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Abstract 
 
Large scale terrain rendering in real-time is a well known 

problem across the computer graphics community which has 
garnered many solutions relying on dynamic level of detail 
changes to the terrain.  These algorithms typically fit into two 
categories: in-core and out-of-core.  Out-of-core algorithms 
usually require data to remain static, thus disallowing terrain 
modification whereas in-core algorithms allow for 
deformation, but usually require updating of modified data 
through a data hierarchy which can potentially be a slow 
process.  This paper presents a solution for out-of-core 
deformable terrain rendering that works in real-time.  Since the 
requirements of in-core deformable terrain do not scale up to 
an out-of-core system, the need for data propagation and 
recalculation of error bounds has been eliminated. 

Key Words:  Level-of-detail (LOD), deformable, terrain 
rendering, out-of-core. 

 
1 Introduction 

 
Terrain rendering is a highly researched area due to demand 

from the military, scientific visualization, and computer 
gaming communities.  Even as advances in graphics hardware 
continue to be released, these applications will always push the 
current technology to the limit such that a brute force method 
will never be practical.  Level-of-detail (LOD) rendering 
algorithms are one of the applications which continue to be 
developed to give the best visual representation of large-scale 
landscapes in real-time. 

The size of datasets is one of the major problems in terrain 
rendering.  First, brute force rendering is not an option when 
dealing with large datasets, so an LOD approach needs to be 
taken.  Second, given a large heightmap, quite a bit of memory 
can be taken up and thus out-of-core (outside of system 
memory) rendering needs to be supported.  The most common 
approach is to extract a good view-dependent approximation of 
the mesh in real-time.  This is accomplished by storing data in 
a specific hierarchical structure, in which terrain can usually be 
categorized.  The terrain can be represented in many different 
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data structures such as a triangulated irregular mesh (TIN) [6], 
which gives the best approximation, a regular grid, which uses 
somewhat more triangles to represent a surface, quadtrees [13] 
binary triangle trees [3], or directed acyclic graphs [7]. 

Refinement may take place on a per-triangle basis, or 
tessellate aggregates of polygons.  Some existing algorithms 
refine the terrain every frame, having a “split-only” approach.  
Others may merge and split from previous frames’ work.  
Refinement can be accomplished using a nested-error bound 
metric, or as in [9] solely the viewing position.  Some terrain 
algorithms only support in-core (inside of system memory) [3], 
while others support out-of-core rendering [8] and dynamic 
addition of procedural detail [9]. 

Since terrain data can consume such a large memory 
footprint, out-of-core algorithms often limit their datasets to be 
static (unchanging).  Large amounts of terrain data are usually 
processed in a way that leaves the geometry optimal for video 
hardware and is not expected to ever change.  When dealing 
with an out-of-core terrain system that handles dynamic 
updates of its height values, things aren't so trivial.  For the 
most part, the areas of the mesh that need to be rendered stay 
in memory, while areas that aren’t visible can be discarded to 
the hard-drive until needed.  With deformable terrain, updates 
to the mesh could be made outside the viewing frustum, in 
which case those areas would need to be loaded, updated, and 
cached back to disk.  If a hierarchy of LOD mesh 
representations were preprocessed, then updated data may need 
to be propagated up through the tree or reprocessed altogether. 
The idea of dealing with large amounts of data in a dynamic 
terrain rendering algorithm can quickly become unmanageable, 
thus when combined with the first problem, a second problem 
of terrain rendering is presented: dynamic terrain.  Therefore, 
presented here is an out-of-core terrain algorithm which 
supports dynamic updates to the heightfield in real-time, 
allowing for deformable terrain. 

This paper’s primary contribution is an out-of-core terrain 
LOD algorithm that supports real-time deformation, building 
upon the features of several algorithms discussed in Section 2. 
[10] presents an LOD algorithm that combines the quadtree 
structure of [13] with the detail addition properties of [1].  We 
adapt this data structure to support terrain deformation at any 
resolution throughout the terrain hierarchy with large-scale 
data stored out-of-core. 

This paper, in its remaining part, is structured as follows:  
Section 2 covers related work by surveying ROAM, 
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geomipmapping, and chunked LOD; Section 3 describes the 
proposed approach, with details on hierarchical representation, 
runtime algorithm, memory management, deformation, 
texturing, and support for large scenes; Section 4 presents the 
results of testing the approach; Section 5 offers the conclusions 
of the paper; and Section 6 outlines possible directions of 
future work.   

