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Abstract 
This paper describes an imperceptible, non-blind, fragile 

watermarking technique for space curves. The proposed 
technique employs a wavelet-based approach, and computes 
a multi-resolution representation of the space curve to 
embed a watermark so that it has widespread presence in the 
curve. Watermarks that are widely spread within the host 
data cannot be easily damaged by cropping and replacement 
attacks that result in localized alteration of the host data.   A 
variety of wavelet families are exploited and experimental 
results provide a comparison of the performance of different 
wavelets in terms of the watermark's imperceptibility and 
tolerance to attacks. To quantify space curve distortion, a 
signal-to-noise ratio is used, and a linear correlation 
measure is employed to determine the resistance of the 
watermark to modifications. Results indicate that watermark 
insertion using wavelet packet decomposition outperforms 
orthogonal wavelet decomposition in terms of 
imperceptibility and diversified presence of the embedded 
watermark. 
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1 Introduction 

 
Motion capture (MoCap) technology yields appealing 

computer graphics animations but entails high investments 
in terms of cost, time and effort. The digital nature of 
MoCap data makes it vulnerable to piracy and plagiarism, 
thereby discouraging MoCap studios and labs from 
publishing such data. This paper focuses on tamper 
detection in trajectories (space curves) derived from motion 
capture data, to assist in detecting modifications that violate 
copyrights of motion data extracted from published MoCap 
datasets. 

Watermarking techniques have been used for copyright 
protection, ownership authentication, and tamper proofing 
of digital data. Watermarking schemes insert information in 
the digital content in such a way that the embedded 
information is imperceptible to the human eye. Robust 
watermarking techniques strive to embed information in 
such a way that it is difficult to remove without causing 
perceivable distortions to the original data. However, this is 
a challenging research problem; therefore, such schemes are 

only tolerant to a limited set of attacks.  Fragile 
watermarking schemes, on the other hand, embed 
watermarks that have low resistance to modifications and 
are destroyed at the slightest variation to the host content. 
Therefore, fragile schemes find applications in tamper 
proofing digital data, since a damaged watermark is an 
indication of a malicious modification attempt to the data.   

Research related to watermarking of 3D data is still in its 
infancy, and finds applications in 3D meshes and motion 
data streams. The work presented here explores the use of 
various wavelet decomposition techniques for watermark 
insertion and extraction. The contribution of this paper lies 
in analyzing the impact of embedding random noise as 
watermark in different wavelet subbands and wavelet 
coefficients obtained using wavelet packets. Elaborate 
experimentation has yielded results that indicate improved 
performance of wavelet packet technique over the rest.  

The remainder of this paper is organized as follows. 
Section 2 presents the related work in this relatively 
immature field. Section 3 describes the proposed 
watermarking approach. Section 4 provides the results of 
experiments. Conclusions with future work are summed up 
in Section 5. 

 
2 Related Work 

 
Related work on curve watermarking has been 

investigated for planar curves (in the 2D contex) for 
copyright protection of digitally distributed maps ([1], [2], 
and [3]), vector fonts [4], hand drawn curves and 
topographic maps [5]. However, limited work has been done 
on curve/trajectory/motion-data watermarking in the 3D 
domain.   

The authors in [6] propose a progressive watermarking 
scheme for 3D motion capture data that uses frame 
decimation.  A robust, blind 3D motion capture data 
watermarking algorithm for human motion animation is 
proposed in [7], which is cluster-based and uses 
quantization techniques. The authors in [8], describe a 
spatial domain technique to watermark 3D motion capture 
data. Pu et al. [9], adopt singular value decomposition to 
consider both the time varying relations among the motion 
frames and the spatial correlations among the different 
joints in motion. The motion data matrix is decomposed into 



two eigen vector matrices and a singular values matrix. The 
watermark is added to the singular values matrix. Agarwal 
and Prabhakaran [10] propose a tamper-proofing 
mechanism for MoCap data that applies hash functions to 
the data matrix and embed identifiers as watermarks to 
detect attacks such as row/column shuffling and element 
shuffling. 

