
Multi-Resolution Deformation in Out-of-Core Terrain Rendering

William E. Brandstetter III1,2 Joseph D. Mahsman1 Cody J. White1
Sergiu M. Dascalu1 Frederick C. Harris, Jr.1,2

1Dept of Computer Science and Engineering

University of Nevada, Reno
Reno, NV 89557

2Center for Advanced Visualization, Computation, and Modeling (CAVCAM)

Desert Research Institute
Reno, NV 89512

{brandste,mahsman,cjwhite,dascalus,Fred.Harris}@cse.unr.edu

Abstract
Large scale terrain rendering in real-time is a well

known problem across the computer graphics community
which has garnered many solutions relying on dynamic
level of detail changes to the terrain. These algorithms
typically fit into two categories: in-core and out-of-core.
Out-of-core algorithms usually require data to remain static,
thus disallowing terrain modification whereas in-core
algorithms allow for deformation, but usually require
updating of modified data through a data hierarchy which
can potentially be a slow process. This paper presents a
solution for out-of-core deformable terrain rendering that
works in real-time. Since the requirements of in-core
deformable terrain do not scale to an out-of-core system, the
need for data propagation and recalculation of error bounds
has been eliminated.

Key Words: level-of-detail (LOD), deformable

1 Introduction

Terrain rendering is a highly researched area due to

demand from the military, scientific visualization, and
computer gaming communities. Even as advances in
graphics hardware continue to be released, these
applications will always push the current technology to the
limit such that a brute force method will never be
practical. Level-of-detail (LOD) rendering algorithms are
one of the applications which continue to be developed to
give the best visual representation of large-scale landscapes
in real-time.

The size of datasets is one of the major problems in
terrain rendering. First, brute force rendering is not an
option when dealing with large datasets, so a LOD approach
needs to be taken. Second, given a large heightmap, quite a

bit of memory can be taken up and thus out-of-core (outside
of system memory) rendering needs to be supported. The
most common approach is to extract a good view-dependent
approximation of the mesh in real-time. This is
accomplished by storing data in a specific hierarchical
structure, in which terrain can usually be categorized.
Terrain can be represented in many different data structures
such as a triangulated irregular mesh (TIN) [7], which gives
the best approximation, a regular grid, which uses somewhat
more triangles to represent a surface, quadtrees [14] binary
triangle trees [4], or directed acyclic graphs [9].

Refinement may take place on a per-triangle basis, or
tessellate aggregates of polygons. Some existing algorithms
refine the terrain every frame, having a “split-only”
approach. Others may merge and split from previous
frames’ work. Refinement can be accomplished using a
nested-error bound metric, or as in [10] solely the viewing
position. Some terrain algorithms only support in-core
(inside of system memory) [4], while others support out-of-
core rendering [9] and dynamic addition of procedural detail
[11].

Since terrain data can consume such a large memory
footprint, out-of-core algorithms often limit their datasets to
be static (unchanging). Large amounts of terrain data are
usually processed in a way that leaves the geometry optimal
for video hardware and is not expected to ever change.
When dealing with an out-of-core terrain system that
handles dynamic updates of its height values, things aren't
so trivial. For the most part, the areas of the mesh that need
to be rendered stay in memory, while areas that aren't
visible can be discarded to the hard-drive until needed. With
deformable terrain, updates to the mesh could be made
outside the viewing frustum, in which case those areas
would need to be loaded, updated, and cached back to disk.

If a hierarchy of LOD mesh representations were
preprocessed, then updated data may need to be propagated
up through the tree or reprocessed altogether. The idea of
dealing with large amounts of data in a dynamic terrain
algorithm can quickly become unmanageable, thus when
combined with the first problem, a second problem of
terrain rendering is presented: dynamic terrain. Therefore,
presented here is an out-of-core terrain algorithm which
supports dynamic updates to the heightfield in real-time,
allowing for deformable terrain.

Contribution:
We present an out-of-core terrain LOD algorithm that

supports real-time deformation, building upon the features
of several algorithms discussed in Section 2. [11] presents
an LOD algorithm that combines the quadtree structure of
[16] with the detail addition properties of [3]. We adapt this
data structure to support terrain deformation at any
resolution throughout the terrain hierarchy with large-scale
data stored out-of-core.