 
2 Related Work 

 
2.1 ROAM 

 
ROAMing Terrain:  Real-time Optimally Adapting Meshes 

[3] is a well known LOD algorithm utilizing a binary triangle 
tree (bintree) which stores all of the triangles for a given mesh.  
Instead of dealing with a complete terrain system that performs 
out-of-core paging for geometry, textures, and selection of 
LOD blocks, the authors focus on in-core geometry 
management.  Given a bintree, split and merge operations are 
performed using a dual priority-queue system to achieve an 
LOD representation for the underlying data. 

ROAM starts with a preprocessing step that produces a 
nested view-independent error-bounds that works along side 
the bintree.  When deciding to split or merge a specific triangle 
in a bintree, the pre-computed error bound is taken into 
consideration along with the view-dependent metric.  The 
algorithm uses a metric based on nested world-space bounds, 
where a world-space volume (called a wedgie) contains the 
points of the triangle.  World-space bounds are computed 
bottom-up, such that a node’s error-bounds is the maximum of 
its children’s world-space bounds. 

This algorithm also realizes that neighboring triangles could 
be at different resolutions, either coarser or finer by one level.  
In this case, before a split is made, neighboring triangles may 
be force-split to eliminate cracks or T-junctions in the mesh.  
This is done recursively until the base neighbor is at the same 
resolution level (i.e., a diamond is created).  Doing this 
recursive step ensures a single continuous mesh. 

Top-down refinement of a terrain mesh is a simple and 
widely used concept where detail resolution can be added 
easily by extending the leaf nodes of the binary triangle tree 
with some adjustments to the nested error-bounds.  The 
authors state that ROAM is suitable for dynamic terrain since 
the preprocessing of error-bounds computation is localized and 
fast.  However, the algorithm only handles data that can fit into 
system memory.  Reprocessing large amounts (more than can 
fit into memory) of terrain data is unsuitable for extremely 
large datasets, especially if many deformations are occurring 
and requiring error-bounds to be recomputed every frame. 

 
2.2 Geomipmapping 

 
With advances in graphics hardware, it is common to spend 

less work on the CPU to find a “perfect” mesh and send more 
triangles to the GPU, even if they aren't needed.  Since 
sometimes it is faster (and easier) to render a triangle than 
determine if it should be culled, there is a balance between 
brute force and dynamic refinement algorithms.  In 2000, de 

Boer wrote the paper Fast Terrain Rendering Using 
Geometrical MipMapping [2] in which he proposed a new 
approach that exploits the power of graphics hardware instead 
of computing the perfecttessellation on the CPU.  De Boer 
states that the goal is to send as many triangles to the hardware 
as it can handle.  Since terrain data can be represented as a 2-
dimensional heightmap, the analogy of texture mipmapping 
was used and applied to geometry.  

Geomipmapping makes use of a regular grid of evenly 
spaced height values, that must have 2N+1 samples on each 
side.  A preprocessing step is performed that cuts the terrain 
into blocks, called GeoMipMaps, also with 2N+1 vertices on 
each side (e.g., a 257 x 257 regular grid may be divided into 16 
x 16 blocks of 17 x 17 vertices).  Vertices on the edge are 
duplicated for each block where each block is given a 
bounding box and is suitable to be stored in a quadtree for 
quick frustum culling.  Finally, a series of mipmaps are created 
by simplifying the mesh which is done by removing every 
other row and column vertex.  The author suggests that out-of-
core rendering could be supported by having only visible 
blocks or those near the camera in memory while others can be 
discarded to the hard disk until needed.  

Each geomipmap level has an associated geometrical error.  
For each vertex removed during the simplification step, a 
world space error is calculated as the distance between the 
vertex and the line of the interpolated simplified mesh.  The 
maximum error of all vertices is assigned as the geometrical 
error to the block.  Then, to decide which geomipmap to use, it 
is projected to screen pixel space and compared to a user-
defined threshold.  When the current geometrical error is too 
high, a higher detailed block is used. 