Most watermarking techniques [11] adopt a certain level 
of randomness in the algorithm to battle attacks on 
watermark removal by a brute force approach. However, 
this is the simplest approach and has its drawbacks. 
Embedding the watermark directly in the spatial domain 
makes it vulnerable to removal or replacement attacks. It is 
preferred to transform the motion data into the frequency 
domain. This assures that the watermark is spread across the 
3D curve such that removal or replacement of parts of the 
curve does not destroy the watermark completely. In [12], 
Yamazaki proposes segmentation of the motion data 
followed by a discrete cosine transform operation on each 
segment to embed the watermark in the spread spectrum 
domain. In [13], Yamazaki employs a wavelet-based 
spectral analysis for watermark insertion. 

The watermarking approach presented in this paper also 
employs wavelets but differs from Yamazaki's approach as 
it utilizes a multiresolution as well as a wavelet packet 
representation of the 3D curve for watermark insertion. 
Moreover, the proposed approach isolates the trajectories of 
the human skeletal joints and applies to the space curve 
generated by each joint. In addition, a variety of wavelet 
families are experimented with to determine the best 
performer. 

 
3. Methodology 

 
For MoCap data, a space curve is a sequence of 

coordinates in 3D space. This space curve is derived from 
the motion of one joint (denoted by dot marker) of the 
human skeleton, as shown in Figure 1. The MoCap dataset 
used for this figure is obtained from BeyondMotion Studio 
[14] and represents the climb.bvh sequence. The space curve 
is the trajectory represented by red markers in the plot 
shown in Figure 1. 

The proposed approach transforms the spatial 
representation of the 3D curve to the spread spectrum 
domain using wavelets [15]. Wavelet transform is preferred 
over Fourier or Discrete Cosine transforms because it 
captures both the global pattern (i.e. averages or 
approximations) and the local variations (i.e. fluctuations or 
details) in the curve. Wavelet functions decompose a space 
curve into multiple resolutions thereby facilitating 
examination of the gross and finer details of the curve at 
different scales or resolutions (see Figure 2). In this paper 
we experiment with two forms of wavelet transforms.  
multiresolution wavelets (described in Section 3.1) and 

wavelet packets (Described in Section 3.2).  As depicted in 
Figure 3 and Figure 7 the watermarking algorithms are 
identical for both approaches except for the choice of 
wavelet decomposition techniques.   

 
 

 
 
Figure 1: Trajectory Plot(red) of Left Hand Joint of Human 
Skeleton(blue). Motion Sequence from climb.bvh 

 
3.1 MultiResolution Analysis 
 
The space curve is represented by a three-dimensional 
discrete signal C of length n. The wavelet transform is 
applied to the x, y, and z co-ordinates of C separately. As 
depicted by Eq. 1, a discrete wavelet transform (DWT) 
applied to C decomposes the signal into two sub-signals, Si 
and Wi, each of half its length (m=n/2 where n is an integral 
power of 2 with zero padding), where i represents the 
multiresolution level of wavelet transform. 
 

DWT(C[n]) = Si[m]+Wi[m] (1) 
 
The first sub-signal constitutes the scalar co-efficients that 
represent the approximation of the original signal and is 
computed by the following equation:              
 

�� = � �(�)	�
 (k) (2) 
 
where 	(k) represents the scaling function of the chosen 
wavelet family. 



 
 

Figure 2: Original Signal in x-dimension and its Multiresolution Wavelet Decomposition at Levels 1 through 5 
 
 
 

 
 

Figure 3: Watermark Insertion and Extraction Process using Wavelet Decomposition 
 

The second sub-signal represents the wavelet 
coefficients that constitute the differences between the 
subsequent components of the original signal and is denoted 
by: 

 
 �� = ∑ �(�)
�(�)
  (3) 

 
where 
(k) represents the wavelet function of the chosen 
wavelet family.   

