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Abstract

bit of memory can be taken up and thus out-of-¢otdside

Large scale terrain rendering in real-time is alwel Of system memory) rendering needs to be suppofited.
known problem across the computer graphics communitmost common approach is to extract a good view-utiget
which has garnered many solutions relying on dygsamiapproximation of the mesh in real-time. This is

level of detail changes to the terrain. These rittyoms

typically fit into two categories: in-core and aftcore.

Out-of-core algorithms usually require data to remsatic,

thus disallowing terrain modification whereas inm&o
algorithms allow for deformation, but usually reui
updating of modified data through a data hieraralych

can potentially be a slow process. This paper pissa

solution for out-of-core deformable terrain rendgrithat

works in real-time. Since the requirements of dmec
deformable terrain do not scale to an out-of-cgstesn, the
need for data propagation and recalculation ofrdsomunds
has been eliminated.

Key Words: level-of-detail (LOD), deformable

1 Introduction

Terrain rendering is a highly researched area due t

demand from the military, scientific visualizatiomnd
computer gaming communities. Even as advances
graphics hardware continue to be released,
applications will always push the current technglég the
limit such that a brute force method will never be
practical. Level-of-detail (LOD) rendering algoritis are
one of the applications which continue to be dewetbto
give the best visual representation of large-stzaldscapes
in real-time.

The size of datasets is one of the major problems

terrain rendering. First, brute force renderingnist an
option when dealing with large datasets, so a L@pr@ach
needs to be taken. Second, given a large heightouate, a

the

accomplished by storing data in a specific hiernaalh
structure, in which terrain can usually be categguti
Terrain can be represented in many different datetsires
such as a triangulated irregular mesh (TIN) [7]ichhgives
the best approximation, a regular grid, which sEaewhat
more triangles to represent a surface, quadtregshjhary
triangle trees [4], or directed acyclic graphs [9].
Refinement may take place on a per-triangle basis,
tessellate aggregates of polygons. Some existoyithims
refine the terrain every frame, having a “splitygnl

approach. Others may merge and split from previous

frames’ work. Refinement can be accomplished using
nested-error bound metric, or as in [10] solely ti@wing
position. Some terrain algorithms only support dmec
(inside of system memory) [4], while others suppmrt-of-
core rendering [9] and dynamic addition of procedidetail
[11].

Since terrain data can consume such a large memory

otprint, out-of-core algorithms often limit thadatasets to

e static (unchanging). Large amounts of terraita dae
usually processed in a way that leaves the georogtiynal
for video hardware and is not expected to ever ghan
When dealing with an out-of-core terrain systemt tha
handles dynamic updates of its height values, thangn't
so trivial. For the most part, the areas of themtbat need
to be rendered stay in memory, while areas thanh'tare

.visible can be discarded to the hard-drive untddesl. With

deformable terrain, updates to the mesh could bdema
outside the viewing frustum, in which case thoseaar
would need to be loaded, updated, and cached badisk.



If a hierarchy of LOD mesh
preprocessed, then updated data may need to bagatepol
up through the tree or reprocessed altogether.idée of
dealing with large amounts of data in a dynamicaiar

algorithm can quickly become unmanageable, thusnwhe

representations werebounds, where a world-space volume (called a wedgie

contains the points of the triangle. World-spacaruts are
computed bottom-up, such that a node's error-boimtie
maximum of its children's world-space bounds.

This algorithm also realizes that neighboring tgigs

combined with the first problem, a second problefn ocould be at different resolutions, either coarsefirter by

terrain rendering is presented: dynamic terrairher&fore,
presented here is an out-of-core terrain algoritivhich
supports dynamic updates to the heightfield in -tigad,
allowing for deformable terrain.

