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Abstract 
Large scale terrain rendering in real-time is a well 

known problem across the computer graphics community 
which has garnered many solutions relying on dynamic 
level of detail changes to the terrain.  These algorithms 
typically fit into two categories: in-core and out-of-core. 
Out-of-core algorithms usually require data to remain static, 
thus disallowing terrain modification whereas in-core 
algorithms allow for deformation, but usually require 
updating of modified data through a data hierarchy which 
can potentially be a slow process. This paper presents a 
solution for out-of-core deformable terrain rendering that 
works in real-time.  Since the requirements of in-core 
deformable terrain do not scale to an out-of-core system, the 
need for data propagation and recalculation of error bounds 
has been eliminated. 
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1 Introduction 
 
Terrain rendering is a highly researched area due to 

demand from the military, scientific visualization, and 
computer gaming communities. Even as advances in 
graphics hardware continue to be released, these 
applications will always push the current technology to the 
limit such that a brute force  method will never be 
practical. Level-of-detail (LOD) rendering algorithms are 
one of the applications which continue to be developed to 
give the best visual representation of large-scale landscapes 
in real-time. 

The size of datasets is one of the major problems in 
terrain rendering. First, brute force rendering is not an 
option when dealing with large datasets, so a LOD approach 
needs to be taken. Second, given a large heightmap, quite a 

bit of memory can be taken up and thus out-of-core (outside 
of system memory) rendering needs to be supported. The 
most common approach is to extract a good view-dependent 
approximation of the mesh in real-time. This is 
accomplished by storing data in a specific hierarchical 
structure, in which terrain can usually be categorized. 
Terrain can be represented in many different data structures 
such as a triangulated irregular mesh (TIN) [7], which gives 
the best approximation, a regular grid, which uses somewhat 
more triangles to represent a surface, quadtrees [14] binary 
triangle trees [4], or directed acyclic graphs [9]. 

Refinement may take place on a per-triangle basis, or 
tessellate aggregates of polygons. Some existing algorithms 
refine the terrain every frame, having a “split-only” 
approach. Others may merge and split from previous 
frames’ work. Refinement can be accomplished using a 
nested-error bound metric, or as in [10] solely the viewing 
position. Some terrain algorithms only support in-core 
(inside of system memory) [4], while others support out-of-
core rendering [9] and dynamic addition of procedural detail 
[11]. 

Since terrain data can consume such a large memory 
footprint, out-of-core algorithms often limit their datasets to 
be static (unchanging). Large amounts of terrain data are 
usually processed in a way that leaves the geometry optimal 
for video hardware and is not expected to ever change. 
When dealing with an out-of-core terrain system that 
handles dynamic updates of its height values, things aren't 
so trivial. For the most part, the areas of the mesh that need 
to be rendered stay in memory, while areas that aren't 
visible can be discarded to the hard-drive until needed. With 
deformable terrain, updates to the mesh could be made 
outside the viewing frustum, in which case those areas 
would need to be loaded, updated, and cached back to disk. 



If a hierarchy of LOD mesh representations were 
preprocessed, then updated data may need to be propagated 
up through the tree or reprocessed altogether. The idea of 
dealing with large amounts of data in a dynamic terrain 
algorithm can quickly become unmanageable, thus when 
combined with the first problem, a second problem of 
terrain rendering is presented: dynamic terrain.  Therefore, 
presented here is an out-of-core terrain algorithm which 
supports dynamic updates to the heightfield in real-time, 
allowing for deformable terrain. 

Contribution: 
We present an out-of-core terrain LOD algorithm that 

supports real-time deformation, building upon the features 
of several algorithms discussed in Section 2. [11] presents 
an LOD algorithm that combines the quadtree structure of 
[16] with the detail addition properties of [3].  We adapt this 
data structure to support terrain deformation at any 
resolution throughout the terrain hierarchy with large-scale 
data stored out-of-core. 

Overview: 
After the previous work (Section 2), this paper is 

arranged as follows: A quadtree is constructed using a 
coarse-grained simplification (Section 3.1). During runtime, 
the refinement algorithm determines the currently active 
regions of the terrain based on view-dependent and 
deformation refinement criteria (Section 3.2). A separate 
thread is responsible for loading and writing out-of-core 
portions of the quadtree (Section 3.3).  Finally, a brush is 
used to select a rectangular region of the terrain at a 
particular resolution to be deformed (Section3.4), possibly 
extending the quadtree by adding levels. The new data is 
treated the same as the rest of the terrain mesh, and is paged 
in and out of main memory as needed. Finally, we present 
out texturing scheme (Section 3.5). 