Overview:
After the previous work (Section 2), this paper is

arranged as follows: A quadtree is constructed using a
coarse-grained simplification (Section 3.1). During runtime,
the refinement algorithm determines the currently active
regions of the terrain based on view-dependent and
deformation refinement criteria (Section 3.2). A separate
thread is responsible for loading and writing out-of-core
portions of the quadtree (Section 3.3). Finally, a brush is
used to select a rectangular region of the terrain at a
particular resolution to be deformed (Section3.4), possibly
extending the quadtree by adding levels. The new data is
treated the same as the rest of the terrain mesh, and is paged
in and out of main memory as needed. Finally, we present
out texturing scheme (Section 3.5).

2 Related Work

2.1 ROAM

ROAMing Terrain: Real-time Optimally Adapting
Meshes [4] is a well known level of detail algorithm
utilizing a binary triangle tree (bintree) which stores all of
the triangles for a given mesh. Instead of dealing with a
complete terrain system that performs out-of-core paging for
geometry, textures, and selection of LOD blocks, the
authors focus on in-core geometry management. Given a
bintree, split and merge operations are performed using a
dual priority-queue system to achieve a LOD representation
for the underlying data.

ROAM starts with a preprocessing step that produces a
nested view-independent error-bounds that works along side
the bintree. When deciding to split or merge a specific
triangle in a bintree, the pre-computed error bound is taken
into consideration along with the view-dependent metric.
The algorithm uses a metric based on nested world-space

bounds, where a world-space volume (called a wedgie)
contains the points of the triangle. World-space bounds are
computed bottom-up, such that a node's error-bounds is the
maximum of its children's world-space bounds.

This algorithm also realizes that neighboring triangles
could be at different resolutions, either coarser or finer by
one level. In this case, before a split is made, neighboring
triangles may be force-split to eliminate cracks or T-
junctions in the mesh. This is done recursively until the base
neighbor is at the same resolution level (i.e. a diamond is
created). Doing this recursive step ensures a single
continuous mesh.

Top-down refinement of a terrain mesh is a simple and
widely used concept where detail resolution can be added
easily by extending the leaf nodes of the binary triangle tree
with some adjustments to the nested error-bounds. The
authors state that ROAM is suitable for dynamic terrain
since the preprocessing of error-bounds computation is
localized and fast. However, the algorithm only handles data
that can fit into system memory. Reprocessing large
amounts (more than can fit into memory) of terrain data is
unacceptable for extremely large datasets, especially if
many deformations are occurring and requiring error-
bounds to be recomputed every frame.

2.2 Geomipmapping

With advances in graphics hardware, it is common to
spend less work on the CPU to find a ``perfect'' mesh and
send more triangles to the GPU, even if they aren't needed.
Since sometimes it is faster (and easier) to render a triangle
than determine if it should be culled, there is a balance
between brute force and dynamic refinement algorithms. In
2000, de Boer wrote the paper Fast Terrain Rendering
Using Geometrical MipMapping [3], a new approach that
exploits graphics hardware instead of computing perfect
tessellation on the CPU. De Boer states that the goal is to
send as many triangles to the hardware as it can handle.
Since terrain data can be represented as a 2-dimensional
heightmap, the analogy of texture mipmapping was used
and applied to geometry.

Geomipmapping makes use of a regular grid of evenly
spaced height values, that must have 2N+1 samples on each
side. A preprocessing step is performed that cuts the terrain
into blocks, called GeoMipMaps, also with 2N+1 vertices on
each side (e.g. a 257 x 257 regular grid may be divided into
16 x 16 blocks of 17 x 17 vertices). Vertices on the edge are
duplicated for each block where each block is given a
bounding box and is suitable to be stored in a quadtree for
quick frustum culling. Finally, a series of mipmaps are
created by simplifying the mesh which is done by removing
every other row and column vertex. The author suggests that
out-of-core rendering could be supported by having only
visible blocks or those near the camera in memory while
others can be discarded to the hard disk until needed.

Each geomipmap level has an associated geometrical
error. For each vertex removed during the simplification
step, a world space error is calculated as the distance
between the vertex and the line of the interpolated
simplified mesh. The maximum error of all vertices is
assigned as the geometrical error to the block. Then, to
decide which geomipmap to use, it is projected to screen
pixel space and compared to a user-defined threshold. When
the current geometrical error is too high, a higher detailed
block is used.

After each geomipmap block has been chosen, there will
be several neighboring blocks that reside at a different LOD.
As such, cracks will appear between these blocks since one
patch holds more detail than the other. De Boer fixes this
problem by omitting vertices on the edge of a higher
detailed block to identically match its lower detailed
neighbor.