Contribution:

one level. In this case, before a split is madéghtmring
triangles may be force-split to eliminate cracks r

junctions in the mesh. This is done recursivelyluné base

neighbor is at the same resolution level (i.e. amaind is
created). Doing this recursive step ensures a esingl

We present an out-of-core terrain LOD algorithmt tha continuous mesh.

supports real-time deformation, building upon teatfires
of several algorithms discussed in Section 2. [drElsents
an LOD algorithm that combines the quadtree strectf
[16] with the detail addition properties of [3]. aMdapt this

Top-down refinement of a terrain mesh is a simpid a
widely used concept where detail resolution caratiéed
easily by extending the leaf nodes of the binaangle tree
with some adjustments to the nested error-bounde T

data structure to support terrain deformation aty anauthors state that ROAM is suitable for dynamiaater

resolution throughout the terrain hierarchy withgkscale
data stored out-of-core.
Overview:

since the preprocessing of error-bounds computaison
localized and fast. However, the algorithm onlydias data
that can fit into system memory. Reprocessing large

After the previous work (Section 2), this paper isamounts (more than can fit into memory) of terrdata is

arranged as follows: A quadtree is constructed gusn
coarse-grained simplification (Section 3.1). Durmigtime,
the refinement algorithm determines the currenttyiva

unacceptable for extremely large datasets, especil
many deformations are occurring and requiring error
bounds to be recomputed every frame.

regions of the terrain based on view-dependent and

deformation refinement criteria (Section 3.2). Apaete
thread is responsible for loading and writing ofitore
portions of the quadtree (Section 3.3). Finallyprash is
used to select a rectangular region of the teritina
particular resolution to be deformed (Section3phssibly
extending the quadtree by adding levels. The neta da
treated the same as the rest of the terrain meshisgpaged
in and out of main memory as needed. Finally, wes@nt
out texturing scheme (Section 3.5).

2 Related Work

2.1 ROAM

ROAMing Terrain: Real-time Optimally Adapting
Meshes [4] is a well known level of detail algorith
utilizing a binary triangle tree (bintree) whictoss all of
the triangles for a given mesh. Instead of dealiith a
complete terrain system that performs out-of-cagimpg for

2.2 Geomipmapping

With advances in graphics hardware, it is common to
spend less work on the CPU to find a ~perfect$hmand
send more triangles to the GPU, even if they areeded.
Since sometimes it is faster (and easier) to readeangle
than determine if it should be culled, there is aahce
between brute force and dynamic refinement algmsthin
2000, de Boer wrote the pap€iast Terrain Rendering
Using Geometrical MipMapping3], a new approach that
exploits graphics hardware instead of computingfemer
tessellation on the CPU. De Boer states that t# ig to
send as many triangles to the hardware as it cadida
Since terrain data can be represented as a 2-dionahs
heightmap, the analogy of texture mipmapping wasdus
and applied to geometry.

Geomipmapping makes use of a regular grid of evenly
spaced height values, that must hall®12samples on each
side. A preprocessing step is performed thatttigtgerrain

geometry, textures, and selection of LOD blockse th into blocks, called GeoMipMaps, also with+2 vertices on
authors focus on in-core geometry management. Given €ach side (e.g. a 257 x 257 regular grid may bielelvinto

bintree, split and merge operations are perform&dgua
dual priority-queue system to achieve a LOD reprid@on
for the underlying data.

16 x 16 blocks of 17 x 17 vertices). Vertices oa ¢uge are
duplicated for each block where each block is gien
bounding box and is suitable to be stored in a tyaador

ROAM starts with a preprocessing step that produaces quick frustum culling. Finally, a series of mipmapse

nested view-independent error-bounds that worksgakide
the bintree. When deciding to split or merge a Hjec
triangle in a bintree, the pre-computed error boisnthken
into consideration along with the view-dependentrime
The algorithm uses a metric based on nested wpddes

created by simplifying the mesh which is done éymoving

every other row and column vertex. The author ssigghat
out-of-core rendering could be supported by havomdy

visible blocks or those near the camera in memohnjlew
others can be discarded to the hard disk until eged



