
IJCA, Vol. 18, No. 4, Dec. 2011

ISCA Copyright© 2011

263

Multi-Resolution Deformation in Out-of-Core Terrain Rendering

William E. Brandstetter III*,†, Joseph D. Mahsman*, Cody J. White*,
Sergiu M. Dascalu*, and Frederick C. Harris, Jr*,†

University of Nevada, Reno, Reno, NV 89557, USA

Abstract

Large scale terrain rendering in real-time is a well known

problem across the computer graphics community which has
garnered many solutions relying on dynamic level of detail
changes to the terrain. These algorithms typically fit into two
categories: in-core and out-of-core. Out-of-core algorithms
usually require data to remain static, thus disallowing terrain
modification whereas in-core algorithms allow for
deformation, but usually require updating of modified data
through a data hierarchy which can potentially be a slow
process. This paper presents a solution for out-of-core
deformable terrain rendering that works in real-time. Since the
requirements of in-core deformable terrain do not scale up to
an out-of-core system, the need for data propagation and
recalculation of error bounds has been eliminated.

Key Words: Level-of-detail (LOD), deformable, terrain
rendering, out-of-core.

1 Introduction

Terrain rendering is a highly researched area due to demand

from the military, scientific visualization, and computer
gaming communities. Even as advances in graphics hardware
continue to be released, these applications will always push the
current technology to the limit such that a brute force method
will never be practical. Level-of-detail (LOD) rendering
algorithms are one of the applications which continue to be
developed to give the best visual representation of large-scale
landscapes in real-time.

The size of datasets is one of the major problems in terrain
rendering. First, brute force rendering is not an option when
dealing with large datasets, so an LOD approach needs to be
taken. Second, given a large heightmap, quite a bit of memory
can be taken up and thus out-of-core (outside of system
memory) rendering needs to be supported. The most common
approach is to extract a good view-dependent approximation of
the mesh in real-time. This is accomplished by storing data in
a specific hierarchical structure, in which terrain can usually be
categorized. The terrain can be represented in many different

* Dept of Computer Science and Engineering. E-mail: {brandste,
mahsman,cjwhite,dascalus,Fred.Harris}@cse.unr.edu.
† Center for Advanced Visualization, Computation, and Modeling
(CAVCAM), Desert Research Institute, Reno, NV 89512.

data structures such as a triangulated irregular mesh (TIN) [6],
which gives the best approximation, a regular grid, which uses
somewhat more triangles to represent a surface, quadtrees [13]
binary triangle trees [3], or directed acyclic graphs [7].

Refinement may take place on a per-triangle basis, or
tessellate aggregates of polygons. Some existing algorithms
refine the terrain every frame, having a “split-only” approach.
Others may merge and split from previous frames’ work.
Refinement can be accomplished using a nested-error bound
metric, or as in [9] solely the viewing position. Some terrain
algorithms only support in-core (inside of system memory) [3],
while others support out-of-core rendering [8] and dynamic
addition of procedural detail [9].

Since terrain data can consume such a large memory
footprint, out-of-core algorithms often limit their datasets to be
static (unchanging). Large amounts of terrain data are usually
processed in a way that leaves the geometry optimal for video
hardware and is not expected to ever change. When dealing
with an out-of-core terrain system that handles dynamic
updates of its height values, things aren't so trivial. For the
most part, the areas of the mesh that need to be rendered stay
in memory, while areas that aren’t visible can be discarded to
the hard-drive until needed. With deformable terrain, updates
to the mesh could be made outside the viewing frustum, in
which case those areas would need to be loaded, updated, and
cached back to disk. If a hierarchy of LOD mesh
representations were preprocessed, then updated data may need
to be propagated up through the tree or reprocessed altogether.
The idea of dealing with large amounts of data in a dynamic
terrain rendering algorithm can quickly become unmanageable,
thus when combined with the first problem, a second problem
of terrain rendering is presented: dynamic terrain. Therefore,
presented here is an out-of-core terrain algorithm which
supports dynamic updates to the heightfield in real-time,
allowing for deformable terrain.

This paper’s primary contribution is an out-of-core terrain
LOD algorithm that supports real-time deformation, building
upon the features of several algorithms discussed in Section 2.
[10] presents an LOD algorithm that combines the quadtree
structure of [13] with the detail addition properties of [1]. We
adapt this data structure to support terrain deformation at any
resolution throughout the terrain hierarchy with large-scale
data stored out-of-core.

This paper, in its remaining part, is structured as follows:
Section 2 covers related work by surveying ROAM,

 IJCA, Vol. 18, No. 4, Dec. 2011 264

geomipmapping, and chunked LOD; Section 3 describes the
proposed approach, with details on hierarchical representation,
runtime algorithm, memory management, deformation,
texturing, and support for large scenes; Section 4 presents the
results of testing the approach; Section 5 offers the conclusions
of the paper; and Section 6 outlines possible directions of
future work.

