the system. Finally, Section 8 offers closing
thoughts and avenues for future research.

2. Background and Related Work

This section details work related to and referenced by
VFire. Particularly, a brief history of fire models is pre-
sented followed by a review of software projects that
apply these models. Virtual reality and its previous ap-
plications to visualization are then discussed.

2.1. Fire Models

Research into parameterizing various aspects of wild-
fires has been ongoing for decades. This section high-
lights components of this research that are relevant to
this work. For a more complete treatment of fire mod-
els, the reader is referred to Pastor et al. [2].

Both Pastor et al. [2] and Perry [3] outline three
types of fire models: theoretical, empirical, and semi-
empirical. Theoretical models are models that rely
solely on physical principles. The advantage of such
reliance is that these models are based on known prop-
erties. On the other hand, the utility of these models in
practice is questionable due to the difficulty of obtaining
the appropriate inputs. On the other end of the spectrum

are empirical models, which are generally statistics that
can be used to predict fire behavior under certain con-
ditions. Beyond this set of conditions, purely empirical
models have had little success. Between these two ex-
tremes lies semi-empirical or semi-physical models that
rely on some theoretical principles which are adjusted
with some experimental data. Because of their reliance
on experimental data, some calibration may be needed
in order to apply these models to different conditions.

Most work done in determining the shape of a fire as
it spreads has concluded that under homogeneous con-
ditions, fire will spread in roughly an elliptical shape of
some sort. Green et al. [4] compared the effectiveness of
a simple ellipse, a double ellipse, an ovoid, and a rect-
angle and found that while any of those shapes could
adequately fit the contours of various observed fires, the
ellipse and double ellipse were found to fit best under
homogeneous conditions. As wind speed increased, the
length to width ratio of the ellipse would likewise in-
crease [5].

Spread of a fire tends to be modeled using Huygens’s
Principle, which assumes that every point along a fire
perimeter will ignite another fire that grows elliptically
according to the environmental characteristics of that
point. At the end of a time step, the new fire perimeter
is given by the outline of all of these new ellipses [6].

Pastor et al. [2] further classifies models by the aspect
of wildfire that a model is attempting to parameterize.
This classification divides fire models into surface fires,
crown fires, and spotting.

Surface fires are characterized by the burning of fuels
that are less than two meters in height. While numerous
models for surface fire spread have been developed, few
have been applied to real-world applications. The most
successful of these models is a semi-empirical model
developed by Rothermel in 1972 [2]. Rothermel [7]
found that the forward rate of spread for a wildfire was
approximated by the equation

R =
IRξ (1+φw +φs)

ρbχQig

where IR is the reaction intensity, ξ is the propagating
flux under zero wind and zero slope conditions, φw is a
coefficient resulting from wind, and φs is a coefficient
resulting from slope. ρb is the bulk fuel density, χ is
the effective heating number, and Qig is the amount of
energy per unit mass required to ignite the fuel.

The previous equation approximates spread in one di-
mension with both the direction of maximum wind and
the direction of maximum slope oriented along this axis.
Rothermel [8] presents a method for finding a two di-
mensional spread vector if the slope and wind directions
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are not aligned. The first component of the maximum
spread rate is found using only the slope in the direction
of maximum slope and no wind; likewise, the second
component of the maximum spread rate is found using
only the wind speed and direction and no slope. These
two vectors are then added together to yield a vector de-
scribing the maximum spread rate.

Crown fires are characterized by the spread of fire into
the crowns of trees. Modeling of such a phenomenon
attempts to determine how a surface fire transitions to a
crown fire and how such a crown fire would modify the
spread of fire [2].

Van Wagner [9] classifies crown fires into three cat-
egories and details conditions required for each type.
The conditions are tied to the surface fireline intensity
and the surface fire spread rate. A passive crown fire
characterized by the torching of trees occurs when the
fireline intensity crosses a threshold intensity required
for the crowns to be ignited, but the surface fire spread
rate is less than the spread rate required for an active
crown fire. Should the surface rate cross this threshold
value, the fire is then considered an active crown fire.
Such a fire spreads through both the surface fuels and
crown fuels simultaneously. The surface fire aids in ig-
niting the crowns while the crown fire increases the heat
radiated to the surface fuels in front of the fire. If the
horizontal heat flux required to ignite the crowns can be
supplied completely by the burning crowns, then the fire
is considered to be independently crowning, spreading
without being linked to the surface fire below.

While Van Wagner outlined various crown fire types
and the conditions for each, the quantitative effects of
these fires had to be measured and calibrated for par-
ticular situations. Rothermel [8] provides one such set
of values. The average spread rate of a crown fire was
found to be roughly 3.34 times the spread rate computed
for fuel model 10 (timber litter and understory) with the
wind reduced by a factor of 0.4. Despite its purely em-
pirical nature and relatively high standard deviations,
these values have been applied to other situations [2].