Each geomipmap level has an associated geometrical In order to create the chunked quadtree, a norakriv

error. For each vertex removed during the singdifon
step, a world space error is calculated as theamiist
between the vertex and the line of the
simplified mesh. The maximum error of all verticés
assigned as the geometrical error to the block.nThe
decide which geomipmap to use, it is projected d@en
pixel space and compared to a user-defined threstidhen
the current geometrical error is too high, a higtetailed
block is used.

preprocessing step must first be performed. Givdarge
heightmap dataset, height samples are partitionéal &

interpdlate quadtree and simplified based on the propertigh@imesh

and not the viewer. This can be done using anytriaargle
tessellation algorithm, such as binary tree testeill as
illustrated in ROAM [4]. Depending on the depth thie
chunk, more detail is given to the final mesh.

Each chunk holds a list of renderable vertices, a
bounding volume, and a maximum geometrical error.

After each geomipmap block has been chosen, thidire w Starting with the root node of the quadtree, naatesculled

be several neighboring blocks that reside at @ifft LOD.
As such, cracks will appear between these bloalksesbne
patch holds more detail than the other. De Boegsfithis
problem by omitting vertices on the edge of a high
detailed block to identically match its lower did
neighbor.

This algorithm
implement, and also exploits the benefits of thapbics
hardware. Adding detail is trivial by simply revierg the
simplification step described in the algorithm. @fation

and recursively split based on the viewing positand its
geometrical error. Neighboring chunks at differkvels of
detail are addressed by creating a skirt of exgantetry
that eventually, with tweaks of texture coordinatiéts in
the frame buffer so no artifacts are noticed. ltilj skirts
keeps chunks independent of each other, which snake

is extremely easy to understandof-core support trivial.

The Chunked LOD quadtree structure is one of tle be
known hardware friendly LOD algorithms since it che
utilized for very large out-of-core terrain. Addirdgtail

could be supported, but geomipmaps would have to beesolution requires extending the chunked quadtndgch

recreated and geometrical errors recalculated, hwbauld
hinder real-time deformation. The downside is thia¢
number of geomipmaps increases quadraticalf) fésed
on the size of the terrain; therefore, possibluling in
slow computation and rendering.

2.3 Chunked LOD

At SIGGRAPH'02UIrich presented a hardware friendly
algorithm based on the concept of a chunked quadtre

which is described in [16]. This algorithm, alsdereed to
as Chunked LOD, is somewhat similar to GeoMipMagpin
however, it scales much better due to the quadtreeture.

could be easily done in a preprocessing step. Hexyev
deformation isn’t trivial since the algorithm réips a static
mesh; if any height samples were changed, it woedgiire
reprocessing the entire quadtree, which is unaabéptor
real-time deformation.

3. Proposed Approach

The following sections present our out-of-core
deformable terrain algorithm for preprocessing and
rendering of large-scale terrain datasets. We stdh an
overview of the hierarchical representation of therain

There is often confusion of the differences betweemyata and then describe the runtime algorithm forstme

Chunked LOD and Geomipmapping since the algorithmsefinement,

are similar. However, Chunked LOD exploits a queeltr

rendering, memory management, and

deformation. Figure 1 illustrates the flow of datmough

data structure of mipmapped geometry. Therefore thghe system from program initialization to render

number of rendered nodes does not quadraticallse@se
due to the size of the terrain.

A requirement of this algorithm is to have a view-

3.1 Hierarchical Representation
The hierarchical representation of the original Imes

dependent LOD algorithm that refines aggregates ohyilt during a preprocessing step. For a n x ninpesh, a
polygons, instead of individual polygons. As ROAM quadtree is used to organize the data such thabtiterode

tessellates down to a single triangle, Chunked Li@fihes
chunks of geometry that have been preprocessedg usi
view-independent metric. Since chunks are storedain
guadtree, the root node is stored as a very lowgool
representation of the entire terrain. Every node loa split
recursively into four children, where each chilgnesents a
guadrant of the terrain at higher detail than &sept. Every

defines a low-detail representation of the entiesim Each
subsequent child contains more detail at the scafe one
quarter of its parent's mesh, while the leaf nod@sstitute
the original mesh. Every node is of size m x m, and
therefore each node uses the same amount of \geriite
dimensions n of the input mesh and m of the nodest ime
one greater than a power of two to allow for optiation of

node is referred to as a chunk, and can be rendergge construction and refinement algorithms.

independent of any other node in the quadtree.ndasiich
a feature allows for easy out-of-core support.