2 Related Work

2.1 ROAM

ROAMing Terrain: Real-time Optimally Adapting Meshes

[3] is a well known LOD algorithm utilizing a binary triangle
tree (bintree) which stores all of the triangles for a given mesh.
Instead of dealing with a complete terrain system that performs
out-of-core paging for geometry, textures, and selection of
LOD blocks, the authors focus on in-core geometry
management. Given a bintree, split and merge operations are
performed using a dual priority-queue system to achieve an
LOD representation for the underlying data.

ROAM starts with a preprocessing step that produces a
nested view-independent error-bounds that works along side
the bintree. When deciding to split or merge a specific triangle
in a bintree, the pre-computed error bound is taken into
consideration along with the view-dependent metric. The
algorithm uses a metric based on nested world-space bounds,
where a world-space volume (called a wedgie) contains the
points of the triangle. World-space bounds are computed
bottom-up, such that a node’s error-bounds is the maximum of
its children’s world-space bounds.

This algorithm also realizes that neighboring triangles could
be at different resolutions, either coarser or finer by one level.
In this case, before a split is made, neighboring triangles may
be force-split to eliminate cracks or T-junctions in the mesh.
This is done recursively until the base neighbor is at the same
resolution level (i.e., a diamond is created). Doing this
recursive step ensures a single continuous mesh.

Top-down refinement of a terrain mesh is a simple and
widely used concept where detail resolution can be added
easily by extending the leaf nodes of the binary triangle tree
with some adjustments to the nested error-bounds. The
authors state that ROAM is suitable for dynamic terrain since
the preprocessing of error-bounds computation is localized and
fast. However, the algorithm only handles data that can fit into
system memory. Reprocessing large amounts (more than can
fit into memory) of terrain data is unsuitable for extremely
large datasets, especially if many deformations are occurring
and requiring error-bounds to be recomputed every frame.

2.2 Geomipmapping

With advances in graphics hardware, it is common to spend

less work on the CPU to find a “perfect” mesh and send more
triangles to the GPU, even if they aren't needed. Since
sometimes it is faster (and easier) to render a triangle than
determine if it should be culled, there is a balance between
brute force and dynamic refinement algorithms. In 2000, de

Boer wrote the paper Fast Terrain Rendering Using
Geometrical MipMapping [2] in which he proposed a new
approach that exploits the power of graphics hardware instead
of computing the perfecttessellation on the CPU. De Boer
states that the goal is to send as many triangles to the hardware
as it can handle. Since terrain data can be represented as a 2-
dimensional heightmap, the analogy of texture mipmapping
was used and applied to geometry.

Geomipmapping makes use of a regular grid of evenly
spaced height values, that must have 2N+1 samples on each
side. A preprocessing step is performed that cuts the terrain
into blocks, called GeoMipMaps, also with 2N+1 vertices on
each side (e.g., a 257 x 257 regular grid may be divided into 16
x 16 blocks of 17 x 17 vertices). Vertices on the edge are
duplicated for each block where each block is given a
bounding box and is suitable to be stored in a quadtree for
quick frustum culling. Finally, a series of mipmaps are created
by simplifying the mesh which is done by removing every
other row and column vertex. The author suggests that out-of-
core rendering could be supported by having only visible
blocks or those near the camera in memory while others can be
discarded to the hard disk until needed.

Each geomipmap level has an associated geometrical error.
For each vertex removed during the simplification step, a
world space error is calculated as the distance between the
vertex and the line of the interpolated simplified mesh. The
maximum error of all vertices is assigned as the geometrical
error to the block. Then, to decide which geomipmap to use, it
is projected to screen pixel space and compared to a user-
defined threshold. When the current geometrical error is too
high, a higher detailed block is used.

After each geomipmap block has been chosen, there will be
several neighboring blocks that reside at a different LOD. As
such, cracks will appear between these blocks since one patch
holds more detail than the other. De Boer fixes this problem
by omitting vertices on the edge of a higher detailed block to
identically match its lower detailed neighbor.

This algorithm is easy to understand, implement, and also
exploits the capabilities of the graphics hardware. Adding
detail is trivial by simply reversing the simplification step
described in the algorithm. Deformation could be supported,
but geomipmaps would have to be recreated and geometrical
errors recalculated, which could hinder real-time deformation.
The downside is that the number of geomipmaps increases
quadratically (N2) based on the size of the terrain therefore
possibly resulting in low computation and rendering.

2.3 Chunked LOD

At SIGGRAPH'02 Ulrich presented a hardware friendly

algorithm based on the concept of a chunked quadtree, which
is described in [15]. This algorithm, also referred to as
Chunked LOD, is somewhat similar to GeoMipMapping;
however, it scales much better due to the quadtree structure.
There is often confusion of the differences between Chunked
LOD and Geomipmapping since the algorithms are similar.
However, Chunked LOD exploits a quadtree data structure of
mipmapped geometry. Therefore the number of rendered

IJCA, Vol. 18, No. 4, Dec. 2011

265

nodes does not quadratically increase due to the size of the
terrain.