Spotting occurs when burning embers are carried into
the air and land somewhere in the landscape, possibly
igniting it. This presents a slew of problems ranging
from limiting the efficacy of fire barriers to altering the
shape, size, and progression of a fire [2]. As an exam-
ple, spotting was observed as far away as ten kilometers
from the fire front [10].

Major models in this category have been primarily
theoretical in nature and have focused on determining
the maximum spotting distance. Albini proposed a set
of models to determine the maximum spotting distance
from torching trees, fuel piles, and surface fires [2].

In the torching tree case, embers are lofted vertically
to some maximum height and then fall horizontally
with the wind field [11]. While Albini’s models com-
puted the movement of cylindrical particles that ignored
wind parameters as they were being lofted upwards,
more recent research has been focused on other shapes
such as spherical particles being lofted [12] and propa-
gated [13] and disk-shaped particles moving through a
three-dimensional plume that accounts for wind during
the lofting stage [14].

2.2. Fire Simulators
As computer technology advanced, fire models were

incorporated into various software applications. In the
one-dimensional case, several applications were devel-
oped that could compute various aspects of wildfires un-
der some set of conditions [15, 16]. With the increase in
availability of spatial landscape data, several simulators
have been developed that account for both spatial and
temporal variations in landscape characteristics. Such
simulators can be divided into two classes: vector-based
and raster-based.

Vector-based approaches more strictly follow the idea
of elliptical wave propagation; that is, the fire shape
after some time step can be found by generating el-
lipses along the previous fire shape and determining the
new outline. Simulation is done on a continuous space.
While greater in accuracy when compared to raster-
based approaches, their complexity and time require-
ments are also greater [2]. Compared to the number of
raster-based ones, few simulators use this approach in-
cluding SiroFire [17] and Prometheus [18], and of them,
the most commonly known is FARSITE.

Utilized globally [2], FARSITE [11] is a vector-based
wildfire simulator. It incorporates a number of fire mod-
els, including Rothermel’s surface spread model and
Van Wagner’s crown fire model. Spotting is imple-
mented via Albini’s spotting model for torching trees
with an adjustable percentage reduction in the number
of brands that actually ignite new fires. Fire acceleration
is also accounted for. Acceleration addresses changes
such as a fire heating nearby fuels and increasing the
potential for spread as well as to prevent instantaneous
jumps in spread rate when the perimeter enters an area
with a different fuel type. More recent work on FAR-
SITE includes the integration of a post-frontal combus-
tion model [19]. The simulator has been used in a num-
ber of fuel treatment assessment applications both by
itself [20] and in conjunction with FlamMap [21].

Raster-based approaches, or cellular approaches,
propagate fire through some set of rules across a uni-
form grid. While faster and simpler to implement,
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they lack precision when compared to vector-based ap-
proaches [2]. Depending on the number of paths that a
fire can travel across, distortion is possible [11].

HFire [22] is a cellular fire spread simulator designed
to compute the spread of surface fire in chaparral fu-
els. It allows fire to spread from cell to cell in eight
directions, four orthogonal and four diagonal. A fire
ellipse is computed using Rothermel’s spread rate equa-
tion and then spread rates in each of these spread direc-
tions are derived from the result. The simulator assumes
that fire spreads at the maximum rate (no acceleration
is accounted for) and mitigates the effects of distortion
due to the limited spread directions by using an adap-
tive time step and finite fractional distances. The adap-
tive time step determines the minimum time required
for a fire to spread from at least one burning cell to an-
other burning cell. Using such a mechanism allows the
simulation to quickly simulate large time steps when a
fire moves slowly and vice-versa. In conjunction with
an adaptive time step, finite fractional distances allow a
fire to spread some partial distance to other cells within
a time step. Should a fire spread farther than the distance
separating two cells, the extra portion of that spread is
contributed to the partial distance burning out of the
newly burning cell.

While FARSITE computes the spread characteristics
of a fire over time, FlamMap [23] assumes that the entire
landscape is ignited and computes the spread character-
istics for each cell of the terrain. It also provides func-
tionality to compute the minimum time required for a
fire to spread from an ignition point to any other point on
the landscape given constant temporal conditions [24].
In essense, every node in the grid is connected to each
other. The cost in time of traversing any connection is
computed accounting for changes in fuels and the length
of the connection across each fuel type. Given this in-
formation, a shortest path algorithm is executed to de-
termine the minimum travel time to every node in the
simulation space. Optimizations such as stopping the
search if no travel times are updated within a certain
range can be used to speed up this algorithm.