The quadtree is constructed using a simplification
process similar to [8]. First, the input mesh istitianed
into leaf nodes of size m x m, where eachenoderlaps
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Figure 1: Block diagram demonsiraj the flow of the dat
through the system

neighboring nodes by one row and one column. Nade
combined into 2 x locks and upsampled by removi
every other row and columwertex. This is epeated
recursively until 2 x 2 blocks can longer be mae. Each
node is given a bounding box that encapsulate entire
mesh, as shown in Figure 2.
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Figure 2:The simplification process to create a quadti
The original mesh (a) is separated intocmm nodes (m=5)
(b), where each 2xBlock creates a parent node

The process of removing every other row and col
vertex when creatingarent nodes implies that the data
each node, except for the root, compi its parent's data
(the excluded nas and columns) and its own di During
terrain deformation, this property obviates the dhde
propagate changdhlrough the tree. In addition to a noc
individual data, it contains pointers to its palgmtate To
guarantee this property holds truethen a node is loaded
into memory all of its ancestors mustin memory as well.
The memory layout for any given node is show Figure
3.

For example, the bottom left vertex of an undedy
heightfield belongs to the root node. Child nodes recei
pointerto this vertex in order to access it. This is samik
the wavelet compressicscheme from [.. However, we do
not encodehte child data within the pares node. Instead
the individual data for each node is stored inlatfiat car
be loaded ordemand. This eliminates the need to dec
node information atuntime and allows for deformatic
without encoding new verticasto the quadtree. In order
guery a node's data, it must simplgreference the vertices
it points to.
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layout shown in (b)



3.2 Runtime Algorithm

3.2.1 Mesh Refinement

The goal of any terrain rendering algorithm is tocgly
create the best approximation mesh for each fratnhe.
approach uses a split-only top-down refinementviBues
algorithms use properties of the underlying geoymnédrg.
nested error bounds) during refinement as in [18] E8].
Deformation of the terrain requires recalculationda
propagation of these properties throughout the théetake
an approach similar to [10] and use only the viesifon
and frustum as refinement criteria. Although thjsproach

3.2.2 Neighboring Nodes

Smooth transitions between nodes of different LOD
must be rendered correctly, otherwise seams wilibible
due to gaps in the rendered mesh or inconsisteadirsi
from incorrect normal calculations. Also, sinceclea
neighbor holds its own copy of edge vertices, catst be
taken while deforming edges or edge boundariesharalle
these variations, a node must be aware of its beigh
Since quadtree refinement isn't restricted, thdedihce
between two nodes may be one level or more. Simma's
LOD may change from frame to frame, neighboringdin
are recreated during refinement.

When linking nodes together, a node is only allowed

looks awkward for high-frequency data (e.g. a steepointto a neighbor of equal level or higher. Enfiog this

mountain consisting of a few vertices), naturalraier
datasets often feature a smooth gradient.

rule allows each node to store no more than foighher
references. When a node is split during refinemére

Refinement begins at the root node and proceedsode is responsible for updating its children with correct

recursively for each child node. A breadth-firgtviersal is
required for linking neighboring nodes. For evende, if
the node's bounding box is inside the view frusamd the
center of the bounding box is closer than a predefi
threshold, the node is refined by traversing itg fchildren,
otherwise it is prepared for rendering. A threshsiiduld be
chosen such that a nested regular grid surrouredsi¢tver.

neighborhood information. This cannot be accomplish
with a depth-first traversal, commonly used in LOD
algorithms. Instead, a breadth-first traversalifgrmed.
Neighbor links play an important role for correcrmal
calculation. Normals are needed to simulate a gtali
lighting model, and can also be used for collisiesponse.
The biggest problem of normal calculation preséstdf on

Since no other metrics are taken into account durinthe seams of terrain patches. Vertices on an edgd the
refinement, this will yield the best visual fidglitNote that
the LOD of neighboring nodes is never limited, asai
restricted quadtree where nodes are forced to lspdied on
the level of its neighbors as in [13].
bounding boxes of the hierarchy.