A requirement of this algorithm is to have a view-dependent
LOD algorithm that refines aggregates of polygons, instead of
individual polygons. As ROAM tessellates down to a single
triangle, Chunked LOD refines chunks of geometry that have
been preprocessed using a view-independent metric. Since
chunks are stored in a quadtree, the root node is stored as a
very low polygon representation of the entire terrain. Every
node can be split recursively into four children, where each
child represents a quadrant of the terrain at higher detail than
its parent. Every node is referred to as a chunk, and can be
rendered independent of any other node in the quadtree.
Having such a feature allows for easy out-of-core support.

In order to create the chunked quadtree, a non-trivial
preprocessing step must first be performed. Given a large
heightmap dataset, height samples are partitioned into a
quadtree and simplified based on the properties of the mesh
and not the viewer. This can be done using any per-triangle
tessellation algorithm, such as binary tree tessellation as
illustrated in ROAM [3]. Depending on the depth of the
chunk, more detail is given to the final mesh.

Each chunk holds a list of renderable vertices, a bounding
volume, and a maximum geometrical error. Starting with the
root node of the quadtree, nodes are culled and recursively
split based on the viewing position and its geometrical error.
Neighboring chunks at different levels of detail are addressed
by creating a skirt of extra geometry that eventually, with
tweaks of texture coordinates, fills in the frame buffer so no
artifacts are noticed. Utilizing skirts keeps chunks independent
of each other, which makes out-of-core support trivial.

The Chunked LOD quadtree structure is one of the best
known hardware friendly LOD algorithms since it can be
utilized for very large out-of-core terrain. Adding detail
resolution requires extending the chunked quadtree, which
could be easily done in a preprocessing step. However,
deformation isn’t trivial since the algorithm requires a static
mesh; if any height samples were changed, it would require
reprocessing the entire quadtree, which is unacceptable for
real-time deformation.

3 Proposed Approach

This section present our out-of-core deformable terrain

algorithm for preprocessing and rendering of large-scale
terrain datasets. We start with an overview of the hierarchical
representation of the terrain data and then describe the runtime
algorithm for mesh refinement, rendering, memory
management, and deformation. Figure 1 illustrates the flow of
data through the system from program initialization to render

3.1 Hierarchical Representation

The hierarchical representation of the original mesh is built

during a preprocessing step. For an n x n input mesh, a
quadtree is used to organize the data such that the root node
defines a low-detail representation of the entire mesh. Each
subsequent child contains more detail at the scale of one

quarter of its parent’s mesh, while the leaf nodes constitute the
original mesh. Every node is of size m × m, and therefore each
node uses the same amount of vertices. The dimensions n of
the input mesh and m of the nodes must be one greater than a
power of two to allow for optimization of the construction and
refinement algorithms.

Figure 1: Block diagram showing the flow of the data through
the system

The quadtree is constructed using a simplification process

similar to [7]. First, the input mesh is partitioned into leaf
nodes of size m × m, where each node overlaps neighboring
nodes by one row and one column. Nodes are combined into 2
× 2 blocks and upsampled by removing every other row and
column vertex. This is repeated recursively until 2 × 2 blocks
can no longer be made. Each node is given a bounding box
that encapsulates the entire mesh, as shown in Figure 2.

The process of removing every other row and column vertex
when creating parent nodes implies that the data for each node,
except for the root, comprises its parent’s data (the excluded
rows and columns) and its own data. During terrain
deformation, this property obviates the need to propagate

 IJCA, Vol. 18, No. 4, Dec. 2011 266

(a) Original Mesh (b) Child Nodes (c) Parent Node

Figure 2: The simplification process to create a quadtree. The

original mesh (a) is separated into m × m nodes
(m=5) (b) where each 2×2 block creates a parent
node (c)

changes through the tree. In addition to a node’s individual
data, it contains pointers to its parent’s data. To guarantee this
property holds true, when a node is loaded into memory all of
its ancestors must be in memory as well. The memory layout
for any given node is shown in Figure 3.

(a) Node data

(b) Memory layout

Figure 3: Node data shown in (a) represents the memory

layout shown in (b)

For example, the bottom left vertex of an underlying
heightfield belongs to the root node. Child nodes receive a
pointer to this vertex in order to access it. This is similar to the
wavelet compression scheme from [1]. However, we do not
encode the child data within the parent’s node. Instead the
individual data for each node is stored in a file that can be
loaded on demand. This eliminates the need to decode node
information at runtime and allows for deformation without

encoding new vertices into the quadtree. In order to query a
node’s data, it must simply dereference the vertices it points to.

3.2 Runtime Algorithm

3.2.1 Mesh Refinement. The goal of any terrain rendering
algorithm is to quickly create the best approximation mesh for
each frame. Our approach uses a split-only top-down
refinement. Previous algorithms use properties of the
underlying geometry (e.g., nested error bounds) during
refinement as in [15] and [2]. Deformation of the terrain
requires recalculation and propagation of these properties
throughout the tree. We take an approach similar to [9] and
use only the view position and frustum as refinement criteria.
Although this approach looks awkward for high-frequency
data (e.g., a steep mountain consisting of a few vertices),
natural terrain datasets often feature a smooth gradient.