 
2 Related Work 

 
2.1 ROAM 

ROAMing Terrain: Real-time Optimally Adapting 
Meshes [4] is a well known level of detail algorithm 
utilizing a binary triangle tree (bintree) which stores all of 
the triangles for a given mesh. Instead of dealing with a 
complete terrain system that performs out-of-core paging for 
geometry, textures, and selection of LOD blocks, the 
authors focus on in-core geometry management. Given a 
bintree, split and merge operations are performed using a 
dual priority-queue system to achieve a LOD representation 
for the underlying data. 

ROAM starts with a preprocessing step that produces a 
nested view-independent error-bounds that works along side 
the bintree. When deciding to split or merge a specific 
triangle in a bintree, the pre-computed error bound is taken 
into consideration along with the view-dependent metric. 
The algorithm uses a metric based on nested world-space 

bounds, where a world-space volume (called a wedgie) 
contains the points of the triangle. World-space bounds are 
computed bottom-up, such that a node's error-bounds is the 
maximum of its children's  world-space bounds. 

This algorithm also realizes that neighboring triangles 
could be at different resolutions, either coarser or finer by 
one level. In this case, before a split is made, neighboring 
triangles may be force-split to eliminate cracks or T-
junctions in the mesh. This is done recursively until the base 
neighbor is at the same resolution level (i.e. a diamond is 
created). Doing this recursive step ensures a single 
continuous mesh. 

Top-down refinement of a terrain mesh is a simple and 
widely used concept where detail resolution can be added 
easily by extending the leaf nodes of the binary triangle tree 
with some adjustments to the nested error-bounds. The 
authors state that ROAM is suitable for dynamic terrain 
since the preprocessing of error-bounds computation is 
localized and fast. However, the algorithm only handles data 
that can fit into system memory. Reprocessing large 
amounts (more than can fit into memory) of terrain data is 
unacceptable for extremely large datasets, especially if 
many deformations are occurring and requiring error-
bounds to be recomputed every frame. 

 
2.2 Geomipmapping 

With advances in graphics hardware, it is common to 
spend less work on the CPU to find a ``perfect'' mesh and 
send more triangles to the GPU, even if they aren't needed. 
Since sometimes it is faster (and easier) to render a triangle 
than determine if it should be culled, there is a balance 
between brute force and dynamic refinement algorithms. In 
2000, de Boer wrote the paper Fast Terrain Rendering 
Using Geometrical MipMapping [3], a new approach that 
exploits graphics hardware instead of computing perfect 
tessellation on the CPU.  De Boer states that the goal is to 
send as many triangles to the hardware as it can handle. 
Since terrain data can be represented as a 2-dimensional 
heightmap, the analogy of texture mipmapping was used 
and applied to geometry.  

Geomipmapping makes use of a regular grid of evenly 
spaced height values, that must have 2N+1 samples on each 
side. A  preprocessing step is performed that cuts the terrain 
into blocks, called GeoMipMaps, also with 2N+1 vertices on 
each side (e.g. a 257 x 257 regular grid may be divided into 
16 x 16 blocks of 17 x 17 vertices). Vertices on the edge are 
duplicated for each block where each block is given a 
bounding box and is suitable to be stored in a quadtree for 
quick frustum culling. Finally, a series of mipmaps are 
created by simplifying the  mesh which is done by removing 
every other row and column vertex. The author suggests that 
out-of-core rendering could be supported by having only 
visible blocks or those near the camera in memory while 
others can be discarded to the hard disk until needed.  



Each geomipmap level has an associated geometrical 
error.  For each vertex removed during the simplification 
step, a world space error is calculated as the distance 
between  the vertex and the line of the interpolated 
simplified mesh.   The maximum error of all vertices is 
assigned as the geometrical error to the block. Then, to 
decide which geomipmap to use, it is projected to screen 
pixel space and compared to a user-defined threshold. When 
the current geometrical error is too high, a higher detailed 
block is used. 