Figure 4dowh

Figure 4: A quadtree displaying the bounding baxiesach
node.
frustum to quickly eliminate nodes during refinemen

height values of neighboring nodes.

The most common approach to calculate a norma is t
compute a normal for each vertex in the heightfibid
taking the average normal of all faces that contaénvertex
[17]. This process consists of several costly matteal
operations, such as square roots. Several optimizatan
be made by exploiting properties of the heightfielthe
method we use is described in [15], which only rezputhe
four neighboring heightsamples of a vertex. In ortle
create a smooth transition across a patch sedghhuging
vertices must be queried and the computed normédeis
stored for each edge.

3.2.3 Detail Addition

To improve the appearance of the terrain without
increasing the size of the data on disk, proceddetdil is
added at runtime for leaf nodes that meet theneeient
criteria. The detail is added to the hierarchyha form of
new leaf nodes that extend the quadtree until a-use
specified level is reached. When creating a nedena
reverse process of adding rows and columns is opeed
and the new node is linked to its parent, which was
previously a leaf node. The new vertices are thssigaed
procedural data.

Linear interpolation

is not sufficient for creating

Bounding boxes are culled against the vigwinadditional detail because the resulting data isfoomi.

Instead, fractals are used to give the data a niform
appearance. Each interpolated vertex is shifteédiraam
amount such that it stays within the bounds of the



surrounding vertices. Since detail addition is Eybthe
process does not need to be deterministic, theredetail
can be randomized each time it is created.

3.2.4 Rendering

The result of refinement is a list of patches to bediscarding a parent to disk will

rendered. Before rendering, indices can be recttedlifor

memory falls below the threshold. Each node is miee
timestamp representing the last time the node \ithere
rendered or deformed. A priority queue is used to
efficiently determine which nodes should be disedtd
Since every node relies on its parent for sometotiata,
invalidate memory
references for its children, therefore only leafle® of the

nodes whose neighbor's LOD have changed and normatsirrently refined mesh are considered for caching.

can be recalculated if deformation had occurred¢hEwde
must then dereference its pointer data to creatstex list.
Finally, each node can be transformed into worlacepand
the data sent across the bus to be rendered. Tiderieg

Depending on the actions of the user (fast moveroent
several deformations) and the current memory faattpr
nodes may require continuous allocation and destilog.
Instead of using operators such as new or deletehvdre

process is decoupled from the updating and disk I/Qnotoriously slow for small and frequent allocatipres

methods, allowing for smooth loads of data and icoups
in the system regardless of how fast the viewandwing
around the terrain.

Stitching is accomplished by having the finer detade
omit vertices on its edge to match that of its eear
neighbor. This is done by rendering degeneratenghéss.
Geometrical skirts [16] were not chosen since the af the
skirt may change after deformation. Recalculatidrihe
skirt can become tedious and slow. Figure 5 iaiss the
removal of T-junctions by utilizing degenerate figges.

(a) T-Junction (b) Degenerate Triangles

Figure 5: T-Junctions appear at the neighboringesoaf
different levels of detail. Omitting vertices vilegenerate
triangles removes any possible cracks from the mesh

3.3 Memory M anagement

Our algorithm supports large datasets stored oabrH,
i.e. data that resides outside of main memory [14.
separate loading and caching thread is fed patohesd or
write to disk. The patches to load are based dnewgfent,
while the patches to write are based on a leashtbcused
(LRU) algorithm.