After each geomipmap block has been chosen, there will be 
several neighboring blocks that reside at a different LOD.  As 
such, cracks will appear between these blocks since one patch 
holds more detail than the other.  De Boer fixes this problem 
by omitting vertices on the edge of a higher detailed block to 
identically match its lower detailed neighbor.  

This algorithm is easy to understand, implement, and also 
exploits the capabilities of the graphics hardware.  Adding 
detail is trivial by simply reversing the simplification step 
described in the algorithm.  Deformation could be supported, 
but geomipmaps would have to be recreated and geometrical 
errors recalculated, which could hinder real-time deformation.  
The downside is that the number of geomipmaps increases 
quadratically (N2) based on the size of the terrain therefore 
possibly resulting in low computation and rendering. 

 
2.3 Chunked LOD 

 
At SIGGRAPH'02 Ulrich presented a hardware friendly 

algorithm based on the concept of a chunked quadtree, which 
is described in [15].  This algorithm, also referred to as 
Chunked LOD, is somewhat similar to GeoMipMapping; 
however, it scales much better due to the quadtree structure.  
There is often confusion of the differences between Chunked 
LOD and Geomipmapping since the algorithms are similar.  
However, Chunked LOD exploits a quadtree data structure of 
mipmapped geometry.  Therefore the number of rendered 
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nodes does not quadratically increase due to the size of the 
terrain.  

A requirement of this algorithm is to have a view-dependent 
LOD algorithm that refines aggregates of polygons, instead of 
individual polygons.  As ROAM tessellates down to a single 
triangle, Chunked LOD refines chunks of geometry that have 
been preprocessed using a view-independent metric.  Since 
chunks are stored in a quadtree, the root node is stored as a 
very low polygon representation of the entire terrain.  Every 
node can be split recursively into four children, where each 
child represents a quadrant of the terrain at higher detail than 
its parent.  Every node is referred to as a chunk, and can be 
rendered independent of any other node in the quadtree.  
Having such a feature allows for easy out-of-core support.  

In order to create the chunked quadtree, a non-trivial 
preprocessing step must first be performed.  Given a large 
heightmap dataset, height samples are partitioned into a 
quadtree and simplified based on the properties of the mesh 
and not the viewer.  This can be done using any per-triangle 
tessellation algorithm, such as binary tree tessellation as 
illustrated in ROAM [3].  Depending on the depth of the 
chunk, more detail is given to the final mesh.  

Each chunk holds a list of renderable vertices, a bounding 
volume, and a maximum geometrical error.  Starting with the 
root node of the quadtree, nodes are culled and recursively 
split based on the viewing position and its geometrical error.  
Neighboring chunks at different levels of detail are addressed 
by creating a skirt of extra geometry that eventually, with 
tweaks of texture coordinates, fills in the frame buffer so no 
artifacts are noticed.  Utilizing skirts keeps chunks independent 
of each other, which makes out-of-core support trivial.   

The Chunked LOD quadtree structure is one of the best 
known hardware friendly LOD algorithms since it can be 
utilized for very large out-of-core terrain.  Adding detail 
resolution requires extending the chunked quadtree, which 
could be easily done in a preprocessing step.  However, 
deformation isn’t trivial since the algorithm requires a static 
mesh; if any height samples were changed, it would require 
reprocessing the entire quadtree, which is unacceptable for 
real-time deformation. 

 
3 Proposed Approach 

 
This section present our out-of-core deformable terrain 

algorithm for preprocessing and rendering of large-scale 
terrain datasets.  We start with an overview of the hierarchical 
representation of the terrain data and then describe the runtime 
algorithm for mesh refinement, rendering, memory 
management, and deformation.  Figure 1 illustrates the flow of 
data through the system from program initialization to render 

 
3.1 Hierarchical Representation 

 
The hierarchical representation of the original mesh is built 

during a preprocessing step.  For an n x n input mesh, a 
quadtree is used to organize the data such that the root node 
defines a low-detail representation of the entire mesh.  Each 
subsequent child contains more detail at the scale of one 

quarter of its parent’s mesh, while the leaf nodes constitute the 
original mesh.  Every node is of size m × m, and therefore each 
node uses the same amount of vertices.  The dimensions n of 
the input mesh and m of the nodes must be one greater than a 
power of two to allow for optimization of the construction and 
refinement algorithms.  