While vector-based approaches may be more pre-
cise, they can also be rather time-consuming. While
Stratton [21] computes the spread of fire and a few
other characteristics using FARSITE, another set of
characteristics were computed with FlamMap instead
since a FARSITE simulation could run for hours while
FlamMap output was almost instant. On a set of trial
runs, HFire was found to run roughly 92 times faster
than FARSITE running with several of FARSITE’s ca-
pabilities disabled to more correctly compare the out-
puts [22].

2.3. Virtual Reality and Visualization

Virtual reality is a medium through which users are
immersed in artificial environments. With respect to this
work, this immersion is primarily achieved through vi-
sual feedback. This is accomplished through the use of
depth cues and specialized hardware. There are three
main types of depth cues: monoscopic, stereoscopic,
and motion. Monoscopic cues provide information from
only one eye, while stereoscopic cues provide informa-
tion from two eyes and motion provides information
from moving objects or a moving eye.

To achieve stereoscopic vision there needs to be two
images that view the same point but from different per-
spectives. There are two ways to achieve stereoscopic
vision: passive and active stereo. Passive stereo uses
two projectors, one for each image, that pass the im-
age through a unique polarized filter, and the users then
wear glasses that match the polarization of the projector
filters. Active stereo uses a single projector that cycles
back and forth between the left and right images. The
users wear shutter glasses that are in sync with the cy-
cling of the projector.

VR has been shown to be effective for crises train-
ing by Sniezek et al. [25]. Systems have been de-
veloped to train Civil Support Teams to handle radio-
logical disasters [26] and to educate oilrig workers to
combat fires [27]. VR is also used to visualize many
scientific data, such as arterial flow data [28] and LI-
DAR [29]. This visualization is important because it al-
lows researchers to view and interact with their data in
ways not possible through a standard desktop system.

Within the realm of visualizing fire data, much work
has been done both to present data in a meaningful way
and to improve the visual quality. Ahrens et al. [30]
and McCormick and Ahrens [31] discuss the genera-
tion of non-interactive videos from wildfire simulation
data using volume rendering for fire and smoke. Govin-
darajan et al. [32] explores various methods for visual-
izing room fire simulations, including the superposition
of multiple simulation results into a single image, while
Rushmeier et al. [33] present a technique for visualizing
pool fires. Pegoraro and Parker [34] apply fire physics
to render realistic fire. Bukowski and Séquin [35] inte-
grate an architectural walkthrough program with a fire
simulator to visualize building fires. This work on VFire
we are presenting is based off of early wildfire visual-
ization work detailed by Harris et al. [36], Sherman et
al. [37], Penick et al. [38], and Hoang et al. [39].
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3. System Overview

In this section, we describe the system upon which
VFire is built, beginning with the hardware platform,
followed by the hardware abstraction library, and end-
ing with the types of data used. The composition of the
VFire application itself is then discussed in detail in the
three subsequent sections.

3.1. Virtual Environments
There are two environments that our system runs

on. The first system is a four-sided CAVETMwith
one projector per display, each having a resolution of
1048 x 1048. The entire system is driven by a Sym-
metric Multi-Processor machine running Ubuntu 7.10
with four Intel Xeon E7320 2.13GHz processors, 48GB
DDR2 RAM, and an Nvidia QuadroPlex Model IV. The
system is shown in Figure 1.

Figure 1: A 4-sided CAVETM.

The other system, shown in Figure 2, is a six-sided
CAVE-like display with each wall being composed of
two 1920 x 1080 resolution projectors partially over-
lapped to form a 1920 x 1920 display. The rendering of
the twelve projectors is done by twelve machine nodes
each running Ubuntu 9.10. Each node contains two Intel
Xeon W5590 3.33GHz processors, 24GB DDR3 RAM,
and two Nvidia Quadro FX 5800s.

Both systems track the positions and orientations of
the user’s head and a 6-DOF wand input device with
an InterSense IS-900 tracking system. In addition to
tracking information, the wand provides the user with
six input buttons and a joystick. The tracker and wand
are shown Figure 3.

3.2. Hydra
VFire was implemented using Hydra [40], a library

for developing applications in a virtual reality environ-

Figure 2: VFire running in a 6-sided CAVE-like environment.

Figure 3: (Left) A 6-DOF wand device. (Right) A 6-DOF tracking
device mounted on stereoscopic glasses.

ment. It abstracts away details about devices and in-
stead provides the application programmer with a set
of generic inputs. Along with input handling it also
automatically computes off-axis view frustums for all
the screens in the environment. For clustered systems,
co-simulation is performed across all nodes in lock-
step, forcing synchronization between all nodes. A head
node replicates all inputs as well as time deltas to all
nodes. The time delta synchronization is necessary to
ensure that non-linear systems do not experience drift
over time.