The functions 	(k) and 
(k) are defined by the chosen 
wavelet. Haar, Daubechies, Biorthogonal, Meyer, Coiflets, 
Symlets, and Mexican Hat are different families of wavelets.  



Readers are advised to refer to [16], [17]
further details on wavelet transform.    

At level i=1, the Level-1 resolution space curve 
S1+W1. The Level-2 resolution space curve is obtained by 
applying DWT only on the approximation coefficients 
and Level-n wavelet transform of C is obtained by 
1).  

A multi-resolution representation of the space curve 
decomposed at levels with decreasing resolution, is 
demonstrated in Figure 4. A visual representation of 
multiresolution wavelet decomposition of 
approximation and detail co-efficients, in the 
is shown in Figure 2. In this figure, the scalar and wavelet 
coefficients at Level 2, 3, 4, and 5 are obtained by taking the 
DWT on the scalar coefficients of the previous level.

 

 
Figure 4: Multiresolution Analysis of the Space Curve
space curve is represented at decreasing scales C[2],
and C[4] (Level-2 wavelet transform yields a higher scale, 
Level-4 results in a lower scale). At lower resolutions the 
finer details are lost during reconstruction. 

 
3.2 Wavelet Packets Analysis 
 

The wavelet packet decomposition provides a richer 
signal analysis. In the orthogonal wavelet decomposition 
which is described in the previous sub
approximation coefficients are decomposed into two parts, 
i.e. scalar and wavelet coefficients, at each level of DWT. 
The wavelet coefficients are not further decomposed at any 
levels. In the wavelet packets technique, the wavelet 
coefficients are also decomposed at each level into sca
and wavelet coefficients by applying the DWT. The 
complete binary tree produced by the wavelet packet 
transform is illustrated in Figure 5. This results in a much 
detailed analysis of the space curve, as demonstr
Figure 6. 
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Figure 5: Original Signal (0,0) and its Tree representation 
of Wavelet Packet Decomposition at Levels 1 through 3. 
(1,0) represents the scalar coefficients at Level
represents the wavelet coefficients at Level
scalar-coefficients are denoted by (
wavelet coefficients are denoted by (

 
3.3 Watermark Embedding 
 

The steps underlying the process of watermark insertion 
and extraction are demonstrated by 
The watermark insertion process adds a random 
Rj to the multiresolution wavelet coefficients 
wavelet packet coefficients (represented by (
(N,2N-1), as indicated by the wavelet packe
6.) selected by a key Kj, which is derived from a pseudo
random number generator function,  where 
x, y, or z dimension. The waterm
pseudo-random numbers. The watermark is mu
scaling factor M, which determines the embedding strength. 
Experimental values for M lie in the range 

The watermark is inserted into the multiresolution 
wavelet or wavelet packet coefficients according to the 
following equation:  

 
 ���(�) =  ��(�) �  ��� 

 
where �� denotes the watermarked wavelet coefficient, 
denotes the wavelet coefficient's index se
and j represents the x, y, and z coordinates of the space 
curve.  

An inverse transform applied to the unmodified scalar 
coefficients and the modified wavelet coefficients yields the 
watermarked space curve as shown in 
curve in this figure represents the trajectory generated by 
red markers plotted in Figure 1, but it looks different since it 
has been plotted independently of the skeleton with the 
and z axes swapped and does not incorporate the scaling of 
the coordinate axes in the plot. 

 

Signal (0,0) and its Tree representation 
of Wavelet Packet Decomposition at Levels 1 through 3. 
(1,0) represents the scalar coefficients at Level-1. (1,1) 

cients at Level-1. For Level-N, 
coefficients are denoted by (N, even index) and 

coefficients are denoted by (N, odd index). 