This algorithm is extremely easy to understand,
implement, and also exploits the benefits of the graphics
hardware. Adding detail is trivial by simply reversing the
simplification step described in the algorithm. Deformation
could be supported, but geomipmaps would have to be
recreated and geometrical errors recalculated, which could
hinder real-time deformation. The downside is that the
number of geomipmaps increases quadratically (N2) based
on the size of the terrain; therefore, possibly resulting in
slow computation and rendering.

2.3 Chunked LOD

At SIGGRAPH'02 Ulrich presented a hardware friendly
algorithm based on the concept of a chunked quadtree,
which is described in [16]. This algorithm, also referred to
as Chunked LOD, is somewhat similar to GeoMipMapping;
however, it scales much better due to the quadtree structure.
There is often confusion of the differences between
Chunked LOD and Geomipmapping since the algorithms
are similar. However, Chunked LOD exploits a quadtree
data structure of mipmapped geometry. Therefore the
number of rendered nodes does not quadratically increase
due to the size of the terrain.

A requirement of this algorithm is to have a view-
dependent LOD algorithm that refines aggregates of
polygons, instead of individual polygons. As ROAM
tessellates down to a single triangle, Chunked LOD refines
chunks of geometry that have been preprocessed using a
view-independent metric. Since chunks are stored in a
quadtree, the root node is stored as a very low polygon
representation of the entire terrain. Every node can be split
recursively into four children, where each child represents a
quadrant of the terrain at higher detail than its parent. Every
node is referred to as a chunk, and can be rendered
independent of any other node in the quadtree. Having such
a feature allows for easy out-of-core support.

In order to create the chunked quadtree, a non-trivial
preprocessing step must first be performed. Given a large
heightmap dataset, height samples are partitioned into a
quadtree and simplified based on the properties of the mesh
and not the viewer. This can be done using any per-triangle
tessellation algorithm, such as binary tree tessellation as
illustrated in ROAM [4]. Depending on the depth of the
chunk, more detail is given to the final mesh.

Each chunk holds a list of renderable vertices, a
bounding volume, and a maximum geometrical error.
Starting with the root node of the quadtree, nodes are culled
and recursively split based on the viewing position and its
geometrical error. Neighboring chunks at different levels of
detail are addressed by creating a skirt of extra geometry
that eventually, with tweaks of texture coordinates, fills in
the frame buffer so no artifacts are noticed. Utilizing skirts
keeps chunks independent of each other, which makes out-
of-core support trivial.

The Chunked LOD quadtree structure is one of the best
known hardware friendly LOD algorithms since it can be
utilized for very large out-of-core terrain. Adding detail
resolution requires extending the chunked quadtree, which
could be easily done in a preprocessing step. However,
deformation isn’t trivial since the algorithm requires a static
mesh; if any height samples were changed, it would require
reprocessing the entire quadtree, which is unacceptable for
real-time deformation.

3. Proposed Approach

The following sections present our out-of-core

deformable terrain algorithm for preprocessing and
rendering of large-scale terrain datasets. We start with an
overview of the hierarchical representation of the terrain
data and then describe the runtime algorithm for mesh
refinement, rendering, memory management, and
deformation. Figure 1 illustrates the flow of data through
the system from program initialization to render

3.1 Hierarchical Representation

The hierarchical representation of the original mesh is
built during a preprocessing step. For a n x n input mesh, a
quadtree is used to organize the data such that the root node
defines a low-detail representation of the entire mesh. Each
subsequent child contains more detail at the scale of one
quarter of its parent's mesh, while the leaf nodes constitute
the original mesh. Every node is of size m x m, and
therefore each node uses the same amount of vertices. The
dimensions n of the input mesh and m of the nodes must be
one greater than a power of two to allow for optimization of
the construction and refinement algorithms.

The quadtree is constructed using a simplification
process similar to [8]. First, the input mesh is partitioned
into leaf nodes of size m x m, where each node overlaps

Figure 1: Block diagram demonstrating the flow of the data
through the system

neighboring nodes by one row and one column. Nodes are
combined into 2 x 2 blocks and upsampled by removing
every other row and column vertex. This is r
recursively until 2 x 2 blocks can no longer be mad
node is given a bounding box that encapsulates the
mesh, as shown in Figure 2.