3.3. Data
There are three main types of data in VFire: topolog-

ical, fuel, and tree placement. The topological data pro-
vides VFire with the elevations of the geographical area
of interest. This data was acquired using a variety of
techniques, including LIDAR, and is stored as a digital
elevation model (DEM). The heightfield terrain and tex-
ture applied to it are generated from this data. The fuel
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data provides VFire with the necessary vegetation char-
acteristics, such as densities, types, BTUs/ton, etc. and
can be obtained through LANDFIRE [41]. Scientists
gathered this data on foot using several instruments and
stored it as raster data, which is later converted to texture
data and used by the GPU simulation. The tree place-
ment provides VFire with more accurate positions for
the vegetation and was determined by using the method
presented by Brown [42], which takes the satellite im-
age provided by the topological data and applies some
image processing to generate the tree positions, as can
be seen in Figures 4 and 5. The system then uses these
positions to place the trees and buildings in the visual-
ization.

Figure 4: Possible trees identified using [42].

Figure 5: Random tree placements that were made according to the
vegetation data.

4. GPU Fire Simulation

The core of VFire is its wildfire simulator. To achieve
interactive feedback, the simulator was implemented
on the GPU using OpenGL and GLSL. The result of
this decision is that the simulation output resides within
graphics memory, ready to be visualized. At the time of
its development, more direct GPU programming mech-
anisms such as CUDA were unavailable. Future efforts
will explore their use to improve efficiency. This sec-
tion details the various components of the simulator and
how they were mapped onto the GPU. More details are
given by Hoang [43].

4.1. Fire Spread
For basic fire spread, the simulator is based on

Rothermel’s fire spread equations, which are based on
Huygens’s principle. Thus, fire spread is modeled as
an ellipse expanding at some maximum rate Rmax with
some orientation φ and eccentricity ε based on wind and
slope. Given this information, the spread rate in any ar-
bitrary direction Θ can be computed using

r(Θ) = Rmax
1.0− ε

1.0− εcos(∣φ −Θ∣)

as described by Morais [22]. Given this spread rate r,
the time required for a fire to travel from one point to
another point separated by a distance d is given by

t = d/r

Because the desired output is a set of rasters that can
be visualized and analyzed, the simulation is modeled as
a two-dimensional regular rectangular lattice in a fash-
ion similar to that of HFire [22]. Essentially, the center
of each cell is connected to the centers of each of its
eight neighboring cells by a straight line of fuel. Fire
can spread from a burning cell to any unburnt cell by
burning the entire distance separating the cell centers.
In the case of multiple lines burning towards the same
center, the first line to completely burn is used to de-
termine the time of arrival and other fire characteristics.
The time of arrival logic can be summarized by Algo-
rithm 1. It may be executed repeatedly until the result-
ing times of arrival no longer change. To account for
changing spread conditions, times of arrival can only be
computed up to the point when these conditions are al-
tered; any arrivals after this point are simply discarded.

To achieve this logic on the GPU, the times of arrival
are double-buffered with a pair of 32-bit floating point
textures. All times are initialized to the very end of the
simulation. A fragment shader is executed over each
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Algorithm 1 Time of arrival computation.
1: for all Surrounding Cells c do
2: t=timeOfArrival(c) + spreadTime(c, thisCell)
3: timeOfArrival(thisCell)=

min(timeOfArrival(thisCell), t)
4: end for

cell of the simulation space. This shader executes a sin-
gle iteration of Algorithm 1 and uses the resulting value
as the fragment color as well as the fragment depth.
During execution, one texture is used as the times of
arrivals accessed while the other texture is used to col-
lect the outputted values. After each iteration, the val-
ues are copied from the write texture to the read texture.
Fragments that would write a time that is later than the
one currently stored for that cell would be discarded. To
compute times of arrival up to a certain point in time, the
acceptable time range is set to the simulation’s current
time step window (earlier fragments need not be written
again) and the fragment shader is executed repeatedly
until no more fragments are written.

While some arrival times may exceed the threshold
time and thus would not be recorded during that simu-
lation step, that does not necessarily imply that nothing
occurred between each pair of links. In fact, if that were
the case, using a time step that is too short would re-
sult in no fire propagation at all since the arrival times
would always exceed the time window. To prevent this
problem, fractional burning is utilized. That is, while
a fire may not be able to travel the entire distance be-
tween two links, it has at least burned through some of
that distance; as a result, that distance is reduced by the
product of the spread rate and the elapsed time.

d = d− r∆t

The result of this effect is that the distance will even-
tually be reduced to the point where the fire will spread
across the link within the simulated time window. It also
necessitates the modification of Line 2 of Algorithm 1
to

t = max(timeOfArrival(c), windowStartTime) +
spreadTime(c, thisCell)

to account for the time spent partially burning the dis-
tance.