The steps underlying the process of watermark insertion 
and extraction are demonstrated by Figure 3 and Figure 7. 
The watermark insertion process adds a random watermark 

to the multiresolution wavelet coefficients Wj or Level-N 
wavelet packet coefficients (represented by (N,1) through 

), as indicated by the wavelet packet tree in Figure 
, which is derived from a pseudo-

random number generator function,  where j represents the 
dimension. The watermark R is a sequence of 

random numbers. The watermark is multiplied by a 
, which determines the embedding strength. 

lie in the range 10-4 to 10-5. 
The watermark is inserted into the multiresolution 

wavelet or wavelet packet coefficients according to the 

 (4) 

denotes the watermarked wavelet coefficient, k 
denotes the wavelet coefficient's index selected by key ��, 

coordinates of the space 

nverse transform applied to the unmodified scalar 
coefficients and the modified wavelet coefficients yields the 
watermarked space curve as shown in Figure 8. The space 
curve in this figure represents the trajectory generated by 

, but it looks different since it 
has been plotted independently of the skeleton with the x, y, 

axes swapped and does not incorporate the scaling of 



 

 
Figure 6: Original Signal in x-dimension and its Wavelet Packet Decomposition at Levels 1 through 3 

 
 
 

 
 

Figure 7: Watermark Insertion and Extraction Process using Wavelet Packets 
 
 

  
3.4 Watermark Detection 

 
To detect if a space curve has been modified, wavelet 

domain representation of the original 3D curve is subtracted 
from the wavelet domain representation of the test space 
curve. The extraction process requires the key K, hence the 

watermarking technique is non-blind.   Correlation of the 
subtraction result with the original watermark determines if 
the curve has been tampered with or not. 

A linear correlation coefficient corr is used as the metric 
for similarity between the original and extracted watermark. 
Given pairs of quantities (i.e. two sets of data A and B) (��, 



��), where � = 1, … , � and �� is the mean of all �� 's and ��  
is the mean of all �� 's, corr is given by the formula: 

 

 � !! =  ∑ "#$%#� &('$%'� )$
(∑ (#$%#� ))$ (∑ ('$%'� ))$

 (5) 

When corr=1, the extracted watermark is identical to the 
original watermark, which implies that the test curve has not 
been tampered with.   

 

 
Figure 8: Original (blue) and Watermarked (green) Space 
Curves 

 
4. Experiments 

 
The experiments were done in Matlab using the Wavelet 

toolbox and Motion Capture toolbox [19]. The data used in 
this project is obtained from [20]. Distortion analysis of the 
original and watermarked space curves is based on the 
signal-to-noise ratio (SNR) metric which is given by the 
following equation: 
  

 ���(�, ��) =  20, -./ 0 123(4)
123(4%45)6  (6) 

 
where � is the original space curve and �� represents the 
watermarked space curve. ��� denotes the root-mean-
square value. The imperceptibility of the watermarking 
algorithm is measured by this SNR value.  
 
4.1 Multiresolution Wavelet Analysis 
 
Results for distortion analysis for the space curve using 
wavelet multiresolution analysis, shown in Figure 9 (defined 
by 352 points in 3D), are listed in Table 1. Experiments are 
conducted on a seven families of wavelets to determine the 
best performers. The payload value in Table 1 represents the 
length of the watermark (i.e. the number of wavelet 
coefficients that are modified to accommodate the 
watermark). The payload capacity increases as the level of 
wavelet transform increases since the watermark is inserted  

 

 
Figure 9: Distortion Analysis-Original Space Curve (blue) 
and Watermarked Space Curve (green) at Different Levels 
of Transform for Different Wavelet Families 

 
 

Payload 113 160 194 218 
Wavelet 
Family 

Level-1 
SNR 

Level-2 
SNR 

Level-3 
SNR 

Level-4 
SNR 

Haar 50.12 42.02 35.71 30.25 
Daubechies 70.24 59.82 49.08 38.52 
Biorthagonal 66.03 56.88 48.99 36.61 
Rev. Bior. 59.67 48.91 38.63 29.88 
Coiflets 63.85 53.98 45.37 34.25 
Symlets 64.24 53.07 44.67 33.99 
Meyer 69.48 61.89 51.25 39.61 

