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Abstract

This paper describes an imperceptible, non-blirajife
watermarking technique for space curves. The prghos
technique employs a wavelet-based approach, angutes
a multi-resolution representation of the space eute
embed a watermark so that it has widespread presertbe
curve. Watermarks that are widely spread within hiost
data cannot be easily damaged by cropping andaemient
attacks that result in localized alteration of tfost data. A
variety of wavelet families are exploited and exmpental
results provide a comparison of the performancgiftérent
wavelets in terms of the watermark's imperceptibiand
tolerance to attacks. To quantify space curve distg a
signal-to-noise ratio is used, and a linear cotima
measure is employed to determine the resistancéhef
watermark to modifications. Results indicate thatemmark
insertion using wavelet packet decomposition odiguars
orthogonal wavelet decomposition in terms
imperceptibility and diversified presence of thebenided
watermark.
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1 Introduction

Motion capture (MoCap) technology yields appealing

computer graphics animations but entails high itests
in terms of cost, time and effort. The digital ratwf
MoCap data makes it vulnerable to piracy and plagia
thereby discouraging MoCap studios and labs fro
publishing such data. This paper focuses on tamp
detection in trajectories (space curves) derivechfmotion
capture data, to assist in detecting modificatitvas violate
copyrights of motion data extracted from publisihdédCap
datasets.

Watermarking techniques have been used for copyrig
protection, ownership authentication, and tamperfing
of digital data. Watermarking schemes insert infation in

the digital content in such a way that the embedde

information is imperceptible to the human eye. Ratbu
watermarking techniques strive to embed information
such a way that it is difficult to remove withouausing
perceivable distortions to the original data. Hoerethis is
a challenging research problem; therefore, suchrael are

of

Hjecimation.

only tolerant to a limited set of attacks. Fragile
watermarking schemes, on the other hand, embed
watermarks that have low resistance to modificatiand
are destroyed at the slightest variation to the lkostent.
Therefore, fragile schemes find applications in pgam
proofing digital data, since a damaged watermarlans
indication of a malicious modification attempt tetdata.

Research related to watermarking of 3D data ikistits
infancy, and finds applications in 3D meshes andiano
data streams. The work presented here exploreasthef
various wavelet decomposition techniques for wasekm
insertion and extraction. The contribution of theper lies
in analyzing the impact of embedding random noise a
watermark in different wavelet subbands and wavelet
coefficients obtained using wavelet packets. Elatsor
experimentation has yielded results that indicatproved
performance of wavelet packet technique over the re

The remainder of this paper is organized as follows
Section 2 presents the related work in this reddyiv
immature field. Section 3 describes the proposed
watermarking approach. Section 4 provides the tesuf
experiments. Conclusions with future work are sumhrap
in Section 5.

2 Related Work

Related work on curve watermarking has been
investigated for planar curves (in the 2D contery f
copyright protection of digitally distributed mag@d], [2],

rT1’:1nd [3]), vector fonts [4], hand drawn curves and
éppographic maps [5]. However, limited work hasrbdene

on curveltrajectory/motion-data watermarking in tBB
domain.

The authors in [6] propose a progressive watermgrki
scheme for 3D motion capture data that uses frame
A robust, blind 3D motion capture data
watermarking algorithm for human motion animatian i
proposed in [7], which is cluster-based and uses

auantization techniques. The authors in [8], déscra

spatial domain technique to watermark 3D motiontuag
data. Puet al. [9], adopt singular value decomposition to
consider both the time varying relations among rifation

frames and the spatial correlations among the reiffie
joints in motion. The motion data matrix is decorsgad into