On the GPU, implementation of partial burning is
straightforward. The remaining distance from the center
of each cell to each of its neighboring cells is stored in
two textures, with the orthogonal distances in one four-
component floating point texture and the diagonal dis-
tances in another. At the end of a simulation step, a

fragment shader is executed with the write targets set
to these distance textures. The fragment shader fetches
from a set of textures the spread rates in each direction,
multiplies them by the elapsed time, and outputs the re-
sult as the fragment colors. Subtractive blending results
in the distances already stored in the write targets being
reduced by the output fragment values.

4.2. Surface Fire

The basic spread characteristics of a wildfire are com-
puted using Rothermel’s model. Spatial information
such as fuel model and terrain characteristics are stored
in two-dimensional textures. Various fuel model prop-
erties such as packing ratio and fuel bed density are
stored in one-dimensional textures that are accessed us-
ing the integer fuel model used for each cell. Compu-
tation of the spread characteristics is performed by exe-
cuting a fragment shader over the simulation space with
the write target set to a four-component floating point
texture. The outputted fragments contain the maximum
spread rate of fire including the contributions of slope
and wind, the eccentricity of the ellipse, the direction of
maximum spread, and an intensity modifier value Im

Im =
12.6IR

60.0σ

where IR is the reaction intensity and σ is the ratio of
the fuel bed’s surface area to volume. The modifier, Im,
is used later in computing crowning.

4.3. Fire Acceleration

A newly ignited fire does not immediately begin to
spread at its maximum rate. Instead, it accelerates to-
wards its maximum rate over time. Fire acceleration in
the GPU simulator uses a modified model of that used
by FARSITE [11]. Given the maximum rate Rmax, the
spread rate at time t is given by

R(t)≈ Rmax(1.0− e−aat)

where aa is an acceleration constant. From this equa-
tion, the time ∆tmax required to achieve the maximum
spread rate given the current spread rate R is given by

∆tmax =
1.0− R

Rmax

aa

During the fire acceleration phase, the spread rate for
every burning cell is increased by

dR =
dt

∆tmax
(Rmax−Rcurrent)
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A fire started from an ignition will have an ini-
tial spread rate of zero and will steadily increase to
its maximum rate. As the fire spreads from cell to
cell, the cell inherits the current spread characteristics
of the cell that ignited it. If the spread rates exceed
the maximum spread rates of the newly burning cell,
they are clamped instantaneously to their maximums.
If, however, they are slower than the cell’s maximum
rates, they are accelerated by the difference dt given
by

dt = timeOfArrival(thisCell) - max(baseTime,
timeOfArrival(ignitingCell))

where baseTime is the last time that the burn distances
were updated.

To implement fire acceleration, the maximum spread
rate in each of the eight spread directions is computed
and stored in a set of two textures, one for the orthogo-
nal directions and another for the diagonal directions. A
separate pair of textures is used to maintain the current
spread rates for each cell and is initialized at the be-
ginning of the simulation to be all zeroes. At the end of
every simulation step, all burning cells have their spread
rates accelerated as previously discussed.

Propagation based on burn times and times of arrival
is still used, although it was modified to account for
changing spread rates as a result of acceleration and rate
inheritance. Spread rates are double-buffered like the
time of arrival textures, and a copy from write texture
to read texture for each is done at the end of the itera-
tion. The propagation shader was modified to output the
inherited and accelerated rates from the igniting cell.

Three additional textures were added. The first two
store integer time stamps that denote the last time a
cell was updated. If any cell surrounding the current
cell were updated in the last round, the current cell is
checked again to see if a lower time of arrival is possi-
ble. These textures are swapped in terms of reading and
writing at the end of each iteration; no compositing is
necessary since only cells that changed in the previous
iteration are of concern. At the beginning of the propa-
gation phase, all stamps are cleared to zero to force all
cells to at least check once with new spread times. Cells
that are updated write the next time stamp out to the
write buffer. The third texture contains the texture coor-
dinate of the cell that ignited the current cell. If the data
in that cell becomes invalid, that is, if the spread prop-
erties of that cell have changed and the time stamp is
equal to the previous iteration’s time, the current cell’s
time of arrival is invalidated and the original time of ar-
rival used at the beginning of the simulation step is used
to proceed.