 

 
 
 

Figure 1: Block diagram showing the flow of the data through 
the system 

 
The quadtree is constructed using a simplification process 

similar to [7].  First, the input mesh is partitioned into leaf 
nodes of size m × m, where each node overlaps neighboring 
nodes by one row and one column.  Nodes are combined into 2 
× 2 blocks and upsampled by removing every other row and 
column vertex.  This is repeated recursively until 2 × 2 blocks 
can no longer be made.  Each node is given a bounding box 
that encapsulates the entire mesh, as shown in Figure 2. 

The process of removing every other row and column vertex 
when creating parent nodes implies that the data for each node, 
except for the root, comprises its parent’s data (the excluded 
rows and columns) and its own data.  During terrain 
deformation, this property obviates the need to propagate 
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(a) Original Mesh (b) Child Nodes (c) Parent Node 

 
Figure 2: The simplification process to create a quadtree.  The 

original mesh (a) is separated into m × m nodes 
(m=5) (b) where each 2×2 block creates a parent 
node (c) 

 
changes through the tree.  In addition to a node’s individual 
data, it contains pointers to its parent’s data.  To guarantee this 
property holds true, when a node is loaded into memory all of 
its ancestors must be in memory as well.  The memory layout 
for any given node is shown in Figure 3. 

 

 
 

(a) Node data 

 
(b) Memory layout 

 
Figure 3: Node data shown in (a) represents the memory 

layout shown in (b) 
 

For example, the bottom left vertex of an underlying 
heightfield belongs to the root node.  Child nodes receive a 
pointer to this vertex in order to access it.  This is similar to the 
wavelet compression scheme from [1].  However, we do not 
encode the child data within the parent’s node.  Instead the 
individual data for each node is stored in a file that can be 
loaded on demand.  This eliminates the need to decode node 
information at runtime and allows for deformation without 

encoding new vertices into the quadtree.  In order to query a 
node’s data, it must simply dereference the vertices it points to. 
 
3.2 Runtime Algorithm 
 

3.2.1 Mesh Refinement.  The goal of any terrain rendering 
algorithm is to quickly create the best approximation mesh for 
each frame.  Our approach uses a split-only top-down 
refinement.  Previous algorithms use properties of the 
underlying geometry (e.g., nested error bounds) during 
refinement as in [15] and [2].  Deformation of the terrain 
requires recalculation and propagation of these properties 
throughout the tree.  We take an approach similar to [9] and 
use only the view position and frustum as refinement criteria.  
Although this approach looks awkward for high-frequency 
data (e.g., a steep mountain consisting of a few vertices), 
natural terrain datasets often feature a smooth gradient. 

Refinement begins at the root node and proceeds recursively 
for each child node.  A breadth-first traversal is required for 
linking neighboring nodes.  For every node, if the node’s 
bounding box is inside the view frustum and the center of the 
bounding box is closer than a predefined threshold, the node is 
refined by traversing its four children, otherwise it is prepared 
for rendering.  A threshold should be chosen such that a nested 
regular grid surrounds the viewer.  Since no other metrics are 
taken into account during refinement, this will yield the best 
visual fidelity.  Note that the LOD of neighboring nodes is 
never limited, as in a restricted quadtree where nodes are 
forced to split based on the level of its neighbors as in [12].  
Figure 4 shows bounding boxes of the hierarchy. 

 

 
 

Figure 4: A quadtree displaying the bounding boxes of each 
node.  Bounding boxes are culled against the 
viewing frustum to quickly eliminate nodes during 
refinement 

 
3.2.2 Neighboring Nodes.  Smooth transitions between 

nodes of different LOD must be rendered correctly, otherwise 
seams will be visible due to gaps in the rendered mesh or 
inconsistent shading from incorrect normal calculations.  Also, 
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since each neighbor holds its own copy of edge vertices, care 
must be taken while deforming edges or edge boundaries.  To 
handle these variations, a node must be aware of its neighbors.  
Since quadtree refinement isn’t restricted, the difference 
between two nodes may be one level or more.  Since a node’s 
LOD may change from frame to frame, neighboring links are 
recreated during refinement.   