(a) Original Mesh (b) Child Nodes (c) Parent Node

Figure 2: The simplification process to create a quadtree.
The original mesh (a) is separated into m x
(b), where each 2x2 block creates a parent node (c)

ing the flow of the data

neighboring nodes by one row and one column. Nodes are
blocks and upsampled by removing

vertex. This is repeated
longer be made. Each

node is given a bounding box that encapsulates the entire

(c) Parent Node

The simplification process to create a quadtree.
x m nodes (m=5)

block creates a parent node (c)

The process of removing every other row and column
vertex when creating parent nodes implies that the data for
each node, except for the root, comprises
(the excluded rows and columns) and its own data.
terrain deformation, this property obviates the need to
propagate changes through the tree. In addition to a node's
individual data, it contains pointers to its parent's data.
guarantee this property holds true,
into memory all of its ancestors must be
The memory layout for any given node is shown in
3.

For example, the bottom left vertex of an underlying
heightfield belongs to the root node. Child nodes receive a
pointer to this vertex in order to access it. This is similar to
the wavelet compression scheme from [2]
not encode the child data within the parent’
the individual data for each node is stored in a file that can
be loaded on demand. This eliminates the need to decode
node information at runtime and allows for deformation
without encoding new vertices into the quadtree. In order to
query a node's data, it must simply
it points to.

(a) Node data

(b) Memory layout

Figure 3: Node data shown in (a) represents the memory
layout shown in (b)

The process of removing every other row and column
parent nodes implies that the data for

each node, except for the root, comprises its parent's data
ws and columns) and its own data. During

terrain deformation, this property obviates the need to
through the tree. In addition to a node's

individual data, it contains pointers to its parent's data. To
 when a node is loaded

into memory all of its ancestors must be in memory as well.
The memory layout for any given node is shown in Figure

For example, the bottom left vertex of an underlying
belongs to the root node. Child nodes receive a

to this vertex in order to access it. This is similar to
n scheme from [2]. However, we do

he child data within the parent’s node. Instead
the individual data for each node is stored in a file that can

demand. This eliminates the need to decode
runtime and allows for deformation

into the quadtree. In order to
 dereference the vertices

Node data

emory layout

Node data shown in (a) represents the memory

3.2 Runtime Algorithm

3.2.1 Mesh Refinement

The goal of any terrain rendering algorithm is to quickly
create the best approximation mesh for each frame. Our
approach uses a split-only top-down refinement. Previous
algorithms use properties of the underlying geometry (e.g.
nested error bounds) during refinement as in [16] and [3].
Deformation of the terrain requires recalculation and
propagation of these properties throughout the tree. We take
an approach similar to [10] and use only the view position
and frustum as refinement criteria. Although this approach
looks awkward for high-frequency data (e.g. a steep
mountain consisting of a few vertices), natural terrain
datasets often feature a smooth gradient.

Refinement begins at the root node and proceeds
recursively for each child node. A breadth-first traversal is
required for linking neighboring nodes. For every node, if
the node's bounding box is inside the view frustum and the
center of the bounding box is closer than a predefined
threshold, the node is refined by traversing its four children,
otherwise it is prepared for rendering. A threshold should be
chosen such that a nested regular grid surrounds the viewer.
Since no other metrics are taken into account during
refinement, this will yield the best visual fidelity. Note that
the LOD of neighboring nodes is never limited, as in a
restricted quadtree where nodes are forced to split based on
the level of its neighbors as in [13]. Figure 4 shows
bounding boxes of the hierarchy.

Figure 4: A quadtree displaying the bounding boxes of each
node. Bounding boxes are culled against the viewing
frustum to quickly eliminate nodes during refinement.

3.2.2 Neighboring Nodes
Smooth transitions between nodes of different LOD

must be rendered correctly, otherwise seams will be visible
due to gaps in the rendered mesh or inconsistent shading
from incorrect normal calculations. Also, since each
neighbor holds its own copy of edge vertices, care must be
taken while deforming edges or edge boundaries. To handle
these variations, a node must be aware of its neighbors.
Since quadtree refinement isn't restricted, the difference
between two nodes may be one level or more. Since a node's
LOD may change from frame to frame, neighboring links
are recreated during refinement.

When linking nodes together, a node is only allowed to
point to a neighbor of equal level or higher. Enforcing this
rule allows each node to store no more than four neighbor
references. When a node is split during refinement, the
node is responsible for updating its children with the correct
neighborhood information. This cannot be accomplished
with a depth-first traversal, commonly used in LOD
algorithms. Instead, a breadth-first traversal is performed.