After each geomipmap block has been chosen, there will 
be several neighboring blocks that reside at a different LOD. 
As such, cracks will appear between these blocks since one 
patch holds more detail than the other. De Boer fixes this 
problem  by omitting vertices on the edge of a higher 
detailed block to  identically match its lower detailed 
neighbor.  

This algorithm is extremely easy to understand, 
implement, and also exploits the benefits of the graphics 
hardware. Adding detail is trivial by simply reversing the 
simplification step described in the algorithm. Deformation 
could be supported, but geomipmaps would have to be 
recreated and geometrical errors recalculated, which could 
hinder real-time deformation. The downside is that the 
number of geomipmaps increases quadratically (N2) based 
on the size of the terrain; therefore, possibly  resulting in 
slow computation and rendering. 

 
2.3 Chunked LOD 

At SIGGRAPH'02 Ulrich presented a hardware friendly 
algorithm based on the concept of a chunked quadtree, 
which is described in [16]. This algorithm, also referred to 
as Chunked LOD, is somewhat similar to GeoMipMapping; 
however, it scales much better due to the quadtree structure. 
There is often confusion of the differences between 
Chunked LOD and Geomipmapping since the algorithms 
are similar. However, Chunked LOD exploits a quadtree 
data structure of mipmapped geometry. Therefore the 
number of rendered nodes does not quadratically increase 
due to the size of the terrain.  

A requirement of this algorithm is to have a view-
dependent LOD algorithm that refines aggregates of 
polygons, instead of individual polygons. As ROAM 
tessellates down to a single triangle, Chunked LOD refines 
chunks of geometry that have been  preprocessed using a 
view-independent metric. Since chunks are stored in a 
quadtree, the root node is stored as a very low polygon 
representation of the entire terrain. Every node can be split 
recursively into four children, where each child represents a 
quadrant of the terrain at higher detail than its parent. Every 
node is referred to as a chunk, and can be rendered 
independent of any other node in the quadtree. Having such 
a feature allows for easy out-of-core support.  

In order to create the chunked quadtree, a non-trivial 
preprocessing step must first be performed. Given a large 
heightmap dataset, height samples are partitioned into a 
quadtree and simplified based on the properties of the mesh 
and not the viewer. This can be done using any per-triangle 
tessellation algorithm, such as binary tree tessellation as 
illustrated in ROAM [4]. Depending on the depth of the 
chunk, more detail is given to the final mesh.  

Each chunk holds a list of renderable vertices, a 
bounding volume, and a maximum geometrical error. 
Starting with the root node of the quadtree, nodes are culled 
and recursively split based on the viewing position and its 
geometrical error. Neighboring chunks at different levels of 
detail are addressed by creating a skirt of extra geometry 
that eventually, with tweaks of texture coordinates, fills in 
the frame buffer so no artifacts are noticed. Utilizing skirts 
keeps chunks independent of each  other, which makes out-
of-core support trivial.   

The Chunked LOD quadtree structure is one of the best 
known hardware friendly LOD algorithms since it can be 
utilized for very large out-of-core terrain. Adding detail 
resolution requires extending the chunked quadtree, which 
could be easily done in a preprocessing step. However, 
deformation isn’t  trivial since the algorithm requires a static 
mesh; if any height samples were changed, it would require 
reprocessing the entire quadtree, which is unacceptable for 
real-time deformation. 

 
3. Proposed Approach 

 
The following sections present our out-of-core 

deformable terrain algorithm for preprocessing and 
rendering of large-scale terrain datasets.  We start with an 
overview of the hierarchical representation of the terrain 
data and then describe the runtime algorithm for mesh 
refinement, rendering, memory management, and 
deformation.  Figure 1 illustrates the flow of data through 
the system from program initialization to render 

 
3.1 Hierarchical Representation 

The hierarchical representation of the original mesh is 
built during a preprocessing step. For a n x n input mesh, a 
quadtree is used to organize the data such that the root node 
defines a low-detail representation of the entire mesh. Each 
subsequent child contains more detail at the  scale of one 
quarter of its parent's mesh, while the leaf nodes constitute 
the original mesh. Every node is of size m x m, and 
therefore each node uses the same amount of vertices. The 
dimensions n of the input mesh and m of the nodes must be 
one greater than a power of two to allow for optimization of 
the construction and refinement algorithms.  