 
Table 1: Imperceptibility Measure and Payload Capacity of 
the watermarking algorithm at different levels of 
Multiresolution Wavelet Transform for a space curve 
comprised of 352 points 



 
into the wavelet coefficients from all levels 1 through N, 
where N is the level of applied wavelet transform. For 
example, SNR at Level-3 for Haar wavelet indicates 
presence of watermark in all Levels 1, 2 and 3.  Thus, SNR 
in Table 1 decreases as number of levels of the wavelet 
transform increases, since noise(watermark) is  added at  
more levels.  As depicted by Figure 9, a visual distortion is 
observed in the watermarked space curve for SNR values 
lower than 50. 

Results for various attacks on the watermarked space 
curve (attacks are shown in Figure 11) using multiresolution 
wavelet analysis are outlined in Table 2. The correlation 
measure corr determines the performance of the algorithm 
under the following attacks:  i) cropping - in this attack parts 
of the space curve are removed by an adversary, ii) 
replacement - this attack involves modification of sections 
of the space curve by different data, and iii) concatenation - 
this attack appends data from different space curves to yield 
a new space curve.  
 
Wavelet 
Family 

Crop Replace Concat 

Haar 0.3781 0.3129 1.0000 
Daubechies 0.4273 0.6741 1.0000 
Biorthogonal 0.3618 0.5392 1.0000 
Reverse 
Orthogonal 

0.2346 0.4075 1.0000 

Coiflets 0.3351 0.5813 1.0000 
Symlets 0.3468 0.4927 1.0000 
Meyer 0.3687 0.5360 1.0000 

 
Table 2: Correlation Measure for Attacks on Watermarked 
Space Curves obtained by MultiResolution Wavelet 
Analysis 
 

Since the proposed watermarking scheme is fragile, the 
watermark is destroyed at the slightest variation to the space 
curve caused by attacks. When corr is not equal to 1, it 
signals a modification to the watermarked space curve 
thereby indicating violation of copyrights. A corr value of 1 
indicates proof of ownership. 

 
4.2 Wavelet Packets Analysis 

 
Results for distortion analysis for the space curve 

obatined by applying wavelet packets technique, shown in 
Figure 10 (defined by 352 points in 3D), are listed in Table 
3. Experiments are conducted on a seven families of 
wavelets to determine the best performers. The payload 
value in Table 3 represents the length of the watermark (i.e. 
the number of wavelet coefficients that are modified to 
accommodate the watermark). The payload capacity 
increases  as  the  level of  the  wavelet  transform  increases  

 

 
 
 

 
 
 

 
 
 

Figure 11: Attacks (magenta) on a Watermarked Space 
Curve (green): Cropping (Top), Replacement (Middle), and 
Concatenation (Bottom) 
 
since the watermark is inserted into a higher number of the 
wavelet coefficients. SNR values in Table 3 decreases as the 



number of levels of the wavelet transform increases, since 
noise (watermark) is added at more levels. As depicted by 
Figure 10, no visual distortion is observed even at Level-1 
of wavelet transform. It has been observed that the Meyer 
wavelet family seems to perform poorly as compared to the 
rest.   
 

 

 
 
Figure 10: Distortion Analysis-Original Space Curve (blue) 
and Watermarked Space Curve (green) at Different Levels 
of Wavelet Packet Transform for Different Wavelet 
Families  

 
Results using wavelet packet analysis on those attacked 

curves is outlined in Table 4. The correlation measure corr 
determines the performance of the algorithm under the 
following attacks:  i) cropping, ii) replacement, and iii) 
concatenation. 

Since the proposed watermarking scheme is fragile, the 
watermark is destroyed at the slightest variation to the space 
curve caused by attacks. When corr is not equal to 1, it 
signals a modification to the watermarked space curve 

thereby indicating violation of copyrights. A corr value of 1 
indicates proof of ownership.  