4.4. Crown Fire
Whether a fire will spread into and through the

crowns of trees depends on a number of factors. As
with FARSITE’s implementation [11], active crown
fires have a different maximum spread rate than surface
and passive crown fires approximated by

Rmaxcrown = 3.34R10

where R10 is the surface spread rate for fuel model 10
with a wind reduction factor of 0.4. The actual maxi-
mum spread rate of a crown fire depends on the crown
fraction burned, given by the equation

CFB = 1− e−ac(R−Ro)

where

ac =
−ln(0.1)

0.9(RAC−Ro)

and
Ro = Io

R
Im

Io is the threshold intensity for a crown fire to occur and
is given by

Io = (0.010CBH(460+25.9M))
3
2

where CBH is the crown base height and M is the fo-
liar moisture content. RAC is the threshold spread rate
at which a crown fire is promoted from passive to ac-
tive. Given the crown bulk density CBD, this threshold
is given by

RAC = 3.0/CBD

Crowning is modeled in the simulation as an increase
in maximum spread rate in the case of an active crown
fire. Canopy height is stored in a texture, and crowning
is only considered if the canopy height is greater than
zero. RAC is computed with a shader and stored in a
texture. Modification of the CBD texture results in the
recomputation of the RAC texture. Io is also computed
with a shader and is only updated if the CBH texture is
modified. Before accelerating spread rates, the current
spread rates are used to test whether the fire is now ac-
tively crowning, and if so, the maximum spread rate is
adjusted accordingly. This computation is done on a per
direction basis.

4.5. Simulation Progression
At the beginning of the simulation, all directional

spread rates are initialized to zero. Times of arrival are
cleared to a user-defined end time. Burn distance tex-
tures are set to the complete distance to each neighbor.
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Algorithm 2 outlines the flow of the simulation. Be-
cause spread properties can change due to alterations
caused by events, simulation progresses in substeps be-
tween events.

Algorithm 2 Simulation Flow
1: endTime = currentTime
2: startTime = lastU pdateTime
3: while startTime != endTime do
4: stepTime = min(endTime, nextEvent.time)
5: Update corrupted data()
6: Propagate fire(startTime, stepTime)
7: Burn distances(startTime, stepTime)
8: Accelerate(startTime, stepTime)
9: Trigger next event()

10: startTime = stepTime
11: end while
12: lastU pdateTime = endTime

5. Visualization

Simulation programs generally concentrate on the
simulation and less on the presentation of the simula-
tion. Our system concentrates both on the simulation
and the presentation. Providing enhanced visualizations
can possibly help users to better interpret and under-
stand what is happening at any point in time during the
simulation. We concluded that a good visualization of
our simulation would be one that has detailed terrain,
vegetation, buildings, fire, and smoke.

5.1. Terrain

Slope is an important factor of fire spread. Visual-
izing topology is therefore necessary to provide better
comprehension of how the fire spreads in the environ-
ment. To achieve this visualization the terrain was im-
plemented as a 2.5D terrain, which uses the height field
data discussed in Section 3.3. The satellite image is
overlaid on the terrain; however, the resolution of this
image is usually inadequate for the size of the terrain.
When rendered to scale, a single pixel of the image cor-
relates to roughly a 1x1 meter patch of terrain. Thus,
the terrain near the user tends to appear blurry. To ame-
liorate this, we modulate a repeating texture onto the
satellite image to add more detail. In addition to the
satellite image, we also overlay several data layers from
the simulation, the opacities of which can be modified
as discussed in Section 6.3.

5.2. Objects

One of the key components to increase the visual fi-
delity of the visualization is the vegetation, which was
handled by SpeedTree [44], a commerical tree render-
ing package. SpeedTree has an adjustable threshold
distance that is set by the user. Based on this thresh-
old, SpeedTree renders trees within the threshold with
full geometry models, while trees outside the threshold
are rendered as billboards. Another threshold value is
used to transition from the full geometry models to the
billboards, which eliminates popping. Since SpeedTree
was developed for video games, which are typically sin-
gle screened environments, modifications were neces-
sary to allow it to be used in a virtual environment,
which can contain multiple rendering contexts and dis-
plays. The main modification was creating context
buffers, which contained graphic assests for each ren-
dering context.

Another key component for having increased visual
fidelity when simulating a geographical area is render-
ing the buildings of that area. The locations used to
place the buildings is gathered using the technique de-
scribed by Brown [42]. The buildings are composed of
a cube with a gable roof, which are drawn from a single
point passed to a geometry shader, which then creates
the remainder of the structure. The geometry shader
accounts for the length and width of the building; the
current version does not, however, account for its orien-
tation, though this is scheduled for the next release.

5.3. Fire Effects

Visualization of fire behavior is achieved through the
use of a particle system on the GPU. The particle sys-
tem is comprised of two types of objects: emitters and
particles. Once the simulation has been updated to the
current simulation time, an emitter is created at every
newly ignited cell. To accomplish this, a vertex is sent
to the geometry shader for each cell in the simulation
space. If the cell is determined to have ignited within
the previous update window, an emitter is streamed out
to a vertex buffer. Immediately following this, all pre-
viously existing emitters are streamed through another
geometry shader, updating their state. If an emitter sur-
vives the update step, it is streamed into the same vertex
buffer as the newly generated emitters, resulting in a fi-
nal list of all active emitters.