The quadtree is constructed using a simplification 
process similar to [8]. First, the input mesh is partitioned 
into  leaf  nodes  of size  m x m,  where  each node  overlaps  



 

 
Figure 1: Block diagram demonstrating the flow of the data 
through the system 
 
neighboring nodes by one row and one column. Nodes are 
combined into 2 x 2 blocks and upsampled by removing 
every other row and column vertex. This is r
recursively until 2 x 2 blocks can no longer be mad
node is given a bounding box that encapsulates the
mesh, as shown in Figure 2. 
 

 
(a) Original Mesh (b) Child Nodes (c) Parent Node

Figure 2: The simplification process to create a quadtree.  
The original mesh (a) is separated into m x
(b), where each 2x2 block creates a parent node (c)
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neighboring nodes by one row and one column. Nodes are 
blocks and upsampled by removing 

vertex. This is repeated 
longer be made. Each 

node is given a bounding box that encapsulates the entire 

 

(c) Parent Node 
 

The simplification process to create a quadtree.  
x m nodes (m=5) 

block creates a parent node (c) 

The process of removing every other row and column 
vertex when creating parent nodes implies that the data for 
each node, except for the root, comprises
(the excluded rows and columns) and its own data.
terrain deformation, this property obviates the need to 
propagate changes through the tree. In addition to a node's 
individual data, it contains pointers to its parent's data.
guarantee this property holds true,  
into memory all of its ancestors must be
The memory layout for any given node is shown in
3. 

For example, the bottom left vertex of an underlying 
heightfield belongs to the root node. Child nodes receive a 
pointer to this vertex in order to access it. This is similar to
the wavelet compression scheme from [2]
not encode the child data within the parent’
the individual data for each node is stored in a file that can 
be loaded on demand. This eliminates the need to decode 
node information at runtime and allows for deformation 
without encoding new vertices into the quadtree. In order to 
query a node's data, it must simply  
it points to. 

 

 
(a) Node data

(b) Memory layout
 

Figure 3: Node data shown in (a) represents the memory 
layout shown in (b) 

The process of removing every other row and column 
parent nodes implies that the data for 

each node, except for the root, comprises its parent's data 
ws and columns) and its own data. During 

terrain deformation, this property obviates the need to 
through the tree. In addition to a node's 

individual data, it contains pointers to its parent's data.  To 
 when a node is loaded 

into memory all of its ancestors must be in memory as well. 
The memory layout for any given node is shown in Figure 

For example, the bottom left vertex of an underlying 
belongs to the root node. Child nodes receive a 

to this vertex in order to access it. This is similar to 
n scheme from [2].  However, we do 

he child data within the parent’s node.  Instead 
the individual data for each node is stored in a file that can 

demand. This eliminates the need to decode 
runtime and allows for deformation 

into the quadtree. In order to 
 dereference the vertices 
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Node data shown in (a) represents the memory 



 
3.2 Runtime Algorithm 
 
3.2.1 Mesh Refinement  

The goal of any terrain rendering algorithm is to quickly 
create the best approximation mesh for each frame. Our 
approach uses a split-only top-down refinement. Previous 
algorithms use properties of the underlying geometry (e.g. 
nested error bounds) during refinement as in [16] and [3]. 
Deformation of the terrain requires recalculation and 
propagation of these properties throughout the tree. We take 
an approach similar to [10] and use only the view position 
and frustum as refinement criteria.  Although this approach 
looks awkward for high-frequency data (e.g. a steep 
mountain consisting of a few vertices), natural terrain 
datasets often feature a smooth gradient. 

Refinement begins at the root node and proceeds 
recursively for each child node. A breadth-first traversal is 
required  for linking neighboring nodes.  For every node, if 
the node's bounding box is inside the view frustum and the 
center of the bounding box is closer than a predefined 
threshold, the node is refined by traversing its four children, 
otherwise it is prepared for rendering. A threshold should be 
chosen such that a nested regular grid surrounds the viewer. 
Since no other metrics are taken into account during 
refinement, this will yield the best visual fidelity. Note that 
the LOD of neighboring nodes is never limited, as in a 
restricted quadtree where nodes are forced to split based on 
the level of its neighbors as in [13].  Figure 4 shows 
bounding boxes of the hierarchy. 

 

 
 

Figure 4: A quadtree displaying the bounding boxes of each 
node.  Bounding boxes are culled against the viewing 
frustum to quickly eliminate nodes during refinement. 
 