Neighbor links play an important role for correct normal
calculation. Normals are needed to simulate a realistic
lighting model, and can also be used for collision response.
The biggest problem of normal calculation presents itself on
the seams of terrain patches. Vertices on an edge need the
height values of neighboring nodes.

The most common approach to calculate a normal is to
compute a normal for each vertex in the heightfield by
taking the average normal of all faces that contain the vertex
[17]. This process consists of several costly mathematical
operations, such as square roots. Several optimizations can
be made by exploiting properties of the heightfield. The
method we use is described in [15], which only requires the
four neighboring heightsamples of a vertex. In order to
create a smooth transition across a patch seam, neighboring
vertices must be queried and the computed normal is then
stored for each edge.

3.2.3 Detail Addition

To improve the appearance of the terrain without
increasing the size of the data on disk, procedural detail is
added at runtime for leaf nodes that meet the refinement
criteria. The detail is added to the hierarchy in the form of
new leaf nodes that extend the quadtree until a user-
specified level is reached. When creating a new node, a
reverse process of adding rows and columns is performed
and the new node is linked to its parent, which was
previously a leaf node. The new vertices are then assigned
procedural data.

Linear interpolation is not sufficient for creating
additional detail because the resulting data is uniform.
Instead, fractals are used to give the data a non-uniform
appearance. Each interpolated vertex is shifted a random
amount such that it stays within the bounds of the

surrounding vertices. Since detail addition is subtle, the
process does not need to be deterministic, therefore detail
can be randomized each time it is created.

3.2.4 Rendering
The result of refinement is a list of patches to be

rendered. Before rendering, indices can be recalculated for
nodes whose neighbor's LOD have changed and normals
can be recalculated if deformation had occurred. Each node
must then dereference its pointer data to create a vertex list.
Finally, each node can be transformed into world space and
the data sent across the bus to be rendered. The rendering
process is decoupled from the updating and disk I/O
methods, allowing for smooth loads of data and no hiccups
in the system regardless of how fast the viewer is moving
around the terrain.

Stitching is accomplished by having the finer detail node
omit vertices on its edge to match that of its coarser
neighbor. This is done by rendering degenerate triangles.
Geometrical skirts [16] were not chosen since the size of the
skirt may change after deformation. Recalculation of the
skirt can become tedious and slow. Figure 5 illustrates the
removal of T-junctions by utilizing degenerate triangles.

(a) T-Junction (b) Degenerate Triangles

Figure 5: T-Junctions appear at the neighboring nodes of
different levels of detail. Omitting vertices via degenerate
triangles removes any possible cracks from the mesh.

3.3 Memory Management

Our algorithm supports large datasets stored out of core,
i.e. data that resides outside of main memory [11]. A
separate loading and caching thread is fed patches to load or
write to disk. The patches to load are based on refinement,
while the patches to write are based on a least recently used
(LRU) algorithm.

During refinement, if a parent cannot be split because the
data for its children is not in-core, a request for the data is
made to the loading and caching thread. The system never
stops to wait for data to load; until the data for the children
is loaded, the parent's data is rendered.

When the memory footprint exceeds a predefined
threshold, LRU patches are discarded to disk until the used

memory falls below the threshold. Each node is given a
timestamp representing the last time the node was either
rendered or deformed. A priority queue is used to
efficiently determine which nodes should be discarded.
Since every node relies on its parent for some of its data,
discarding a parent to disk will invalidate memory
references for its children, therefore only leaf nodes of the
currently refined mesh are considered for caching.

Depending on the actions of the user (fast movement or
several deformations) and the current memory footprint,
nodes may require continuous allocation and deallocation.
Instead of using operators such as new or delete which are
notoriously slow for small and frequent allocations, a
freelist is used as in [6].

3.4 Deformation

Real-time modifications are applied to the terrain by
refining the currently active mesh based on a rectangular
selection of the terrain, called a brush, in addition to the
view-dependent refinement criteria described earlier. The
vertex data for each refined node is modified to fit the brush
specification.

A brush defines the rectangular extent (defined by
position, width, and height) and the resolution of
deformation (defined by a level in the hierarchy, which may
not exist). In addition, a brush holds an array of pointers to
vertices in the terrain, allowing deformations to cross node
boundaries. Nodes that intersect the brush are selected
during refinement and vertices from each node are given to
the brush. Dereferencing the brush gives access to vertex
data which can be overwritten with new data. Since vertices
on edges are duplicated for each patch, care must be taken
for deformations across boundaries by syncing adjacent
vertices. This is done in a pre-rendering step that compares
dirty flags of neighboring nodes in the quadtree.