Refinement begins at the root node and proceeds recursively
for each child node. A breadth-first traversal is required for
linking neighboring nodes. For every node, if the node’s
bounding box is inside the view frustum and the center of the
bounding box is closer than a predefined threshold, the node is
refined by traversing its four children, otherwise it is prepared
for rendering. A threshold should be chosen such that a nested
regular grid surrounds the viewer. Since no other metrics are
taken into account during refinement, this will yield the best
visual fidelity. Note that the LOD of neighboring nodes is
never limited, as in a restricted quadtree where nodes are
forced to split based on the level of its neighbors as in [12].
Figure 4 shows bounding boxes of the hierarchy.

Figure 4: A quadtree displaying the bounding boxes of each
node. Bounding boxes are culled against the
viewing frustum to quickly eliminate nodes during
refinement

3.2.2 Neighboring Nodes. Smooth transitions between

nodes of different LOD must be rendered correctly, otherwise
seams will be visible due to gaps in the rendered mesh or
inconsistent shading from incorrect normal calculations. Also,

IJCA, Vol. 18, No. 4, Dec. 2011

267

since each neighbor holds its own copy of edge vertices, care
must be taken while deforming edges or edge boundaries. To
handle these variations, a node must be aware of its neighbors.
Since quadtree refinement isn’t restricted, the difference
between two nodes may be one level or more. Since a node’s
LOD may change from frame to frame, neighboring links are
recreated during refinement.

When linking nodes together, a node is only allowed to point
to a neighbor of equal level or higher. Enforcing this rule
allows each node to store no more than four neighbor
references. When a node is split during refinement, the node is
responsible for updating its children with the correct
neighborhood information. This cannot be accomplished with
a depth-first traversal, commonly used in LOD algorithms.
Instead, a breadth-first traversal is performed.

Neighbor links play an important role for correct normal
calculation. Normals are needed to simulate a realistic lighting
model, and can also be used for collision response. The
biggest problem of normal calculation presents itself on the
seams of terrain patches. Vertices on an edge need the height
values of neighboring nodes.

The most common approach to calculate a normal is to
compute a normal for each vertex in the heightfield by taking
the average normal of all faces that contain the vertex [17].
This process consists of several costly mathematical
operations, such as square roots. Several optimizations can be
made by exploiting properties of the heightfield. The method
we use is described in [14] which only requires the four
neighboring heightsamples of a vertex. In order to create a
smooth transition across a patch seam, neighboring vertices
must be queried and the computed normal is then stored for
each edge.

3.2.3 Detail Addition. To improve the appearance of the

terrain without increasing the size of the data on disk,
procedural detail is added at runtime for leaf nodes that meet
the refinement criteria. The detail is added to the hierarchy in
the form of new leaf nodes that extend the quadtree until a
user-specified level is reached. When creating a new node, a
reverse process of adding rows and columns is performed and
the new node is linked to its parent, which was previously a
leaf node. The new vertices are then assigned procedural data.

Linear interpolation is not sufficient for creating additional
detail because the resulting data is uniform. Instead, fractals
are used to give the data a non-uniform appearance. Each
interpolated vertex is shifted a random amount such that it
stays within the bounds of the surrounding vertices. Since
detail addition is subtle, the process does not need to be
deterministic, therefore detail can be randomized each time it
is created.

3.2.4 Rendering. The result of refinement is a list of

patches to be rendered. Before rendering, indices can be
recalculated for nodes whose neighbors’ LOD have changed
and normals can be recalculated if deformation had occurred.
Each node must then dereference its pointer data to create a
vertex list. Finally, each node can be transformed into world
space and the data sent across the bus to be rendered. The

rendering process is decoupled from the updating and disk I/O
methods, allowing for smooth loads of data and no hiccups in
the system regardless of how fast the viewer is moving around
the terrain.

Stitching is accomplished by having the finer detail node
omit vertices on its edge to match that of its coarser neighbor.
This is done by rendering degenerate triangles. Geometrical
skirts [15] were not chosen since the size of the skirt may
change after deformation. Recalculation of the skirt can
become tedious and slow. Figure 5 illustrates the removal of
T-junctions by utilizing degenerate triangles.

(a) T-Junction (b) Degenerate Triangles

Figure 5: T-Junctions appear at the neighboring nodes of

different levels of detail. Omitting vertices via
degenerate triangles removes any possible cracks
from the mesh

3.3 Memory Management

Our algorithm supports large datasets stored out of core, i.e.,

data that resides outside of main memory [10]. A separate
loading and caching thread is fed patches to load or write to
disk. The patches to load are based on refinement, while the
patches to write are based on a least recently used (LRU)
algorithm.