When linking nodes together, a node is only allowed to point 
to a neighbor of equal level or higher.  Enforcing this rule 
allows each node to store no more than four neighbor 
references.  When a node is split during refinement, the node is 
responsible for updating its children with the correct 
neighborhood information.  This cannot be accomplished with 
a depth-first traversal, commonly used in LOD algorithms.  
Instead, a breadth-first traversal is performed. 

Neighbor links play an important role for correct normal 
calculation.  Normals are needed to simulate a realistic lighting 
model, and can also be used for collision response.  The 
biggest problem of normal calculation presents itself on the 
seams of terrain patches.  Vertices on an edge need the height 
values of neighboring nodes.  

The most common approach to calculate a normal is to 
compute a normal for each vertex in the heightfield by taking 
the average normal of all faces that contain the vertex [17].  
This process consists of several costly mathematical 
operations, such as square roots.  Several optimizations can be 
made by exploiting properties of the heightfield.  The method 
we use is described in [14] which only requires the four 
neighboring heightsamples of a vertex.  In order to create a 
smooth transition across a patch seam, neighboring vertices 
must be queried and the computed normal is then stored for 
each edge. 

 
3.2.3 Detail Addition.  To improve the appearance of the 

terrain without increasing the size of the data on disk, 
procedural detail is added at runtime for leaf nodes that meet 
the refinement criteria.  The detail is added to the hierarchy in 
the form of new leaf nodes that extend the quadtree until a 
user-specified level is reached.  When creating a new node, a 
reverse process of adding rows and columns is performed and 
the new node is linked to its parent, which was previously a 
leaf node.  The new vertices are then assigned procedural data. 

Linear interpolation is not sufficient for creating additional 
detail because the resulting data is uniform.  Instead, fractals 
are used to give the data a non-uniform appearance.  Each 
interpolated vertex is shifted a random amount such that it 
stays within the bounds of the surrounding vertices.  Since 
detail addition is subtle, the process does not need to be 
deterministic, therefore detail can be randomized each time it 
is created. 

 
3.2.4 Rendering.  The result of refinement is a list of 

patches to be rendered.  Before rendering, indices can be 
recalculated for nodes whose neighbors’ LOD have changed 
and normals can be recalculated if deformation had occurred.  
Each node must then dereference its pointer data to create a 
vertex list.  Finally, each node can be transformed into world 
space and the data sent across the bus to be rendered.  The 

rendering process is decoupled from the updating and disk I/O 
methods, allowing for smooth loads of data and no hiccups in 
the system regardless of how fast the viewer is moving around 
the terrain.   

Stitching is accomplished by having the finer detail node 
omit vertices on its edge to match that of its coarser neighbor.  
This is done by rendering degenerate triangles.  Geometrical 
skirts [15] were not chosen since the size of the skirt may 
change after deformation.  Recalculation of the skirt can 
become tedious and slow.  Figure 5 illustrates the removal of 
T-junctions by utilizing degenerate triangles. 

 

  
(a) T-Junction (b) Degenerate Triangles 

 
Figure 5: T-Junctions appear at the neighboring nodes of 

different levels of detail.  Omitting vertices via 
degenerate triangles removes any possible cracks 
from the mesh 

 
3.3 Memory Management 

 
Our algorithm supports large datasets stored out of core, i.e., 

data that resides outside of main memory [10].  A separate 
loading and caching thread is fed patches to load or write to 
disk.  The patches to load are based on refinement, while the 
patches to write are based on a least recently used (LRU) 
algorithm.  

During refinement, if a parent cannot be split because the 
data for its children is not in-core, a request for the data is 
made to the loading and caching thread.  The system never 
stops to wait for data to load; until the data for the children is 
loaded, the parent’s data is rendered.   

When the memory footprint exceeds a predefined threshold, 
LRU patches are discarded to disk until the used memory falls 
below the threshold.  Each node is given a timestamp 
representing the last time the node was either rendered or 
deformed.  A priority queue is used to efficiently determine 
which nodes should be discarded.  Since every node relies on 
its parent for some of its data, discarding a parent to disk will 
invalidate memory references for its children, therefore only 
leaf nodes of the currently refined mesh are considered for 
caching.  