two eigen vector matrices and a singular valuesimdthe  wavelet packets (Described in Section 3.2). Asdaleg in
watermark is added to the singular values matrigarval  Figure 3 and Figure 7 the watermarking algorithms a
and Prabhakaran [10] propose a tamper-proofingdentical for both approaches except for the choide
mechanism for MoCap data that applies hash fungtion wavelet decomposition techniques.
the data matrix and embed identifiers as watermaoks
detect attacks such as row/column shuffling andnerg
sh uffling. Intermediate Position in Climb -
Most watermarking techniques [11] adopt a certairel MoCap Sequence 7" (|
of randomness in the algorithm to battle attacks on
watermark removal by a brute force approach. Howeve 350 ¢
this is the simplest approach and has its drawbacks :
Embedding the watermark directly in the spatial dom vl |
makes it vulnerable to removal or replacement kftalt is 200 ‘ ’ '
preferred to transform the motion data into thegdiency
domain. This assures that the watermark is sprecdsthe 350 "
3D curve such that removal or replacement of pafrtthe
curve does not destroy the watermark completely18j, = {
Yamazaki proposes segmentation of the motion data 200
followed by a discrete cosine transform operationeach : gmlhsmmluf
segment to embed the watermark in the spread spectr LEf‘Hf*"d J°““ V & | ""'csekeimu in Climb
domain. In [13], Yamazaki employs a wavelet-based 130 : :
spectral analysis for watermark insertion.
The watermarking approach presented in this pager a 100
employs wavelets but differs from Yamazaki's apphoas
it utilizes a multiresolution as well as a wavefscket -100
representation of the 3D curve for watermark irsert A0 _ : -
Moreover, the proposed approach isolates the tmajes of FA : 50
the human skeletal joints and applies to the spacge 50 g = 0 x
generated by each joint. In addition, a varietywaivelet -50
families are experimented with to determine thetbes
performer. Figure 1: Trajectory Plot(red) of Left Hand Joint of Human
Skeleton(blue). Motion Sequence fratmb.bvh

40 :
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3. Methodolo
o4 3.1 MultiResolution Analysis

For MoCap data, a space curve is a sequence of
coordinates in 3D space. This space curve is dérfsgm  The space curve is represented by a three-dimaaision
the motion of one joint (denoted by dot marker) té d|scr_ete signalC of length n. 'I_'he wavelet transform is
human skeleton, as shown in Figure 1. The MoCapseat applied to thex, y, andz co-ordinates ofC separately. As
used for this figure is obtained froBeyondMotion Studio  depicted by Eq. 1, a discrete wavelet transform [DW
[14] and represents théimb.bvh sequence. The space curve @pplied toC decomposes the signal into two sub-sign@ls,
is the trajectory represented by red markers in pfe andW, each of half its lengtm§&n/2 wheren is an integral
shown in Figure 1. power of 2 with zero padding), whele represents the
The proposed approach transforms the Spatidmulnresolutlon level of wavelet transform.
representation of the 3D curve to the spread spmctr
domain using wavelets [15]. Wavelet transform isf@mred DWT(C[n]) = S[m]| +W([m] (1)
over Fourier or Discrete Cosine transforms becailise _ ) _ o
captures both the global pattern (i.e. averages ofhe first sub-signal constitutes the sca_la_r coeega‘ﬁts th_at
approximations) and the local variations (i.e. fiations or ~ 'epresent the approximation of the original sigaatl is
details) in the curve. Wavelet functions decompasmace computed by the following equation:
curve into multiple resolutions thereby facilitagin
examination of the gross and finer details of theve at S; = Zk C(k);(K) 2)
different scales or resolutions (see Figure 2)thia paper

we experiment with two forms of wavelet transforms.,yhere ¢(k) represents the scaling function of the chosen
multiresolution wavelets (described in Section 3d)d \yavelet family.



Multiresolution Wavelet Analysis of Space Curve in X-Dimension
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Figure 2: Original Signal ix-dimension and its Multiresolution Wavelet Decormifion at Levels 1 through 5
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Figure 3: Watermark Insertion and Extraction Process usiray&léet Decomposition

The second sub-signal represents the wavelet
coefficients that constitute the differences betwebe where ¢(k) represents the wavelet function of the chosen
subsequent components of the original signal adérimted  wavelet family.
by: The functions¢(k) and ¢(k) are defined by the chosen
wavelet.Haar, Daubechies, Biorthogonal, Meyer, Coiflets,
W; = % C(k) (k) (3) Symlets, andMexican Hat are different families of wavelets.



Readers are advised to refer to [1Bl7], and [18] for
further details on wavelet transform.

At level i=1, the Levell resolution space cunC[1] =
Si+Wi. The Level?2 resolution space curve is obtained
applying DWT only on the gpoximation coefficientsS
and Level-n wavelet transform @fis obtained b\DWT(S,.

1)-

A multi-resolution representation of the space ci
decomposed at levels with decreasing resolution
demonstrated in Figure . 4A visual representation
multiresolution  wavelet decompositi of C into
approximation and detail cefficients, in thex-dimension,
is shown in Figure 2In this figure, the scalar and wave
coefficients at Level 2, 31, and 5 are obtained by taking
DWT on the scalar coefficients of the previous le
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Figure 4: Multiresolution Analysis of the Space Cu- The
space curve is represented at decreasing scalgs C[3]
and C[4] (Level2 wavelet transform yields a higher sci
Level4 results in a lower scale). At lower resolutiohs
finer details are lost during reconstruction.