During refinement, if a parent cannot be split because the
data for its children is not in-core, a request for the data is
made to the loading and caching thread. The system never
stops to wait for data to load; until the data for the children is
loaded, the parent’s data is rendered.

When the memory footprint exceeds a predefined threshold,
LRU patches are discarded to disk until the used memory falls
below the threshold. Each node is given a timestamp
representing the last time the node was either rendered or
deformed. A priority queue is used to efficiently determine
which nodes should be discarded. Since every node relies on
its parent for some of its data, discarding a parent to disk will
invalidate memory references for its children, therefore only
leaf nodes of the currently refined mesh are considered for
caching.

Depending on the actions of the user (fast movement or
several deformations) and the current memory footprint, nodes
may require continuous allocation and deallocation. Instead of
using operators such as new or delete which are notoriously
slow for small and frequent allocations, a freelist is used as in
[6].

 IJCA, Vol. 18, No. 4, Dec. 2011 268

3.4 Deformation

Real-time modifications are applied to the terrain by refining
the currently active mesh based on a rectangular selection of
the terrain, called a brush, in addition to the view-dependent
refinement criteria described earlier. The vertex data for each
refined node is modified to fit the brush specification.

A brush defines the rectangular extent (defined by position,
width, and height) and the resolution of deformation (defined
by a level in the hierarchy, which may not exist). In addition,
a brush holds an array of pointers to vertices in the terrain,
allowing deformations to cross node boundaries. Nodes that
intersect the brush are selected during refinement and vertices
from each node are given to the brush. Dereferencing the
brush gives access to vertex data which can be overwritten
with new data. Since vertices on edges are duplicated for each
patch, care must be taken for deformations across boundaries
by syncing adjacent vertices. This is done in a pre-rendering
step that compares dirty flags of neighboring nodes in the
quadtree.

Refinement is based on brush extent and resolution as well
as view-dependent criteria. Therefore, a node may be refined
even though it is not sufficiently close to the viewer or inside
the view frustum. Depending on the resolution of the brush,
data for nodes deep into the hierarchy may be requested for
loading. Only when all of the data required by the brush’s
resolution has been loaded can deformation be applied.

As described in Section 3.2.3, procedural detail is added for
leaf nodes that meet the view-dependent refinement criteria. If
a brush alters a node with procedural data, disk space is
allocated for the node and it is allowed to be discarded to disk
by the memory manager.

When a node is chosen for rendering, it is possible that an
ancestor has previously been deformed. Time stamps are
compared, and if a node’s last modification is older than its
parent’s, its data is adapted to the parent mesh by creating
procedural detail.

3.5 Texturing

Textures are processed similarly to the terrain data. A large

texture can be cut into user-defined partitions and merged into
2×2 blocks before being mipmapped. This process continues
until an entire quadtree is built over the original texture data.

Nodes in the terrain quadtree directly map to nodes in the
texture quadtree. However, with modifications to the terrain
quadtree (deformation and procedural detail), it becomes
impractical to create a texture quadtree of the same depth. If a
node in the terrain quadtree cannot be mapped directly to a
node in the texture quadtree, the parent’s texture and texture
coordinates are used. When a node is being loaded or deleted
it can also load or delete its texture.

Just as the terrain quadtree presented issues at seams, so
does the texture quadtree. This is due to the kind of texture
filtering used to generate the texture quadtree. Although no
seams are visible with nearest filtering, this type of filtering is
not visually appealing. With linear filtering, seams appear at

the texture edges because the edge texels are not being blended
with the correct neighbor texel. This is solved by overlapping
adjacent textures during texture quadtree construction such that
neighboring nodes have exact texels on shared edges.
Clamping the texture edges during rendering causes these
texels to blend, removing the seam. There is no perfect
solution, and the amount of pixels to overlap can vary.

3.6 Supporting Large Scenes

Extending terrain detail causes the terrain as a whole to be

resized to a different resolution. Instead of having a 1-meter
resolution map, detail can be added so now it is a 1-millimeter
map. In order to properly represent detail, the entire terrain
needs to be increased in scale.

As worlds get substantially bigger, the amount of precision
to represent world coordinates gets smaller and smaller. For
example, if units represent meters and our world is 100km
square, at the farther corner of the world a 32-bit number will
allow us to represent 7.8mm granularity [4]. The larger the
world coordinates, the less accurate they will be at the farthest
extent. Therefore, floats usually have to be converted to
doubles since there are not enough bits to represent a large
number with high precision.

Unfortunately, the graphics hardware only performs floating
point operations, so precision is lost during operations such as
matrix transformations. Traveling to the farthest extent of
your terrain will result in seams between patches or jittering
movement when the camera moves. It is best to partition the
world into a user defined segment space where each node
belongs to a segment and is given an offset.

Instead of transforming the camera and translating patches
during rendering, thus losing precision, transforms can be
made in segment space, such that the world now revolves
around the camera within a segment. This will solve any and
all accuracy problems that large scenes come with.
Unfortunately, this doesn’t come without a burden. If this
method is used, then all objects need to be represented in
segment space which can prove difficult, especially when
using a scenegraph.