Depending on the actions of the user (fast movement or 
several deformations) and the current memory footprint, nodes 
may require continuous allocation and deallocation.  Instead of 
using operators such as new or delete which are notoriously 
slow for small and frequent allocations, a freelist is used as in 
[6]. 
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3.4 Deformation 
 

Real-time modifications are applied to the terrain by refining 
the currently active mesh based on a rectangular selection of 
the terrain, called a brush, in addition to the view-dependent 
refinement criteria described earlier.  The vertex data for each 
refined node is modified to fit the brush specification.   

A brush defines the rectangular extent (defined by position, 
width, and height) and the resolution of deformation (defined 
by a level in the hierarchy, which may not exist).  In addition, 
a brush holds an array of pointers to vertices in the terrain, 
allowing deformations to cross node boundaries.  Nodes that 
intersect the brush are selected during refinement and vertices 
from each node are given to the brush.  Dereferencing the 
brush gives access to vertex data which can be overwritten 
with new data.  Since vertices on edges are duplicated for each 
patch, care must be taken for deformations across boundaries 
by syncing adjacent vertices.  This is done in a pre-rendering 
step that compares dirty flags of neighboring nodes in the 
quadtree.   

Refinement is based on brush extent and resolution as well 
as view-dependent criteria.  Therefore, a node may be refined 
even though it is not sufficiently close to the viewer or inside 
the view frustum.  Depending on the resolution of the brush, 
data for nodes deep into the hierarchy may be requested for 
loading.  Only when all of the data required by the brush’s 
resolution has been loaded can deformation be applied.   

As described in Section 3.2.3, procedural detail is added for 
leaf nodes that meet the view-dependent refinement criteria.  If 
a brush alters a node with procedural data, disk space is 
allocated for the node and it is allowed to be discarded to disk 
by the memory manager.  

When a node is chosen for rendering, it is possible that an 
ancestor has previously been deformed.  Time stamps are 
compared, and if a node’s last modification is older than its 
parent’s, its data is adapted to the parent mesh by creating 
procedural detail. 

 
3.5 Texturing 

 
Textures are processed similarly to the terrain data.  A large 

texture can be cut into user-defined partitions and merged into 
2×2 blocks before being mipmapped.  This process continues 
until an entire quadtree is built over the original texture data.  

Nodes in the terrain quadtree directly map to nodes in the 
texture quadtree.  However, with modifications to the terrain 
quadtree (deformation and procedural detail), it becomes 
impractical to create a texture quadtree of the same depth.  If a 
node in the terrain quadtree cannot be mapped directly to a 
node in the texture quadtree, the parent’s texture and texture 
coordinates are used.  When a node is being loaded or deleted 
it can also load or delete its texture. 

Just as the terrain quadtree presented issues at seams, so 
does the texture quadtree.  This is due to the kind of texture 
filtering used to generate the texture quadtree.  Although no 
seams are visible with nearest filtering, this type of filtering is 
not visually appealing.  With linear filtering, seams appear at 
  

the texture edges because the edge texels are not being blended 
with the correct neighbor texel.  This is solved by overlapping 
adjacent textures during texture quadtree construction such that 
neighboring nodes have exact texels on shared edges.  
Clamping the texture edges during rendering causes these 
texels to blend, removing the seam.  There is no perfect 
solution, and the amount of pixels to overlap can vary. 

 
3.6 Supporting Large Scenes 

 
Extending terrain detail causes the terrain as a whole to be 

resized to a different resolution.  Instead of having a 1-meter 
resolution map, detail can be added so now it is a 1-millimeter 
map.  In order to properly represent detail, the entire terrain 
needs to be increased in scale. 

As worlds get substantially bigger, the amount of precision 
to represent world coordinates gets smaller and smaller.  For 
example, if units represent meters and our world is 100km 
square, at the farther corner of the world a 32-bit number will 
allow us to represent 7.8mm granularity [4].  The larger the 
world coordinates, the less accurate they will be at the farthest 
extent.  Therefore, floats usually have to be converted to 
doubles since there are not enough bits to represent a large 
number with high precision.   

Unfortunately, the graphics hardware only performs floating 
point operations, so precision is lost during operations such as 
matrix transformations.  Traveling to the farthest extent of 
your terrain will result in seams between patches or jittering 
movement when the camera moves.  It is best to partition the 
world into a user defined segment space where each node 
belongs to a segment and is given an offset.   