 

3.2.2 Neighboring Nodes 
Smooth transitions between nodes of different LOD 

must be rendered correctly, otherwise seams will be visible 
due to gaps in the rendered mesh or inconsistent shading 
from incorrect normal calculations.  Also, since each 
neighbor holds its own copy of edge vertices, care must be 
taken while deforming edges or edge boundaries.  To handle 
these variations, a node must be aware of its neighbors.  
Since quadtree refinement isn't restricted, the difference 
between two nodes may be one level or more. Since a node's 
LOD may change from frame to frame, neighboring links 
are recreated during refinement.   

When linking nodes together, a node is only allowed to 
point to  a neighbor of equal level or higher. Enforcing this 
rule allows each node to store no more than four neighbor 
references.  When a node is split during refinement, the 
node is responsible for updating its children with the correct 
neighborhood information. This cannot be accomplished 
with a depth-first traversal, commonly used in LOD 
algorithms. Instead, a breadth-first traversal is performed. 

Neighbor links play an important role for correct normal 
calculation. Normals are needed to simulate a realistic 
lighting model, and can also be used for collision response. 
The biggest problem of normal calculation presents itself on 
the seams of terrain patches. Vertices on an edge need the 
height values of neighboring nodes.  

The most common approach to calculate a normal is to 
compute a normal for each vertex in the heightfield by 
taking the average normal of all faces that contain the vertex 
[17]. This process consists of several costly mathematical 
operations, such as square roots. Several optimizations can 
be made by exploiting properties of the heightfield. The 
method we use is described in [15], which only requires the 
four neighboring heightsamples of a vertex. In order to 
create a smooth transition across a  patch seam, neighboring 
vertices must be queried and the computed normal is then 
stored for each edge. 

 
3.2.3 Detail Addition 

To improve the appearance of the terrain without 
increasing the size of the data on disk, procedural detail is 
added at runtime  for leaf nodes that meet the refinement 
criteria. The detail is added to the hierarchy in the form of 
new leaf nodes that extend the quadtree until a user-
specified level is reached.  When creating a new node, a 
reverse process of adding rows and  columns is performed 
and the new node is linked to its parent, which was 
previously a leaf node. The new vertices are then assigned 
procedural data. 

Linear interpolation is not sufficient for creating 
additional detail because the resulting data is uniform.  
Instead, fractals are used to give the data a non-uniform 
appearance. Each interpolated vertex is shifted a random 
amount such that  it stays within the bounds of the 



surrounding vertices. Since detail addition is subtle, the 
process does not need to be deterministic, therefore detail 
can be randomized each time it is created. 

 
3.2.4 Rendering 
The result of refinement is a list of patches to be 

rendered. Before rendering, indices can be recalculated for 
nodes whose neighbor's LOD have changed and normals 
can be recalculated if deformation had occurred. Each node 
must then dereference its pointer data to create a vertex list. 
Finally, each node can be transformed into world space and 
the data sent across the bus to be rendered. The rendering 
process is decoupled from the updating and disk I/O 
methods, allowing for smooth loads of data and no hiccups 
in the system regardless of how fast the viewer is moving 
around the terrain.   

Stitching is accomplished by having the finer detail node 
omit vertices on its edge to match that of its coarser 
neighbor. This is done by rendering degenerate triangles.  
Geometrical skirts [16] were not chosen since the size of the 
skirt may change after deformation.  Recalculation of the 
skirt can become tedious and slow.  Figure 5 illustrates the 
removal of T-junctions by utilizing degenerate triangles. 

 

  
(a) T-Junction (b) Degenerate Triangles 

 
Figure 5: T-Junctions appear at the neighboring nodes of 
different levels of detail.  Omitting vertices via degenerate 
triangles removes any possible cracks from the mesh. 

 
3.3 Memory Management 

Our algorithm supports large datasets stored out of core, 
i.e. data that resides outside of main memory [11].  A 
separate loading and caching thread is fed patches to load or 
write to disk. The patches to load are based on refinement, 
while the patches to write are based on a least recently used 
(LRU) algorithm.  

During refinement, if a parent cannot be split because the 
data for its children is not in-core, a request for the data is 
made to the loading and caching thread. The system never 
stops to wait for data to load; until the data for the children 
is loaded, the parent's data is rendered.   