3.2 Wavelet Packets Analysis

The wavelet packet decomposition provides a ri
signal analysis. In the orthogonal wavelet decoritipos
which is described in the previous -section, the
approximation coefficients ardecomposed into two par
i.e. scalar and wavelet coefficients, at each |@fdDWT.
The wavelet coefficients are not further decompcesedny
levels. In the wavelet packets technique, the wet
coefficients are also decomposati each level into slar
and wavelet coefficients by applying the DWT. 7
complete binary tree produced by the wavelet pe
transform is illustrated in Figure. T his results in a muc
detailed analysis of the space curve, as denated by
Figure 6.

Original Sigmal

DWT Level-1

[3:4)
Level-3

(3:0) (38)

Figure 5: Original Signal (0,0) and its Tree represental
of Wavelet Packet Decomposition at Levels 1 thro3g
(1,0) represents the scalar coefficients at L-1. (1,1)
represents the wavelet coeféints at Leve-1. For LevelN,

scalareoefficients are denoted byN, even index) and
waveletcoefficients are denoted bN, odd index).

3.3 Watermark Embedding

The steps underlying the process of watermark tiose
and extraction are demonstrated Figure 3 and Figure 7.
The watermark insertion process adds a ranwatermark
R to the multiresolution wavelet coefficierW, or LevelN
wavelet packet coefficients (represented N,1) through
(N,2"-1), as indicated by the wavelet pat tree in Figure
6.) selected by a kelg;, which is derived from a pseu-
random number generator function, whj represents the
X, ¥, or z dimension. The waterark R is a sequence of
pseudorandom numbers. The watermark isltiplied by a
scaling factoM, which determines the embedding stren
Experimental values fav! lie in the rangel0™ to 10°°.

The watermark is inserted into the multiresolut
wavelet or wavelet packet coefficients accordingthe
following equation:

W (k) = W;(k) + R;M (4)

where W' denotes the watermarked wavelet coefficiek
denotes the wavelet coefficient's indelected by keyKj,
and ] represents the, y, and z coordinates of the spa
curve.

An inverse transform applied to the unmodified sc
coefficients and the modified wavelet coefficiepislds the
watermarked space curve as showiFigure 8. The space
curve in this figure represents the trajectory getesl by
red markers plotted in Figure Aut it looks different since
has been plotted independently of the skeleton thigtx, y,
andz axes swapped and does not incorporate the scdii
the coordinate axes in the plot.



Wavelet Packet Analysis of Space Curve in #-Dimension

Original : : : : : : :
Signal 0
100 | i i | 1 ] i
0 al 100 160 200 260 300 350 400
EDD T T T T T
Level 1 : |
S:sLEl' 5) uusﬁl;ﬁnu A1
-200 ' 1
0 al 1DEI 15EI 2000 al
200 - 5 - '
Level 2 SH 0
11 ®1z: : wom
200 Scalar ,.,..r-ff|:|=n1£~ Wavelet Cosficients Scalar Coefficients '-‘-'swnlnt EEfiGiﬂl'ITS.
0 1DEIEI 1DEIEI 1|:I|II 100
a00
Level 3 aoy--

2I:II I IDEI I I
EI a0 EI a0 EI a0 EI a0

Figure 6: Original Signal in x-dimension and its Wavelet PetdRecomposition at Levels 1 through 3
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Figure 7. Watermark Insertion and Extraction Process usiray&let Packets

3.4 Watermark Detection watermarking technique is non-blind.  Correlatiminthe
subtraction result with the original watermark detimes if
To detect if a space curve has been modified, wavel the curve has been tampered with or not.
domain representation of the original 3D curveultsacted A linear correlation coefficientorr is used as the metric
from the wavelet domain representation of the tgwice for similarity between the original arektracted watermark.
curve. The extraction process requires the kehience the Given pairs of quantities (i.e. two sets of datandB) (4;,



B;), wherej = 1,..,N andA is the mean of ali;'s andB
is the mean of alB;'s, corr is given by the formula:

Daubechies (ILevel 1) ™
corr = 2/(4j=4)®;7B) (5)
[Eia-a2 [5y8,-8) :
Whencorr=1, the extracted watermark is identical to the
original watermark, which implies that the testvahas not
been tampered with.