Instead of transforming the camera and translating patches 
during rendering, thus losing precision, transforms can be 
made in segment space, such that the world now revolves 
around the camera within a segment.  This will solve any and 
all accuracy problems that large scenes come with.  
Unfortunately, this doesn’t come without a burden.  If this 
method is used, then all objects need to be represented in 
segment space which can prove difficult, especially when 
using a scenegraph.  

Along with large world coordinates, precision is also an 
issue with the depth buffer.  Ideally the user will want to see 
detail an inch from his nose while also seeing the moon in the 
sky.  Unfortunately, a 24 or 32-bit depth buffer can’t support 
such a task.  Since the depth buffer is not linear, there are 
many more bits allocated to the precision of objects closer to 
the camera than further.  Precision is gained exponentially as 
one pushes out the near clipping plane.  However, in our 
terrain we will sometimes want to view millimeter resolution, 
without culling the mountains in the horizon.   

Several methods can fix this problem, such as using 
imposters [11], or a multipass rendering system that renders 
the scene in sections, clearing the depth buffer while altering 
the frustum each time.  In our implementation we allow for 
multiple rendering passes.  Algorithm 1 shows the steps 
required to perform such a task. 

 



IJCA, Vol. 18, No. 4, Dec. 2011 

 

269

Algorithm 1:  Process for multipass rendering 
  

1. 
  

Set zFar to the maximum value needed. 
2. Set zNear = zFar / ratio 
3. Clear z-buffer 
4. Render scene and cull to the adjusted frustrum 
5. Set zFar to zNear 
6. If zNear isn’t close enough – go to Step 2 

  

 
4 Results 

 
The following tests were performed on a machine with an 

Intel Core2 Quad Q9450 processor with 8GB of DDR2 RAM 
and a NVIDIA GeForce GTX 275 under Windows XP Service 
Pack 2, which can only utilize 3.5GB of RAM.   

The data used for these results was obtained from [16], 
which holds 10-meter elevation data of the big island of 
Hawaii along with a 4096 x 4096 texture.  The terrain file has 
dimensions of 8193 x 8193 and was already in binary terrain 
(.bt) format.  It was first converted into the internal .ter file and 
the texture image (.jpg) was converted into a .tex file.  Since 
these files were so small, the preprocessing took less than five 
minutes.    

With this application, the user is able to move around the 
scene via keyboard and mouse input.  By clicking and 
dragging the mouse, the user can select a single axis-aligned 
brush, and change the resolution of that brush via keyboard 
input.  Once a brush is selected with the desired resolution, the 
user may create a hill or crater by raising or lowering the 
terrain.  Any changes to the terrain are automatically saved to 
the .ter file and will be loaded back in when the application 
restarts.  Figure 6 shows screenshots of this application.   

In order to determine how well this algorithm runs, we ran 
various operations of it as illustrated in Table 1 with a frame 
buffer size of 1024 × 768.  The file tested was a 10 meter 
resolution digital elevation map (DEM) of Hawaii of raster 
size 8193 × 8193 which can be freely downloaded over the 
Internet [1].  The first test was to simply move over the terrain 
with no deformation occurring.  This tested the LOD 
refinement algorithm used to render the terrain in real-time.  
The next section of results in the table shows the speeds of 
deformation of the terrain in terms of frames-per-second.  
Using different brush sizes, we deformed the terrain over the 
same part of the dataset.  For all of the brush sizes used, the 
algorithm demonstrated interactive framerates.  The largest 
brush size used exhibited a relatively low framerate due to the 
increased amount of refining of the mesh down to the deepest 
parts of the terrain hierarchy, which can be considered a worst-
case scenario.   

Another application of the algorithm has been used for tire 
track deformation from a military vehicle navigating the terrain 
in a dataset from Yuma Proving Ground, an Army installation 
in Arizona.  Screenshots are shown in Figure 7. 

We were unable to compare these results to any prior terrain 
rendering algorithms because no algorithm supports 
deformation out-of-core. 
 