During refinement, if a parent cannot be split heseathe
data for its children is not in-core, a requesttfte data is
made to the loading and caching thread. The sysiver
stops to wait for data to load; until the datatfoe children
is loaded, the parent's data is rendered.

freelist is used as in [6].

3.4 Deformation

Real-time modifications are applied to the terrain
refining the currently active mesh based on a repthar
selection of the terrain, called a brush, in additio the
view-dependent refinement criteria described earlighe
vertex data for each refined node is modified téhigé brush
specification.

A brush defines the rectangular extent (defined by

position, width, and height) and the resolution of
deformation (defined by a level in the hierarchfieth may
not exist). In addition, a brush holds an arrayoihters to
vertices in the terrain, allowing deformations toss node
boundaries. Nodes that intersect the brush arectsdle
during refinement and vertices from each node arengto
the brush. Dereferencing the brush gives accessitiex
data which can be overwritten with new data. Sivexices
on edges are duplicated for each patch, care nausiken
for deformations across boundaries by syncing adiac
vertices. This is done in a pre-rendering step thatpares
dirty flags of neighboring nodes in the quadtree.

Refinement is based on brush extent and resol@on
well as view-dependent criteria. Therefore, a nodg be
refined even though it is not sufficiently closetb@ viewer
or inside the view frustum. Depending on the retsotuof
the brush, data for nodes deep into the hierarchy be
requested for loading. Only when all of the datguired by
the brush's resolution has been loaded can defammbe
applied.

As described in Section 3.2.3, procedural detadidded
for leaf nodes that meet the view-dependent refer@m
criteria. If a brush alters a node with procedutata, disk
space is allocated for the node and it is allowedbé
discarded to disk by the memory manager.

When a node is chosen for rendering, it is posside
an ancestor has previously been deformed. Timepstare
compared, and if a node’s last modification is olthan its
parent's, its data is adapted to the parent mestrdating

When the memory footprint exceeds a predefinedrocedural detail.

threshold, LRU patches are discarded to disk timlused



3.5 Texturing
Textures are processed similarly to the terraira.dat
large texture can be cut into user-defined parn#i@and

revolves around the camera within a segment. Thik w
solve any and all accuracy problems that largeeseome
with. Unfortunately, this doesn’t come without arden. If

merged into 2x2 blocks before being mipmapped. Thishis method is used, then all objects need to peesented

process continues until an entire quadtree is lowidtr the
original texture data.

Nodes in the terrain quadtree directly map to nades
the texture quadtree. However, with modificationstie
terrain quadtree (deformation and procedural Jetadil
becomes impractical to create a texture quadtréleeofame
depth. If a node in the terrain quadtree cannotmb@ped
directly to a node in the texture quadtree, theepts
texture and texture coordinates are used. Wheada s
being loaded or deleted it can also load or délstiexture.

Just as the terrain quadtree presented issueamssso
does the texture quadtree. This is due to the &fnéxture
filtering used to generate the texture quadtre#hofigh no
seams are visible with nearest filtering, this tybdiltering
is not visually appealing. With linear filteringg@ms appear
at the texture edges because the edge texels aiteeing
blended with the correct neighbor texel. Thisas/ed by
overlapping adjacent textures during texture quedtr
construction such that neighboring nodes have eexets

in segment space which can prove difficult, esplgcighen
using a scenegraph.

Along with large world coordinates, precision is@abkn
issue with the depth buffer. Ideally the user widint to see
detail an inch from his nose while also seeingriwon in
the sky. Unfortunately a 24 or 32-bit depth buffem’t
support such a task. Since the depth buffer islinetr,
there are many more bits allocated to the precisibn
objects closer to the camera than further. Pratisigained
exponentially as you push out the near clippingngla
However, in our terrain we will sometimes want tew
millimeter resolution, without culling the mountaiin the
horizon.

Several methods can fix this problem, such as using
imposters [12], or a multipass rendering systen ithiaders
the scene in sections, clearing the depth buffeilewh
altering the frustum each time. In our implemetative
allow for multiple rendering passes. Algorithm Jogls the
steps required to perform such a task.

on shared edges. Clamping the texture edges during

rendering causes these texels to blend, removiagdeam.
There is no perfect solution, and the amount oklgixo
overlap can vary.