Original and Watermarked Space Curve

Figure 8: Original (blue) and Watermarked (green) Space
Curves

-50
Reverse Bior hogom

(Level|5)

4. Experiments

The experiments were done in Matlab using the Wavel ..
toolbox and Motion Capture toolbox [19]. The dased in
this project is obtained from [20]. Distortion aysik of the
original and watermarked space curves is basedhen t T e
signal-to-noise ratio (SNR) metric which is givey the

following equation: Figure 9: Distortion Analysis-Original Space Curve (blue)
and Watermarked Space Curve (green) at Differentlse

SNR(C,C") = 20Logy, (R;ZSC(_C;’)) ) of Transform for Different Wavelet Families
where C is the original space curve at represents the Payload 113 160 194 218
watermarked space curv&MS denotes the root-mean-—m=c Lovel-l | Level2 | Level-3 | Levela
square value. The imperceptibility of the waternragk Family SNR SNR SNR SNR
algorithm is measured by this SNR value.

9 y Haar 50.12 | 42.02 | 3571]  30.25

Daubechies 70.24 59.82 49.08 38.52

4.1 Multiresolution Wavelet Analysis :
Biorthagonal 66.03 56.88 48.99 36.61

Results for distortion analysis for the space cumsing _Rev:Bior. 59.67 48.91 38.63 29.88
wavelet multiresolution analysis, shown in Figurglefined _Coiflets 63.85 53.98 45.37 34.25
by 352 points in 3D), are listed in Table 1. Expets are _Symlets 64.24 53.07 44.67 33.99
conducted on a seven families of wavelets to deternne _Meyer 69.48 61.89 51.25 39.61

best performers. The payload value in Table 1 s the

length of the watermark (i.e. the number of waveletTable 1: Imperceptibility Measure and Payload Capacity of
coefficients that are modified to accommodate thehe watermarking algorithm at different levels of
watermark). The payload capacity increases asetbed bf  Multiresolution Wavelet Transform for a space curve
wavelet transform increases since the watermairisested comprised of 352 points



into the wavelet coefficients from all levels 1 dbgh N,
where N is the level of applied wavelet transform. For
example, SNR at Level-3 foHaar wavelet indicates
presence of watermark in all Levels 1, 2 and 3usTISNR

in Table 1 decreases as number of levels of theeleav
transform increases, since noise(watermark) is ecdat
more levels. As depicted by Figure 9, a visualadi®n is
observed in the watermarked space curve for SNRegal
lower than 50.

Results for various attacks on the watermarked espac
curve (attacks are shown in Figure 11) using nagotution
wavelet analysis are outlined in Table 2. The dati@n
measurecorr determines the performance of the algorithm
under the following attacks: i) cropping - in thigack parts
of the space curve are removed by an adversary, ii)
replacement - this attack involves modificationsef:tions
of the space curve by different data, and iii) @anation -
this attack appends data from different space sutvegield
a new space curve.

Wavelet Crop Replace Concat
Family

Haar 0.3781 0.3129 1.0000
Daubechies 0.4273 0.6741 1.0000
Biorthogonal 0.3618 0.5392 1.0000
Reverse 0.2346 0.4075 1.0000
Orthogonal

Coiflets 0.3351 0.5813 1.0000
Yymlets 0.3468 0.4927 1.0000
Meyer 0.3687 0.5360 1.0000

Table 2: Correlation Measure for Attacks on Watermarked
Space Curves obtained by MultiResolution Wavelet
Analysis

Since the proposed watermarking scheme is fratike,
watermark is destroyed at the slightest variatmthe space
curve caused by attacks. Wheorr is not equal to 1, it
signals a modification to the watermarked spacevecur
thereby indicating violation of copyrights. @rr value of 1
indicates proof of ownership.

4.2 Wavelet Packets Analysis

Results for distortion analysis for the space curve
obatined by applying wavelet packets techniquewshin

Figure 10 (defined by 352 points in 3D), are lisked’able  Figure 11: Attacks (magenta) on a Watermarked Space

3. EXperimentS arg conducted on a seven families Cﬂ:urve (green): Cropping (Top)l Rep|acement (M|d|dm')d
wavelets to determine the best performers. Theopayl Concatenation (Bottom)

value in Table 3 represents the length of the wsdek (i.e.

the number of wavelet coefficients that are modift®  since the watermark is inserted into a higher nunathehe
accommodate the watermark). The payload capacityyayvelet coefficients. SNR values in Table 3 de@sass the

increases as the level of the wavelet transfacreases



number of levels of the wavelet transform increasasce thereby indicating violation of copyrights. &rr value of 1
noise (watermark) is added at more levels. As degiby indicates proof of ownership.