 
 

 
 

 
 

 
 

Figure 6: Screenshots from the visualization of the Hawaii 
dataset 

 
 

Table 1:  Average frames per second over different operations 
Operation FPS 
Arbitrarily moving over the dataset 48.41 
Deformation with brush size 32x32 38.37 
Deformation with brush size 64x64 23.54 
Deformation with brush size 128x128 20.96 
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Figure 7: Screenshots from the visualization in Yuma, Arizona 
with tire track deformation 

 
5 Conclusions 

 
We have presented a complete LOD terrain algorithm 
including the major features of deformation and out-of-core 
rendering.  To the best of our knowledge, this is the first out-
of-core deformable terrain algorithm.  Refinement is not only 
based upon the viewing frustum, but also takes into account 
the selected deformation brushes.  This allows data that is not 
being viewed to remain in memory and be subject to 
deformation.  Previous methods that allow out-of-core 
rendering usually preprocess the geometry into a triangulated 
irregular mesh for optimal polygon throughput, and require 
that the terrain mesh remain static.  Other in-core algorithms 
support changes to the underlying heightmap, but need to 
recalculate and propagate nested error-bounds through a 
hierarchal structure.  Our approach eliminates the need for any 
geometry tessellation or propagation after a modification to the 
terrain heightmap.  By exploiting the features of a regular grid, 
x and z coordinates will never change requiring only updates to 
the y coordinate (height offset).  The quadtree structure 
exploits a child-parent relationship in which child nodes 

actually point to their parent’s data.  In this way, when the data 
of children nodes are modified, the pointer actually 
dereferences some parent data completely eliminating any 
propagation back up through the quadtree.  The need for nested 
error-bounds is also eliminated by depending solely on the 
view position for refinement.  Even though this results in a less 
accurate refinement, the tessellation is tolerable and the 
tradeoff of propagation removal is well worth it.   

Deformation is allowed to be done at any resolution within 
the extended quadtree.  The quadtree may be extended to a 
user specified resolution by scaling up the original terrain and 
adding procedural fractal detail to the leaf nodes.  These extra 
nodes are created on the fly in real-time and only need to be 
saved to disk if deformed.  Since detail addition is so subtle, 
the extra nodes do not need to be spatially deterministic and 
can be randomly created each time.  By comparing the time 
stamp of a node’s parent, data may procedurally adapt to a low 
resolution modification using this same method to create 
detail. 

Along with our algorithm, we have presented support for 
large texture maps, fast normal calculation, and dealing with 
large world coordinate and depth buffer precision.  

 
Current Limitations:  The terrain is represented as a 

heightmap, precluding such features as caves and overhangs.  
The dimensions of the input heightmap are required to be  
2N + 1 on each side to allow for optimizations.  Additionally, 
the preprocessing step to build the terrain hierarchy is non-
trivial for large datasets. 

 
6 Future Work 

 
For simplicity, not all optimizations were used when 

implementing this algorithm.  It would be possible, with some 
effort, to port the entire algorithm to the GPU.  Terrain data 
would reside completely in video memory in the form of a 
texture, and a quadtree structure could be mimicked via indices 
to a memory location.  Vertex lists can easily be generated due 
to the regular grid layout, and indices could properly be 
generated with triangles in a vertex shader.   

Creating disk space for nodes of added detail disrupts data 
coherency when laid out on disk.  Though this isn’t seen as a 
huge problem, it could be looked into further.  

Currently the algorithm only allows for a single brush to be 
created at any given time.  Ideally, it should accept a myriad of 
brushes at various resolutions that can be placed throughout 
the terrain and referenced by a specific identifier.   

Often a terrain dataset is too large for deformations to be 
occurring everywhere.  Deformations are sometimes limited to 
a specific region of interest even though terrain is present (the 
tank track deformation demo for example).  Since the current 
algorithm supports deformation anywhere at any given time, 
the polygon throughput is not optimal.  It would be possible to 
detect if a region of the quadtree hasn’t been touched for a 
period of time, and if so, start to process the vertices into an 
optimal triangulated irregular network.  The mesh could toggle 
back to a regular grid if deformation in that region was ever 
needed.  This would result in faster rendering and somewhat 
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more distinct feature preserving since nested error-bounds 
would be used within a triangulated irregular network.  Note 
that the memory usage would have to remain the same since a 
toggle to a regular grid could happen at anytime, but the 
indices would change to allow for faster rendering of a patch.  

Finally, the algorithm could be modified for rendering 
terrain at a planetary scale, which would require a specialized 
acceleration structure for ellipsoidal geometry. 
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