3.6 Supporting L ar ge Scenes

Extending terrain detail causes the terrain as alevio
be resized to a different resolution. Instead ofitng a 1-
meter resolution map, detail can be added so nasvat1-
millimeter map. In order to properly represent dethe
entire terrain needs to be increased in scale.

As worlds get substantially bigger, the amount
precision to represent world coordinates gets smalhd
smaller. For example, if units represent meters aod
world is 100km square, at the farther corner ofwheld a
32-bit number will allow us to represent 7.8mm gdanity
[5]. The larger the world coordinates, the lessusate they
will be at the farthest extent. Therefore floatsally have
to be converted to doubles since there are notginbits to
represent a large number with high precision.

of

Set zFar to the maximum value needed.

Set zNear = zFar / ratio

Clear z-buffer

Render scene and cull to the adjusted frustrum
Set zFar to zNear

If zZNear isn’'t close enough — go to Step 2

oukrwnhpE

Algorithm 1: Process for multipass rendering

4. Reaults

The following tests were performed on a machinehwit
an Intel Core2 Quad Q9450 processor with 8GB of RDR
RAM and a NVIDIA GeForce GTX 275 under Windows
XP Service Pack 2, which can only utilize 3.5GB#M.

The data used for these results was obtained fidm [
which holds 10-meter elevation data of the bigndlaf
Hawaii along with a 4096 x 4096 texture. The terrhie

Unfortunately the graphics hardware only performsy,s dimensions of 8193 x 8193 and was alreadyriarpi

floating point operations, so precision is lost idgr
operations such as matrix transformations. Tragelinthe
farthest extent of your terrain will result in seafvetween
patches or jittering movement when the camera mdvés
best to partition the world into a user definedrsegt space,
where each node belongs to a segment and is gimen
offset.

terrain (.bt) format. It was first converted intoetinternal
.ter file and the texture image (.jpg) was conwtritgo a
.tex file. Since these files were so small, thepppeessing
took less than five minutes.

With this application, the user is able to moveuabthe
4cene via keyboard and mouse input. By clicking and
dragging the mouse, the user can select a singlealigned

Instead of transforming the camera and translating)rush' and change the resolution of that brustkejdoard

patches during rendering, thus losing precisicamgforms

input. Once a brush is selected with the desiredlugion,

can be made in segment space, such that the word n {he yser may create a hill or crater by raisintpeering the



terrain. Any changes to the terrain are automdyicsdved In order to determine how well this algorithm rumse

to the .ter file and will be loaded back in whenreth ran various operations of it as illustrated in Eablwith a
application restarts. Figure 6 shows screen shbtthis  frame buffer size of 1024 x 768. The file testeasva ten
application. meter resolution digital elevation map (DEM) of Hainof

raster size 8193 x 8193 which can be freely dowddda
over the Internet [1]. The first test was to simpigve over
the terrain with no deformation occurring. Thistezl the
LOD refinement algorithm used to render the terraireal-

time. The next section of results in the table shiosvspeeds
of deformation of the terrain in terms of frames-pecond.
Using different brush sizes, we deformed the ter@rer

the same part of the dataset. For all of the bsisds used,
the algorithm demonstrated interactive frameraf€be

largest brush size used exhibited a relatively framerate
due to the increased amount of refining of the ndmskin to

the deepest parts of the terrain hierarchy, whiah be

considered a worst-case scenario.

Another application of the algorithm has been ufsed
tire track deformation from a military vehicle ngating the
terrain in a dataset from Yuma Proving Ground, amyA
installation in Arizona. Screenshots are shownigufe 7,
and an example can be seen in the accompanying.vide

We were unable to compare these results to any prio
terrain rendering algorithms because no algorithppsrts
deformation out-of-core.