Along with large world coordinates, precision is also an
issue with the depth buffer. Ideally the user will want to see
detail an inch from his nose while also seeing the moon in the
sky. Unfortunately, a 24 or 32-bit depth buffer can’t support
such a task. Since the depth buffer is not linear, there are
many more bits allocated to the precision of objects closer to
the camera than further. Precision is gained exponentially as
one pushes out the near clipping plane. However, in our
terrain we will sometimes want to view millimeter resolution,
without culling the mountains in the horizon.

Several methods can fix this problem, such as using
imposters [11], or a multipass rendering system that renders
the scene in sections, clearing the depth buffer while altering
the frustum each time. In our implementation we allow for
multiple rendering passes. Algorithm 1 shows the steps
required to perform such a task.

IJCA, Vol. 18, No. 4, Dec. 2011

269

Algorithm 1: Process for multipass rendering

1.

Set zFar to the maximum value needed.
2. Set zNear = zFar / ratio
3. Clear z-buffer
4. Render scene and cull to the adjusted frustrum
5. Set zFar to zNear
6. If zNear isn’t close enough – go to Step 2

4 Results

The following tests were performed on a machine with an

Intel Core2 Quad Q9450 processor with 8GB of DDR2 RAM
and a NVIDIA GeForce GTX 275 under Windows XP Service
Pack 2, which can only utilize 3.5GB of RAM.

The data used for these results was obtained from [16],
which holds 10-meter elevation data of the big island of
Hawaii along with a 4096 x 4096 texture. The terrain file has
dimensions of 8193 x 8193 and was already in binary terrain
(.bt) format. It was first converted into the internal .ter file and
the texture image (.jpg) was converted into a .tex file. Since
these files were so small, the preprocessing took less than five
minutes.

With this application, the user is able to move around the
scene via keyboard and mouse input. By clicking and
dragging the mouse, the user can select a single axis-aligned
brush, and change the resolution of that brush via keyboard
input. Once a brush is selected with the desired resolution, the
user may create a hill or crater by raising or lowering the
terrain. Any changes to the terrain are automatically saved to
the .ter file and will be loaded back in when the application
restarts. Figure 6 shows screenshots of this application.

In order to determine how well this algorithm runs, we ran
various operations of it as illustrated in Table 1 with a frame
buffer size of 1024 × 768. The file tested was a 10 meter
resolution digital elevation map (DEM) of Hawaii of raster
size 8193 × 8193 which can be freely downloaded over the
Internet [1]. The first test was to simply move over the terrain
with no deformation occurring. This tested the LOD
refinement algorithm used to render the terrain in real-time.
The next section of results in the table shows the speeds of
deformation of the terrain in terms of frames-per-second.
Using different brush sizes, we deformed the terrain over the
same part of the dataset. For all of the brush sizes used, the
algorithm demonstrated interactive framerates. The largest
brush size used exhibited a relatively low framerate due to the
increased amount of refining of the mesh down to the deepest
parts of the terrain hierarchy, which can be considered a worst-
case scenario.

Another application of the algorithm has been used for tire
track deformation from a military vehicle navigating the terrain
in a dataset from Yuma Proving Ground, an Army installation
in Arizona. Screenshots are shown in Figure 7.

We were unable to compare these results to any prior terrain
rendering algorithms because no algorithm supports
deformation out-of-core.

Figure 6: Screenshots from the visualization of the Hawaii
dataset

Table 1: Average frames per second over different operations
Operation FPS
Arbitrarily moving over the dataset 48.41
Deformation with brush size 32x32 38.37
Deformation with brush size 64x64 23.54
Deformation with brush size 128x128 20.96

 IJCA, Vol. 18, No. 4, Dec. 2011 270

Figure 7: Screenshots from the visualization in Yuma, Arizona
with tire track deformation

5 Conclusions

We have presented a complete LOD terrain algorithm
including the major features of deformation and out-of-core
rendering. To the best of our knowledge, this is the first out-
of-core deformable terrain algorithm. Refinement is not only
based upon the viewing frustum, but also takes into account
the selected deformation brushes. This allows data that is not
being viewed to remain in memory and be subject to
deformation. Previous methods that allow out-of-core
rendering usually preprocess the geometry into a triangulated
irregular mesh for optimal polygon throughput, and require
that the terrain mesh remain static. Other in-core algorithms
support changes to the underlying heightmap, but need to
recalculate and propagate nested error-bounds through a
hierarchal structure. Our approach eliminates the need for any
geometry tessellation or propagation after a modification to the
terrain heightmap. By exploiting the features of a regular grid,
x and z coordinates will never change requiring only updates to
the y coordinate (height offset). The quadtree structure
exploits a child-parent relationship in which child nodes

actually point to their parent’s data. In this way, when the data
of children nodes are modified, the pointer actually
dereferences some parent data completely eliminating any
propagation back up through the quadtree. The need for nested
error-bounds is also eliminated by depending solely on the
view position for refinement. Even though this results in a less
accurate refinement, the tessellation is tolerable and the
tradeoff of propagation removal is well worth it.