When the memory footprint exceeds a predefined 
threshold, LRU patches are discarded to disk until the used 

memory falls below the threshold. Each node is given a 
timestamp representing the last time the node was either 
rendered or deformed.  A priority queue is used to 
efficiently determine which nodes should be discarded.  
Since every node relies on its parent for some of its data, 
discarding a parent to disk will invalidate memory 
references for its children, therefore only leaf nodes of the 
currently refined mesh are considered for caching.  

Depending on the actions of the user (fast movement or 
several deformations) and the current memory footprint, 
nodes may require continuous allocation and deallocation.  
Instead of using operators such as new or delete which are 
notoriously slow for small and frequent allocations, a 
freelist is used as in [6]. 

 
3.4 Deformation 

Real-time modifications are applied to the terrain by 
refining the currently active mesh based on a rectangular 
selection of the terrain, called a brush, in addition to the 
view-dependent refinement criteria described earlier. The 
vertex data for each refined node is modified to fit the brush 
specification.   

A brush defines the rectangular extent (defined by 
position, width, and height) and the resolution of 
deformation (defined by a level in the hierarchy, which may 
not exist). In addition, a brush holds an array of pointers to 
vertices in the terrain, allowing deformations to cross node 
boundaries. Nodes that intersect the brush are selected 
during refinement and vertices from each node are given to 
the brush. Dereferencing the brush gives access to vertex 
data which can be overwritten with new data. Since vertices 
on edges are duplicated for each patch, care must be taken 
for deformations across boundaries by syncing adjacent 
vertices. This is done in a pre-rendering step that compares 
dirty flags of neighboring nodes in the quadtree.   

Refinement is based on brush extent and resolution as 
well as view-dependent criteria. Therefore, a node may be 
refined even though it is not sufficiently close to the viewer 
or inside the view frustum. Depending on the resolution of 
the brush, data for nodes deep into the hierarchy may be 
requested for loading.  Only when all of the data required by 
the brush's resolution has been loaded can deformation be 
applied.   

As described in Section 3.2.3, procedural detail is added 
for leaf nodes that meet the view-dependent refinement 
criteria.  If a brush alters a node with procedural data, disk 
space is allocated for the node and it is allowed to be 
discarded to disk by the memory manager.  

When a node is chosen for rendering, it is possible that 
an ancestor has previously been deformed. Time stamps are 
compared, and if a node’s last modification is older than its 
parent's, its data is adapted to the parent mesh by creating 
procedural detail. 

 



3.5 Texturing 
Textures are processed similarly to the terrain data. A 

large texture can be cut into user-defined partitions and 
merged into 2x2 blocks before being mipmapped. This 
process continues until an entire quadtree is built over the 
original texture data.  

Nodes in the terrain quadtree directly map to nodes in 
the texture quadtree. However, with modifications to the 
terrain quadtree (deformation and procedural detail), it 
becomes impractical to create a texture quadtree of the same 
depth. If a node in the terrain quadtree cannot be mapped 
directly to a node in the texture quadtree, the parent’s 
texture and texture coordinates are used.  When a node is 
being loaded or deleted it can also load or delete its texture. 

Just as the terrain quadtree presented issues at seams, so 
does the texture quadtree. This is due to the kind of texture 
filtering used to generate the texture quadtree.  Although no 
seams are visible with nearest filtering, this type of filtering 
is not visually appealing. With linear filtering, seams appear 
at the texture edges because the edge texels are not being 
blended with the correct neighbor texel.  This is solved by 
overlapping adjacent textures during texture quadtree 
construction such that neighboring nodes have exact texels 
on shared edges. Clamping the texture edges during 
rendering causes these texels to blend, removing the seam. 
There is no perfect solution, and the amount of pixels to 
overlap can vary. 

 
3.6 Supporting Large Scenes 

Extending terrain detail causes the terrain as a whole to 
be resized to a different resolution. Instead of having a 1-
meter resolution map, detail can be added so now it is a 1-
millimeter map. In order to properly represent detail, the 
entire terrain needs to be increased in scale. 

As worlds get substantially bigger, the amount of 
precision to represent world coordinates gets smaller and 
smaller. For example, if units represent meters and our 
world is 100km square, at the farther corner of the world a 
32-bit number will allow us to represent 7.8mm granularity 
[5]. The larger the world coordinates, the less accurate they 
will be at the farthest extent. Therefore floats usually have 
to be converted to doubles since there are not enough bits to 
represent a large number with high precision.   