Refinement is based on brush extent and resolution as
well as view-dependent criteria. Therefore, a node may be
refined even though it is not sufficiently close to the viewer
or inside the view frustum. Depending on the resolution of
the brush, data for nodes deep into the hierarchy may be
requested for loading. Only when all of the data required by
the brush's resolution has been loaded can deformation be
applied.

As described in Section 3.2.3, procedural detail is added
for leaf nodes that meet the view-dependent refinement
criteria. If a brush alters a node with procedural data, disk
space is allocated for the node and it is allowed to be
discarded to disk by the memory manager.

When a node is chosen for rendering, it is possible that
an ancestor has previously been deformed. Time stamps are
compared, and if a node’s last modification is older than its
parent's, its data is adapted to the parent mesh by creating
procedural detail.

3.5 Texturing
Textures are processed similarly to the terrain data. A

large texture can be cut into user-defined partitions and
merged into 2x2 blocks before being mipmapped. This
process continues until an entire quadtree is built over the
original texture data.

Nodes in the terrain quadtree directly map to nodes in
the texture quadtree. However, with modifications to the
terrain quadtree (deformation and procedural detail), it
becomes impractical to create a texture quadtree of the same
depth. If a node in the terrain quadtree cannot be mapped
directly to a node in the texture quadtree, the parent’s
texture and texture coordinates are used. When a node is
being loaded or deleted it can also load or delete its texture.

Just as the terrain quadtree presented issues at seams, so
does the texture quadtree. This is due to the kind of texture
filtering used to generate the texture quadtree. Although no
seams are visible with nearest filtering, this type of filtering
is not visually appealing. With linear filtering, seams appear
at the texture edges because the edge texels are not being
blended with the correct neighbor texel. This is solved by
overlapping adjacent textures during texture quadtree
construction such that neighboring nodes have exact texels
on shared edges. Clamping the texture edges during
rendering causes these texels to blend, removing the seam.
There is no perfect solution, and the amount of pixels to
overlap can vary.

3.6 Supporting Large Scenes

Extending terrain detail causes the terrain as a whole to
be resized to a different resolution. Instead of having a 1-
meter resolution map, detail can be added so now it is a 1-
millimeter map. In order to properly represent detail, the
entire terrain needs to be increased in scale.

As worlds get substantially bigger, the amount of
precision to represent world coordinates gets smaller and
smaller. For example, if units represent meters and our
world is 100km square, at the farther corner of the world a
32-bit number will allow us to represent 7.8mm granularity
[5]. The larger the world coordinates, the less accurate they
will be at the farthest extent. Therefore floats usually have
to be converted to doubles since there are not enough bits to
represent a large number with high precision.

Unfortunately the graphics hardware only performs
floating point operations, so precision is lost during
operations such as matrix transformations. Traveling to the
farthest extent of your terrain will result in seams between
patches or jittering movement when the camera moves. It is
best to partition the world into a user defined segment space,
where each node belongs to a segment and is given an
offset.

Instead of transforming the camera and translating
patches during rendering, thus losing precision, transforms
can be made in segment space, such that the world now

revolves around the camera within a segment. This will
solve any and all accuracy problems that large scenes come
with. Unfortunately, this doesn’t come without a burden. If
this method is used, then all objects need to be represented
in segment space which can prove difficult, especially when
using a scenegraph.

Along with large world coordinates, precision is also an
issue with the depth buffer. Ideally the user will want to see
detail an inch from his nose while also seeing the moon in
the sky. Unfortunately a 24 or 32-bit depth buffer can’t
support such a task. Since the depth buffer is not linear,
there are many more bits allocated to the precision of
objects closer to the camera than further. Precision is gained
exponentially as you push out the near clipping plane.
However, in our terrain we will sometimes want to view
millimeter resolution, without culling the mountains in the
horizon.

Several methods can fix this problem, such as using
imposters [12], or a multipass rendering system that renders
the scene in sections, clearing the depth buffer while
altering the frustum each time. In our implementation we
allow for multiple rendering passes. Algorithm 1 shows the
steps required to perform such a task.

1.

Set zFar to the maximum value needed.
2. Set zNear = zFar / ratio
3. Clear z-buffer
4. Render scene and cull to the adjusted frustrum
5. Set zFar to zNear
6. If zNear isn’t close enough – go to Step 2

Algorithm 1: Process for multipass rendering

4. Results

The following tests were performed on a machine with

an Intel Core2 Quad Q9450 processor with 8GB of DDR2
RAM and a NVIDIA GeForce GTX 275 under Windows
XP Service Pack 2, which can only utilize 3.5GB of RAM.