 
 

Payload 139 160 200 218 
Wavelet 
Family 

Level-1 
SNR 

Level-2 
SNR 

Level-3 
SNR 

Level-4 
SNR 

Haar 209.86 207.34 206.90 207.38 
Daubechies 210.58 207.86 207.30 207.02 
Biorthogonal 109.64 205.79 205.38 206.40 
Rev. Bior. 210.50 209.03 208.58 207.90 
Coiflets 209.98 208.38 207.87 207.72 
Symlets 210.95 208.30 206.82 207.02 
Meyer 130.01 122.48 117.09 113.95 

 
Table 3: Imperceptibility Measure and Payload Capacity of 
the watermarking algorithm at different levels of Wavelet 
Packet Transform for a space curve comprised of 352 points 
 

 
Wavelet 
Family 

Crop Replace Concat 

Haar 0.6134 0.6254 1.0000 
Daubechies 0.7932 0.7216 1.0000 
Biorthogonal 0.6418 0.7872 1.0000 
Reverse 
Biorthogonal 

0.6652 0.6523 1.0000 

Coiflets 0.7539 0.8047 1.0000 
Symlets 0.8317 0.7891 1.0000 
Meyer 0.3814 0.4024 1.0000 

 
Table 4: Correlation Measure for Attacks on Watermarked 
Space Curves obtained by Wavelet Packets 
 
 

5 Conclusions and Future Work 
 

This paper presents an imperceptible, fragile, non-blind 
watermarking technique for space curves derived from 
motion capture data. The proposed watermarking algorithm 
is based on multiresolution wavelet analysis of the space 
curve. The implementation embeds information into the 
wavelet coefficients to minimize perceivable distortion to 
the space curve since the human eye can not perceive 
changes in the higher frequencies.  The algorithm 
maximizes the presence of the watermark across the entire 
space curve by modifying the wavelet coefficients at 
multiple resolution levels. The performance of various 
wavelet families at different levels of transform has been 
evaluated and experimental results indicate that the 
Daubechies, Biorthogonal, and Meyer  wavelets yield better 
SNR and provide optimal performance at Level-3. Space 



curves with sharp discontinuities can be efficiently 
represented with Haar wavelet. Motion curves do not 
exhibit such abruptness and therefore the experiments have 
demonstrated improved performance using smoother 
wavelets. Future work entails varying the scaling factor M 
in accordance with the transform level of the wavelet 
coefficients. 

A benefit of using wavelet packets is higher diversified 
presence and higher payload insertion capacity of the 
watermark as evident by the higher SNR. Results clearly 
indicate that wavelet packet decomposition outperforms the 
orthogonal wavelet decomposition technique. The improved 
performance is owed to the difference in the signal 
decomposition outlined in Figure 2 and Figure 5. Wavelet 
packet decomposition yields higher number of wavelet 
coefficients that serve as excellent hosts for the watermark 
signal due to their high frequency content. The higher the 
number of modified coefficients, the wider is the spread of 
the watermark.  

Watermarking of space curves can only provide 
copyright protection for MoCap data. Protecting copyright 
ownership of the skinned mesh animations generated from 
MoCap data is a different area of research all together, since 
skinned mesh animations are generated by interpolation of 
keyframes. Authors in [21] have suggested a technique to 
watermark skinned mesh animations by randomly inserting 
watermark in mesh skin weights. 

The work presented here is preliminary and focuses only 
on the space curve generated by one joint of the human 
skeleton used for MoCap animation. Further work is 
required to incorporate the motion constraints (temporal and 
spatial) while modifying the space curves of all joints of the 
skeleton. Future work also involves refining the algorithm 
such that it is resistant to various motion editing tasks [22] 
such as motion enhancement/attenuation, blending, 
stitching, shuffling, and noise removal. 
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