Deformation is allowed to be done at any resolution within
the extended quadtree. The quadtree may be extended to a
user specified resolution by scaling up the original terrain and
adding procedural fractal detail to the leaf nodes. These extra
nodes are created on the fly in real-time and only need to be
saved to disk if deformed. Since detail addition is so subtle,
the extra nodes do not need to be spatially deterministic and
can be randomly created each time. By comparing the time
stamp of a node’s parent, data may procedurally adapt to a low
resolution modification using this same method to create
detail.

Along with our algorithm, we have presented support for
large texture maps, fast normal calculation, and dealing with
large world coordinate and depth buffer precision.

Current Limitations: The terrain is represented as a

heightmap, precluding such features as caves and overhangs.
The dimensions of the input heightmap are required to be
2N + 1 on each side to allow for optimizations. Additionally,
the preprocessing step to build the terrain hierarchy is non-
trivial for large datasets.

6 Future Work

For simplicity, not all optimizations were used when

implementing this algorithm. It would be possible, with some
effort, to port the entire algorithm to the GPU. Terrain data
would reside completely in video memory in the form of a
texture, and a quadtree structure could be mimicked via indices
to a memory location. Vertex lists can easily be generated due
to the regular grid layout, and indices could properly be
generated with triangles in a vertex shader.

Creating disk space for nodes of added detail disrupts data
coherency when laid out on disk. Though this isn’t seen as a
huge problem, it could be looked into further.

Currently the algorithm only allows for a single brush to be
created at any given time. Ideally, it should accept a myriad of
brushes at various resolutions that can be placed throughout
the terrain and referenced by a specific identifier.

Often a terrain dataset is too large for deformations to be
occurring everywhere. Deformations are sometimes limited to
a specific region of interest even though terrain is present (the
tank track deformation demo for example). Since the current
algorithm supports deformation anywhere at any given time,
the polygon throughput is not optimal. It would be possible to
detect if a region of the quadtree hasn’t been touched for a
period of time, and if so, start to process the vertices into an
optimal triangulated irregular network. The mesh could toggle
back to a regular grid if deformation in that region was ever
needed. This would result in faster rendering and somewhat

IJCA, Vol. 18, No. 4, Dec. 2011

271

more distinct feature preserving since nested error-bounds
would be used within a triangulated irregular network. Note
that the memory usage would have to remain the same since a
toggle to a regular grid could happen at anytime, but the
indices would change to allow for faster rendering of a patch.

Finally, the algorithm could be modified for rendering
terrain at a planetary scale, which would require a specialized
acceleration structure for ellipsoidal geometry.

Acknowledgements

The work shown has been partially sponsored by the

Department of the Army, Army Research Office; the contents
of the information does not necessarily reflect the position or
the policy of the federal government, and no official
endorsement should be inferred. This work is partially funded
by the CAVE Project (ARO# N61339-04-C-0072) at the
Desert Research Institute.

References

[1] Atlan, Samuel and Michael Garland, “Interactive

Multiresolution Editing and Display of Large Terrains”,
Computer Graphics Forum, 25(2):211-223, June 2006.

[2] de Boer, Willem H., “Fast Terrain Rendering using
Geometrical Mipmapping”, http://www. flipcode.com
/archives/Fast_Terrain_Rendering _Using_Geometri
cal_MipMapping.shtml, 2000, Last accessed: August 22,
2011.

[3] Duchaineau, Mark, Murray Wolinsky, David E. Sigeti,
Mark C. Mille, Charles Aldrich, and Mark B.
Mineevweinstein, “Roaming Terrain: Real-Time
Optimally Adapting Meshes”, Proceedings of IEEE
Visualization ‘97, pp. 81-88, http://ieeexplore.ieee.org/
xpl/freeabs_all.jsp?arnumber=663760, Oct. 10-24, 1997.

[4] Freese, Peter, “Solving Accuracy Problems in Large
World Coordinates”, Game Programming Gems 4,
Charles River Media, March 2004.

[5] Glinker, Paul, “Flight Memory Fragmentation with
Templated Freelists”, Game Programming Gems 4,
Charles River Media, 2004.

[6] Hoppe, Hugues, “Smooth View-Dependent Level-of-
Detail Control and Its Application to Terrain Rendering”,
VIS’98: Proceedings of the Conference on Visualization
‘98, IEEE Computer Society Press, Los Alamitos, CA,
USA, pp. 35-42, 1998.

[7] Lindstrom, Peter, David Koller, William Ribarsky, Larry
F. Hodges, Nick Faust, and Gregory Turner, “Real-Time,
Continuous Level of Detail Rendering of Height Fields”,
Proceedings of SIGGRAPH ‘96, pp. 109-118,
htt://dl.acm.org/citation.cfm?id=237217, 1996.