The data used for these results was obtained from [1],
which holds 10-meter elevation data of the big island of
Hawaii along with a 4096 x 4096 texture. The terrain file
has dimensions of 8193 x 8193 and was already in binary
terrain (.bt) format. It was first converted into the internal
.ter file and the texture image (.jpg) was converted into a
.tex file. Since these files were so small, the preprocessing
took less than five minutes.

With this application, the user is able to move around the
scene via keyboard and mouse input. By clicking and
dragging the mouse, the user can select a single axis-aligned
brush, and change the resolution of that brush via keyboard
input. Once a brush is selected with the desired resolution,
the user may create a hill or crater by raising or lowering the

terrain. Any changes to the terrain are automatically saved
to the .ter file and will be loaded back in when the
application restarts. Figure 6 shows screen shots of this
application.

Figure 6: Screenshots from the visualization of the Hawaii
dataset

In order to determine how well this algorithm runs, we
ran various operations of it as illustrated in Table 1 with a
frame buffer size of 1024 x 768. The file tested was a ten
meter resolution digital elevation map (DEM) of Hawaii of
raster size 8193 x 8193 which can be freely downloaded
over the Internet [1]. The first test was to simply move over
the terrain with no deformation occurring. This tested the
LOD refinement algorithm used to render the terrain in real-
time. The next section of results in the table show the speeds
of deformation of the terrain in terms of frames-per-second.
Using different brush sizes, we deformed the terrain over
the same part of the dataset. For all of the brush sizes used,
the algorithm demonstrated interactive framerates. The
largest brush size used exhibited a relatively low framerate
due to the increased amount of refining of the mesh down to
the deepest parts of the terrain hierarchy, which can be
considered a worst-case scenario.

Another application of the algorithm has been used for
tire track deformation from a military vehicle navigating the
terrain in a dataset from Yuma Proving Ground, an Army
installation in Arizona. Screenshots are shown in Figure 7,
and an example can be seen in the accompanying video.

We were unable to compare these results to any prior
terrain rendering algorithms because no algorithm supports
deformation out-of-core.

5 Conclusions

We have presented a complete LOD terrain algorithm

including the major features of deformation and out-of-core
rendering. To the best of our knowledge, this is the first out-
of-core deformable terrain algorithm. Refinement is not
only based upon the viewing frustum, but also takes into
account the selected deformation brushes. This allows data
that is not being viewed to remain in memory and be subject
to deformation. Previous methods that allow out-of-core
rendering usually preprocess the geometry into a
triangulated irregular mesh for optimal polygon throughput,
and require that the terrain mesh remain static. Other in-core
algorithms support changes to the underlying heightmap,
but need to recalculate and propagate nested error-bounds
through a hierarchal structure. Our approach eliminates the
need for any geometry tessellation or propagation after a
modification to the terrain heightmap. By exploiting the
features of a regular grid, x and z coordinates will never
change requiring only updates to the y coordinate (height
offset). The quadtree structure exploits a child-parent
relationship in which child nodes actually point to their
parent’s data. In this way, when the data of children nodes
are modified, the pointer actually dereferences some parent
data completely eliminating any propagation back up
through the quadtree. The need for nested error-bounds is
also eliminated by depending solely on the view position for
refinement. Even though this results in a less accurate

Figure 7: Screenshots from the visualization in Yuma,
Arizona with tire track deformation.

refinement, the tessellation is tolerable and the tradeoff of
propagation removal is well worth it.

Deformation is allowed to be done at any resolution
within the extended quadtree. The quadtree may be
extended to a user specified resolution by scaling up the
original terrain and adding procedural fractal detail to the
leaf nodes. These extra nodes are created on the fly in real-
time and only need to be saved to disk if deformed. Since
detail addition is so subtle, the extra nodes do not need to be
spatially deterministic and can be randomly created each
time. By comparing the time stamp of a node’s parent, data
may procedurally adapt to a low resolution modification
using this same method to create detail.

Along with our algorithm, we have presented support for
large texture maps, fast normal calculation, and dealing with
large world coordinate and depth buffer precision.

Limitations:
The terrain is represented as a heightmap, precluding

such features as caves and overhangs. The dimensions of the
input heightmap are required to be 2N + 1 on each side to
allow for optimizations. Additionally, the preprocessing step
to build the terrain hierarchy is non-trivial for large datasets.