Figure 10, no visual distortion is observed evehetel-1

of wavelet transform. It has been observed thatMleger

wavelet family seems to perform poorly as compdeethe  pPayload 139 160 200 218
rest. Wavelet Level-1 | Level-2 | Level-3 | Level-4
Family SNR SNR SNR SNR

Haar 209.86 207.34 206.90 207.38
Daubechies 210.58 207.86 207.30 207.02
Biorthogonal | 109.64 205.79 205.38 206.40

Rev. Bior. 210.50 209.03 208.58 207.90
Coiflets 209.98 208.38 207.87 207.72
Symlets 210.95 208.30 206.82 207.02
Meyer 130.01 122.48 117.09 113.95

Emrﬁmg ujfm' i
(Level 3)‘

Table 3: Imperceptibility Measure and Payload Capacity of
the watermarking algorithm at different levels olaViélet
Packet Transform for a space curve comprised ofpgi2ts

Wavelet Crop Replace Concat
Family

Haar 0.6134 0.6254 1.0000
Daubechies 0.7932 0.7216 1.0000
Biorthogonal 0.6418 0.7872 1.0000
Reverse 0.6652 0.6523 1.0000
Biorthogonal

Coiflets 0.7539 0.8047 1.0000
Symlets 0.8317 0.7891 1.0000
Meyer 0.3814 0.4024 1.0000

Table 4: Correlation Measure for Attacks on Watermarked
Space Curves obtained by Wavelet Packets

5 Conclusions and Future Work

This paper presents an imperceptible, fragile, lolamd
Figure 10: Distortion Analysis-Original Space Curve (blue) watermarking technique for space curves derivednfro
and Watermarked Space Curve (green) at Differentlise motion capture data. The proposed watermarkingrithgo

of Wavelet Packet Transform for Different Wavelet is based on multiresolution wavelet analysis of space
Families curve. The implementation embeds information inte t

wavelet coefficients to minimize perceivable dititor to

the space curve since the human eye can not perceiv
changes in the higher frequencies. The algorithm
maximizes the presence of the watermark acroseliee
space curve by modifying the wavelet coefficients a
multiple resolution levels. The performance of was
wavelet families at different levels of transformshbeen
evaluated and experimental results indicate that th
Daubechies, Biorthogonal, andMeyer wavelets yield better
SNR and provide optimal performance at Level-3.c8pa

Results using wavelet packet analysis on thoselatth
curves is outlined in Table 4. The correlation noeasorr
determines the performance of the algorithm undher t
following attacks: i) cropping, ii) replacementnda iii)
concatenation.

Since the proposed watermarking scheme is fratjike,
watermark is destroyed at the slightest variatmthe space
curve caused by attacks. Wheorr is not equal to 1, it
signals a modification to the watermarked spacevecur



curves with sharp discontinuities can be efficigntl [3]
represented withHaar wavelet. Motion curves do not
exhibit such abruptness and therefore the expetsmigave
demonstrated improved performance using smoothe#]
wavelets. Future work entails varying the scaliagtér M

in accordance with the transform level of the watel
coefficients.

A benefit of using wavelet packets is higher diifezd
presence and higher payload insertion capacity haf t
watermark as evident by the higher SNR. Resultarigle
indicate that wavelet packet decomposition outperfothe
orthogonal wavelet decomposition technique. Therawed  [6]
performance is owed to the difference in the signal
decomposition outlined in Figure 2 and Figure 5.V@lat
packet decomposition yields higher number of wavele
coefficients that serve as excellent hosts forwhagermark
signal due to their high frequency content. Thehbigthe
number of modified coefficients, the wider is th@esad of
the watermark.

Watermarking of space curves can only provide
copyright protection for MoCap data. Protecting yright
ownership of the skinned mesh animations generated
MoCap data is a different area of research allttoage since
skinned mesh animations are generated by interpolaff
keyframes. Authors in [21] have suggested a teclimp
watermark skinned mesh animations by randomly fimger
watermark in mesh skin weights.

The work presented here is preliminary and focosdg
on the space curve generated by one joint of thmanu
skeleton used for MoCap animation. Further work is[10]
required to incorporate the motion constraints fteral and
spatial) while modifying the space curves of alhjs of the
skeleton. Future work also involves refining thgaaithm

(5]

[7]

(8]

9]

such that it is resistant to various motion editiagks [22] [11]
such as motion enhancement/attenuation, blending,
stitching, shuffling, and noise removal.
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