Particles are generated and updated in a similar fash-
ion. Particles are generated by streaming emitters
through a geometry shader that emits particles based
on the state of the emitters. Existing particles are then
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streamed through an update shader, and surviving par-
ticles are appended to the same buffer as new parti-
cles. A part of this updating process is to apply envi-
ronmental effects to each particle, such as wind. Par-
ticles are rendered as billboards spherically-aligned to
the user’s head position. While the particle images
are simply artistically generated currently, future work
will focus on altering flame and smoke color based
on the burning fuel generating the particles. Render-
ing of these particles presents difficulties due to dif-
ferent blending behaviors exhibited by the two types
of particles: fire and smoke. While fire particles use
additive blending, smoke particles use back-to-front
blending, where the resulting pixel color is given by
colorsrcαsrc + colordest(1− αsrc). This back-to-front
blending of smoke requires that fire particles be ren-
dered simultaneously from back-to-front in order for
the smoke to correctly obscure the fire. Due to the
large number of interspersed particles being rendered, it
would be impractical to switch blending types each time
the particle type is changed; instead, blending is con-
trolled within the fragment shader. To accomplish this,
we set the blending function to add the new fragment
color to the old fragment color multiplied by the new
fragment alpha (colordest = colorsrc + colordest ∗αsrc).
All particles are then sorted and rendered from back to
front. When a fire particle is rendered, the particle tex-
ture color is outputted as the output color while the out-
put alpha is set to 1.0, resulting in additive blending.
However, when a smoke particle is rendered, the out-
put fragment color is premultiplied by the α while the
outputted alpha value is set to 1−α , yielding correct
obscuring behavior for smoke particles.

In addition to particles, fire spread is also visualized
by illuminating the terrain and disintegrating trees and
buildings as the fire spreads through an area. To illu-
minate the terrain, the time-of-arrival texture computed
during simulation is used to determine which areas are
on fire based on the current simulation time. Those
cells that fall within a time window around the simu-
lation time render a bright fragment into a light texture
while those cells that do not simply render a black frag-
ment. The light texture is then blurred and additively
blended onto the terrain when it is rendered. To destroy
objects such as vegetation, a burn progression value is
computed per vertex based on how long the cell beneath
the vertex has been on fire. In the fragment shader, the
interpolated progression value is used to transition the
texture color to an orange glow before darkening. It is
also used as a threshold value for discarding fragments.
The alpha channel for each object’s textures is modu-
lated by low-frequency noise. If the modulated alpha

is lower than the threshold value, the fragment is dis-
carded; otherwise, the fragment is rendered at full opac-
ity. Using these techniques, objects appear to char and
disintegrate over time.

To better control the brightness of the fire and lighting
effects, high dynamic range lighting (HDR) techniques
are employed. Regardless of all other lighting in the
scene, fire and any illumination effects caused by it are
rendered at a constant intensity. The color intensity of
the screen is then tone mapped based on the average lu-
minance of the entire image as described by Reinhard
et al. [45]. Since the average luminance for each screen
in a virtual environment can be different based on what
is actually rendered onto the screen, the average of all
the averages in the virtual environment is used for tone
mapping. As a result of using a constant fire bright-
ness with HDR, the visual effect of the fire is more sub-
dued during daytime scenes with greater environmental
illumination while more pronounced during nighttime
scenes.

6. Interaction

Upon starting the application, the user is presented
with the virtual world rendered to physical scale. The
user is able to nagivate by simply pointing the wand in
the direction he wishes to go and pushing up on the
y-axis of the joystick. The speed at which the user
travels is dependent upon the distance between the user
and the terrain directly below him. At greater distances
the user travels more quickly, while at lower distances,
movements are much slower, allowing for fine naviga-
tion around objects such as trees and structures. Based
on the virtual environment, rotation may be mapped to
the x-axis of the joystick. For example, in a four-sided
CAVETMenvironment without a back wall, rotation is
necessary for the user to see objects behind him. On the
other hand, rotation is not necessary in a fully enclosed
environment such as a six-sided CAVE-like display as
the user can physically turn to see objects out of view.

6.1. Construct
In order to interact with the world, the user must first

select a tool to use. To do so, a button can be pressed to
enter an alternate world called the “construct.” By enter-
ing the construct, the current simulation is paused and a
number of tools appear around the user. To differentiate
those objects within the construct and those within the
simulation world, the former is rendered over the latter,
which is muted by converting the colors to grayscale
and blending it with white, as seen in Figure 6. Navi-
gation is disabled, and the construct objects can simply
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Figure 6: VFire’s “construct” allows users to select tools to manipu-
late the simulation.

be selected by pointing at them with the wand, which
highlights the object with the user’s color. Pressing the
trigger on the wand results in the highlighted tool be-
ing selected, returning the user from the construct to the
simulation world.