Unfortunately the graphics hardware only performs 
floating point operations, so precision is lost during 
operations such as matrix transformations. Traveling to the 
farthest extent of your terrain will result in seams between 
patches or jittering movement when the camera moves. It is 
best to partition the world into a user defined segment space, 
where each node belongs to a segment and is given an 
offset.   

Instead of transforming the camera and translating 
patches during rendering, thus losing precision, transforms 
can be made in segment space, such that the world now 

revolves around the camera within a segment. This will 
solve any and all accuracy problems that large scenes come 
with. Unfortunately, this doesn’t come without a burden. If 
this method is used, then all objects need to be represented 
in segment space which can prove difficult, especially when 
using a scenegraph.  

Along with large world coordinates, precision is also an 
issue with the depth buffer.  Ideally the user will want to see 
detail an inch from his nose while also seeing the moon in 
the sky. Unfortunately a 24 or 32-bit depth buffer can’t 
support such a task. Since the depth buffer is not linear, 
there are many more bits allocated to the precision of 
objects closer to the camera than further. Precision is gained 
exponentially as you push out the near clipping plane. 
However, in our terrain we will sometimes want to view 
millimeter resolution, without culling the mountains in the 
horizon.   

Several methods can fix this problem, such as using 
imposters [12], or a multipass rendering system that renders 
the scene in sections, clearing the depth buffer while 
altering the frustum each time. In our implementation we 
allow for multiple rendering passes. Algorithm 1 shows the 
steps required to perform such a task. 

 
  

1. 
  

Set zFar to the maximum value needed. 
2. Set zNear = zFar / ratio 
3. Clear z-buffer 
4. Render scene and cull to the adjusted frustrum 
5. Set zFar to zNear 
6. If zNear isn’t close enough – go to Step 2 

  

 
Algorithm 1: Process for multipass rendering 

 
4. Results 

 
The following tests were performed on a machine with 

an Intel Core2 Quad Q9450 processor with 8GB of DDR2 
RAM and a NVIDIA GeForce GTX 275 under Windows 
XP Service Pack 2, which can only utilize 3.5GB of RAM.   

The data used for these results was obtained from [1], 
which holds 10-meter elevation data of the big island of 
Hawaii along with a 4096 x 4096 texture. The terrain file 
has dimensions of 8193 x 8193 and was already in binary 
terrain (.bt) format. It was first converted into the internal 
.ter file and the texture image (.jpg) was converted into a 
.tex file. Since these files were so small, the preprocessing 
took less than five minutes.    

With this application, the user is able to move around the 
scene via keyboard and mouse input. By clicking and 
dragging the mouse, the user can select a single axis-aligned 
brush, and change the resolution of that brush via keyboard 
input. Once a brush is selected with the desired resolution, 
the user may create a hill or crater by raising or lowering the 



terrain. Any changes to the terrain are automatically saved 
to the .ter file and will be loaded back in when the 
application restarts. Figure 6 shows screen shots of this 
application.   

 

 
 
 

 
 

 
 

 
 

Figure 6: Screenshots from the visualization of the Hawaii 
dataset 

 

In order to determine how well this algorithm runs, we 
ran various operations of it as illustrated in Table 1 with a 
frame buffer size of 1024 x 768.  The file tested was a ten 
meter resolution digital elevation map (DEM) of Hawaii of 
raster size 8193 x 8193 which can be freely downloaded 
over the Internet [1]. The first test was to simply move over 
the terrain with no deformation occurring.  This tested the 
LOD refinement algorithm used to render the terrain in real-
time. The next section of results in the table show the speeds 
of deformation of the terrain in terms of frames-per-second.  
Using different brush sizes, we deformed the terrain over 
the same part of the dataset. For all of the brush sizes used, 
the algorithm demonstrated interactive framerates. The 
largest brush size used exhibited a relatively low framerate 
due to the increased amount of refining of the mesh down to 
the deepest parts of the terrain hierarchy, which can be 
considered a worst-case scenario.   

Another application of the algorithm has been used for 
tire track deformation from a military vehicle navigating the 
terrain in a dataset from Yuma Proving Ground, an Army 
installation in Arizona. Screenshots are shown in Figure 7, 
and an example can be seen in the accompanying video.   