5 Conclusions

We have presented a complete LOD terrain algorithm
including the major features of deformation and-@futore
rendering. To the best of our knowledge, this esfttst out-
of-core deformable terrain algorithm. Refinemestniot
only based upon the viewing frustum, but also takes
account the selected deformation brushes. Thisvalidata
that is not being viewed to remain in memory andigect
to deformation. Previous methods that allow outafe
rendering usually preprocess the geometry into a
triangulated irregular mesh for optimal polygonotinghput,
and require that the terrain mesh remain staticeOn-core
algorithms support changes to the underlying heigipt,
but need to recalculate and propagate nested leotorels
through a hierarchal structure. Our approach eheis the
need for any geometry tessellation or propagatiber &
modification to the terrain heightmap. By exploifinhe
features of a regular grid, x and z coordinates méiver
change requiring only updates to the y coordinatgght
offset). The quadtree structure exploits a chilcept
relationship in which child nodes actually point tioeir
parent’s data. In this way, when the data of ckitdnodes
are modified, the pointer actually dereferencesesparent
data completely eliminating any propagation back up
Figure 6: Screenshots from the visualization of iteawaii  through the quadtree. The need for nested errondmis
dataset also eliminated by depending solely on the viewitpmsfor
refinement. Even though this results iness accurate




Figure 7: Screenshots from the visualization in “um
Arizona with tire track deformation.

refinement, the tessellation is tolerable and thdeoff of
propagation removal is well worth it.

Limitations:

The terrain is represented as a heightmap, pregudi
such features as caves and overhangs. The dimercditime
input heightmap are required to b® 2 1 on each side to
allow for optimizations. Additionally, the preprastng step
to build the terrain hierarchy is non-trivial f@rye datasets.

6 FutureWork

For simplicity, not all optimizations were used whe
implementing this algorithm. It would be possibigith
some effort, to port the entire algorithm to thelGPTerrain
data would reside completely in video memory in fibien
of a texture, and a quadtree structure could beicked via
indices to a memory location. Vertex lists can lgabe
generated due to the regular grid layout, and aslicould
properly be generated with triangles in a verteadsn.

Creating disk space for nodes of added detail pisru
data coherency when layed out on disk. Though itn%
seen as a huge problem, it could be looked intiéur

Currently the algorithm only allows for a singleubh to
be created at any given time. Ideally, it shouldept a
myriad of brushes at various resolutions that carplaced
throughout the terrain and referenced by a specific
identifier.

Often a terrain dataset is too large for defornmegtito be
occurring everywhere. Deformations are sometimasdd
to a specific region of interest even though terisipresent
(the tank track deformation demo for example). Sitive
current algorithm supports deformation anywhereaay
given time, the polygon throughput is not optimiaiwould
be possible to detect if a region of the quadtr@enh been
touched for a period of time, and if so, start togess the
vertices into an optimal triangulated irregularwetk. The
mesh could toggle back to a regular grid if defdiamain
that region was ever needed. This would resultaistefr
rendering and somewhat more distinct feature pvesgr
since nested error-bounds would be used within a
triangulated irregular network. Note that the meynasage

Deformation is allowed to be done at any resolutionwould have to remain the same since a toggle tegalar
within the extended quadtree. The quadtree may bgrid could happen at anytime, but the indices walidnge

extended to a user specified resolution by scalipgthe
original terrain and adding procedural fractal deta the
leaf nodes. These extra nodes are created onytlie iféal-
time and only need to be saved to disk if defornf&idce
detail addition is so subtle, the extra nodes dmeed to be
spatially deterministic and can be randomly creatadh
time. By comparing the time stamp of a node’s pargata
may procedurally adapt to a low resolution modifima
using this same method to create detail.

Along with our algorithm, we have presented suppart
large texture maps, fast normal calculation, aralidg with
large world coordinate and depth buffer precision.

to allow for faster rendering of a patch.

Finally, the algorithm could be modified for renihgy
terrain at a planetary scale, which would require a
specialized acceleration structure for ellipsoigbmetry.
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