[8] Lindstrom, Peter and Valerio Pascucci, “Visualization of
Large Terrains made Easy”, VIS '01: Proceedings of the
Conference on Visualization '01, IEEE Computer
Society, Washington, DC, USA, pp. 363-371, 2001.

[9] Losasso, Frank and Hugues Hoppe, “Geometry
Clipmaps: Terrain Rendering using Nested Regular

Grids”, SIGGRAPH '04: ACM SIGGRAPH 2004
Papers, New York, NY, USA, pp. 769-776, 2004.

[10] Nielsen, Steen Lund and Thomas Lauritsen, “Rendering
Very Large, Very Detailed Terrains”,
http://www.terrain.dk/, 2005. Last accessed: August 22,
2011.

[11] Sean O’Neil, “A Real-Time Procedural Universe, Part
Three: Matters of Scale”, http://www.gamasutra.com/
features/20020712/ oneil01.htm, Last accessed: August
22, 2011.

[12] Pajarola, Renato, “Large Scale Terrain Visualization
using the Restricted Quadtree Triangulation,
Proceedings of Visualization ’98, pp. 19-26,
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7
45280, October 18-23, 1998.

[13] Rottger, Stefan Wolfgang Heidrich, Philipp Slusallek,
and Hans Peter Seidel, “Real-Time Generation of
Continuous Levels of Detail for Height Fields”,
Graphische Datenverarbeitung (immd, and Universitt
Erlangen-nrnberg), Proceedings of the 6th Int. Conf. in
Central Europe on Computer Graphics and
Vizualization 1998 (WSCG ’98), pp. 315-322,
http://www.citeulike.org/user/lerion/article/3404700,
http://wscg.zcu.cs/WSCG1998/wscg98.htm, 1998.

[14] Shankel, Jason, “Fast Height_eld Normal Calculation”,
Game Programming Gems 3, Charles River Media, 2002.

[15] Ulrich, Thatcher, “Rendering Massive Terrain using
Chunked Level of Detail Control”, ACM SIGGRAPH
2002: ACM SIGGTRAPH 2002, Course Notes #35, San
Antonio, Texas, July 23-25, 2002. Available online at
http://tulrich.com/geekstuff/chunklod.html, 2002.

[16] Virtual terrain project. http://www.vterrain.org/. Last
accessed: August 22, 2011.

[17] Zhao, Huanxi, “Fast Accurate Normal Calculation for
Heightfield Lighting on a Non-Isometric Grid, CGIV 06:
Proceedings of the International Conference on
Computer Graphics, Imaging and Visualization, IEEE
Computer Society, pp. 408-413, 2006.

William E. Brandstetter III graduated
from the University of Nevada Reno with
a Bachelor of Science in Computer
Science in 2005. He went on to graduate
with a Master of Science in Computer
Science with a specialization in computer
graphics in 2007, where he wrote his
thesis “Multi-resolution Deformation in

Out-of-Core Terrain Rendering”. His interests include
research in computer graphics, scientific visualization, and
game programming.

 IJCA, Vol. 18, No. 4, Dec. 2011 272

Joseph Mahsman received his
Bachelor’s degree in 2008 and his
Master's degree in 2010 from the
University of Nevada, Reno (both
degrees in Computer Science). He
worked as a researcher in the High-
Performance Computation and
Visualization Laboratory at UNR and is

currently a Software Engineer for Eye Com in Reno, NV. His
research interests include interactive planetary visualization,
real-time 3D graphics, and building virtual worlds.

Cody White received his Bachelor’s
degree in 2009 and his Master’s degree
in 2011 from the University of Nevada,
Reno (both degrees in Computer
Science). He worked as a researcher in
the High-Performance Computation
and Visualization Laboratory at UNR
and is currently a Software Engineer

for Dreamworks in Redwood City, CA. His research interests
include real-time 3D graphics and photorealistic rendering.

Sergiu M. Dascalu is an Associate
Professor in the Department of
Computer Science and Engineering at
the University of Nevada, Reno, USA,
which he joined in 2002. In 1982 he
received a Master’s degree in
Automatic Control and Computers from
the Polytechnic University of

Bucharest, Romania and in 2001 a PhD in Computer Science
from Dalhousie University, Canada. His main research
interests are in software engineering and human-computer
interaction. Sergiu has published over 100 peer-reviewed
journal and conference papers and has been involved in
numerous projects funded by industrial companies as well as
US federal agencies such as NSF, NASA, and ONR.

Frederick C Harris, Jr. is currently a
Professor in the Department of
Computer Science and Engineering and
the Director of the High Performance
Computation and Visualization Lab at
the University of Nevada, Reno, USA.
He received his BS and MS in

Mathematics and Educational Administration from Bob Jones
University in 1986 and 1988 respectively, and his MS and
Ph.D. in Computer Science from Clemson University in 1991
and 1994 respectively. He is a member of ACM, IEEE, and
ISCA. His research interests are in parallel computation,
graphics and virtual reality, and bioinformatics.