We were unable to compare these results to any prior 
terrain rendering algorithms because no algorithm supports 
deformation out-of-core. 

 
5 Conclusions 

 
We have presented a complete LOD terrain algorithm 

including the major features of deformation and out-of-core 
rendering. To the best of our knowledge, this is the first out-
of-core deformable terrain algorithm.  Refinement is not 
only based upon the viewing frustum, but also takes into 
account the selected deformation brushes. This allows data 
that is not being viewed to remain in memory and be subject 
to deformation. Previous methods that allow out-of-core 
rendering usually preprocess the geometry into a 
triangulated irregular mesh for optimal polygon throughput, 
and require that the terrain mesh remain static. Other in-core 
algorithms support changes to the underlying heightmap, 
but need to recalculate and propagate nested error-bounds 
through a hierarchal structure. Our approach eliminates the 
need for any geometry tessellation or propagation after a 
modification to the terrain heightmap. By exploiting the 
features of a regular grid, x and z coordinates will never 
change requiring only updates to the y coordinate (height 
offset). The quadtree structure exploits a child-parent 
relationship in which child nodes actually point to their 
parent’s data. In this way, when the data of children nodes 
are modified, the pointer actually dereferences some parent 
data completely eliminating any propagation back up 
through the quadtree. The need for nested error-bounds is 
also eliminated by depending solely on the view position for 
refinement.    Even  though  this  results  in  a  less  accurate  



 
 

 

 
 

Figure 7: Screenshots from the visualization in Yuma, 
Arizona with tire track deformation. 
 
refinement, the tessellation is tolerable and the tradeoff of 
propagation removal is well worth it.   

Deformation is allowed to be done at any resolution 
within the extended quadtree. The quadtree may be 
extended to a user specified resolution by scaling up the 
original terrain and adding procedural fractal detail to the 
leaf nodes. These extra nodes are created on the fly in real-
time and only need to be saved to disk if deformed. Since 
detail addition is so subtle, the extra nodes do not need to be 
spatially deterministic and can be randomly created each 
time. By comparing the time stamp of a node’s parent, data 
may procedurally adapt to a low resolution modification 
using this same method to create detail. 

Along with our algorithm, we have presented support for 
large texture maps, fast normal calculation, and dealing with 
large world coordinate and depth buffer precision.  

 

Limitations:  
The terrain is represented as a heightmap, precluding 

such features as caves and overhangs. The dimensions of the 
input heightmap are required to be 2N + 1 on each side to 
allow for optimizations. Additionally, the preprocessing step 
to build the terrain hierarchy is non-trivial for large datasets. 

 
6 Future Work 

 
For simplicity, not all optimizations were used when 

implementing this algorithm.  It would be possible, with 
some effort, to port the entire algorithm to the GPU.  Terrain 
data would reside completely in video memory in the form 
of a texture, and a quadtree structure could be mimicked via 
indices to a memory location. Vertex lists can easily be 
generated due to the regular grid layout, and indices could 
properly be generated with triangles in a vertex shader.   

Creating disk space for nodes of added detail disrupts 
data coherency when layed out on disk. Though this isn't 
seen as a huge problem, it could be looked into further.  

Currently the algorithm only allows for a single brush to 
be created at any given time. Ideally, it should accept a 
myriad of brushes at various resolutions that can be placed 
throughout the terrain and referenced by a specific 
identifier.   

Often a terrain dataset is too large for deformations to be 
occurring everywhere. Deformations are sometimes limited 
to a specific region of interest even though terrain is present 
(the tank track deformation demo for example). Since the 
current algorithm supports deformation anywhere at any 
given time, the polygon throughput is not optimal. It would 
be possible to detect if a region of the quadtree hasn't been 
touched for a period of time, and if so, start to process the 
vertices into an optimal triangulated irregular network. The 
mesh could toggle back to a regular grid if deformation in 
that region was ever needed. This would result in faster 
rendering and somewhat more distinct feature preserving 
since nested error-bounds would be used within a 
triangulated irregular network. Note that the memory usage 
would have to remain the same since a toggle to a regular 
grid could happen at anytime, but the indices would change 
to allow for faster rendering of a patch.  

Finally, the algorithm could be modified for rendering 
terrain at a planetary scale, which would require a 
specialized acceleration structure for ellipsoidal geometry. 
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