6.2. Tools

There are four tools currently available in VFire: an
ignition tool, a fire break tool, a moisture modification
tool, and a wind modification tool. The ignition tool,
represented by a matchstick, allows the user to start
fires. After selecting the tool, the user can point the
wand to an area he wishes to ignite. To aid the user in
selecting the point of ignition, a line is drawn from the
wand out in the direction it is pointing. Additionally, a
matchstick is rendered at the ignition point. By press-
ing the trigger, a fire is started at the ignition point. If
the trigger is held, the user can outline a path of ignition
points. For visibility purposes, the matchstick, along
with all tools that require the user to point at a location
on the terrain, is scaled based on the distance between
the user and the terrain point.

The fire break tool, represented by a bulldozer, allows
the user to render parts of the terrain unburnable. Inter-
action with the tool is identical to the interaction with
the ignition tool. To render the selected area unburn-
able, the fuel model of the selected area is replaced with
the fuel model for an unburnable type. To prevent fire
from moving diagonally through cells due to aliased ras-
terization of break lines, the thickness of each line was
set to twice the size of a single cell.

The moisture modification tool, represented by a wa-
ter drop, allows the user to increase the amount of mois-
ture in a cell. Again, the user manipulates the tool as he

would the ignition tool. Moisture is added to the current
moisture content in the simulation layers by rasterizing
the added moisture onto the original moisture data using
additive blending.

The wind modification tool, represented by a tornado,
allows the user to alter the direction and magnitude of
the wind. To do so, the user presses the trigger to cre-
ate an initial anchor point. By holding the trigger down
and moving the wand around, the user creates a vec-
tor from the anchor point to the current position of the
wand. The direction of this vector determines the wind
azimuth while the length determines the wind speed.
While performing this action, a line is drawn from the
anchor point to the current wand position; the azimuth
and windspeed are also rendered along this line.

6.3. Data Visualization
To allow the user to see different aspects of the cur-

rent simulation state, a layer visualization interface is
provided. This interface displays a 3x3 grid composed
of eight data layers surrounding a composite image of
all the layers overlapped on top of each other, as shown
in Figure 7. The opacity of each layer can be adjusted
by pointing to the desired layer and pressing left or right
on the joystick. The composite image is used as the tex-
ture rendered onto the terrain.

Figure 7: The opacities of various data layers can be modified by the
user.

7. Current Status

The current version of VFire runs in the six-sided
CAVE-like display described in Section 3.1 at full reso-
lution. As a test dataset, a 10km by 10km area around
Kyle Canyon, NV was selected. The simulation runs at
10m resolution initially at 200 times real time, although
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this parameter is adjustable at run-time. At higher simu-
lation speeds, performance drops as fire is able to prop-
agate across more cells in a single update step. With
the initial settings, the system runs at approximately 30
frames per second in stereo and can drop to about 15
FPS depending on what is visible to the user. For ex-
ample, if the user flies directly into smoke, the system
becomes pixel-bound as every individual particle con-
sumes more screen space.

The system has been demonstrated to both the gen-
eral public and fire experts with positive responses. We
plan to work with fire officials to generate scenarios that
can be used to train fire managers as well as investigate
the effectiveness of the system. To this end, incorpora-
tion of a scoring metric is being researched, and current
work is focused on recording the simulation and user
decisions in order to evaluate performance afterwards.

8. Conclusions and Future Work

We have presented VFire, an immersive wildfire sim-
ulation and visualization system. By harnessing the pro-
cessing capabilities of the GPU, we created an interac-
tive wildfire simulator, the output of which is imme-
diately visualized for the user. We developed various
graphical techniques to create a visualization that lever-
aged both image quality and utility. Using virtual real-
ity, we provided users with unique interaction methods
while also immersing them within the data. This pro-
cess has been tied in with cyclic reviews and demon-
strations to various fire officials in preparation the user
studies.

There are a number of ways we intend to extend this
work. First, we plan to improve the fire model to in-
corporate other wildfire phenomena such as spotting.
We also plan to introduce an atmospheric model that
is affected by and affects the fire simulation. To facil-
itate more realistic training for fire chiefs, associating
and limiting costs in terms of human resources, time,
and money to various suppression tactics could be em-
ployed. Another area for improvement is the visual-
ization, where methods will be explored to intuitively
display more information regarding the situation and to
improve the visual fidelity. Likewise, given the unique
input capabilities of virtual reality systems, alternative
interaction methods will be examined. The efficacy of
VFire as a training tool must also be validated through
a user study.
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