6 Future Work

For simplicity, not all optimizations were used when

implementing this algorithm. It would be possible, with
some effort, to port the entire algorithm to the GPU. Terrain
data would reside completely in video memory in the form
of a texture, and a quadtree structure could be mimicked via
indices to a memory location. Vertex lists can easily be
generated due to the regular grid layout, and indices could
properly be generated with triangles in a vertex shader.

Creating disk space for nodes of added detail disrupts
data coherency when layed out on disk. Though this isn't
seen as a huge problem, it could be looked into further.

Currently the algorithm only allows for a single brush to
be created at any given time. Ideally, it should accept a
myriad of brushes at various resolutions that can be placed
throughout the terrain and referenced by a specific
identifier.

Often a terrain dataset is too large for deformations to be
occurring everywhere. Deformations are sometimes limited
to a specific region of interest even though terrain is present
(the tank track deformation demo for example). Since the
current algorithm supports deformation anywhere at any
given time, the polygon throughput is not optimal. It would
be possible to detect if a region of the quadtree hasn't been
touched for a period of time, and if so, start to process the
vertices into an optimal triangulated irregular network. The
mesh could toggle back to a regular grid if deformation in
that region was ever needed. This would result in faster
rendering and somewhat more distinct feature preserving
since nested error-bounds would be used within a
triangulated irregular network. Note that the memory usage
would have to remain the same since a toggle to a regular
grid could happen at anytime, but the indices would change
to allow for faster rendering of a patch.

Finally, the algorithm could be modified for rendering
terrain at a planetary scale, which would require a
specialized acceleration structure for ellipsoidal geometry.

Acknowledgements

The work shown has been partially sponsored by the

Department of the Army, Army Research Office; the
contents of the information does not necessarily reflect the
position or the policy of the federal government, and no
official endorsement should be inferred. This work is

partially funded by the CAVE Project (ARO# N61339-04-
C-0072) at the Desert Research Institute.

References

[1] Virtual terrain project. http://www.vterrain.org/. Last

accessed: October 21, 2009.
[2] Samuel Atlan and Michael Garland. Interactive

multiresolution editing and display of large terrains.
Computer Graphics Forum, 25(2):211{223, June
2006.

[3] Willem H. de Boer. Fast terrain rendering using
geometrical mipmapping. http://www.ipcode.com/
archives/ Fast Terrain Rendering Using Geometrical
MipMapping.shtml, 2000. Last accessed: 10/08/2009.

[4] Mark Duchaineau, Murray Wolinsky, David E. Sigeti,
Mark C. Mille, Charles Aldrich, and Mark B.
Mineevweinstein. Roaming terrain: Real-time
optimally adapting meshes. In IEEE Visualization,
pages 81-88, 1997.

[5] Peter Freese. Solving accuracy problems in large
world coordinates. In Game Programming Gems 4.
Charles River Media, March 2004.

[6] Paul Glinker. Flight memory fragmentation with
templated freelists. In Game Programming Gems 4.
Charles River Media, 2004.

[7] Hugues Hoppe. Smooth view-dependent level-of-detail
control and its application to terrain rendering. In
VIS’98: Proceedings of the conference on
Visualization ‘98, pages 35-42, Los Alamitos, CA,
USA, 1998. IEEE Computer Society Press.

[8] Peter Lindstrom, David Koller, William Ribarsky,
Larry F Hodges, Nick Faust, and Gregory Turner.
Real-time, continuous level of detail rendering of
height fields. pages 109-118, 1996.

[9] Peter Lindstrom and Valerio Pascucci. Visualization of
large terrains made easy. In VIS '01: Proceedings of
the conference on Visualization '01, pages 363-371,
Washington, DC, USA, 2001. IEEE Computer Society.

[10] Frank Losasso and Hugues Hoppe. Geometry
clipmaps: terrain rendering using nested regular grids.
In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers,
pages 769-776, New York, NY, USA, 2004. ACM.

[11] Steen Lund Nielsen and Thomas Lauritsen. Rendering
very large, very detailed terrains.
http://www.terrain.dk/, 2005. Last accessed:
10/08/2009.

[12] Sean O'Neil. A real-time procedural universe, part
three: Matters of scale. http://www.gamasutra.com/
features/20020712/oneil01.htm Last accessed:
November 2007.

[13] Renato Pajarola. Large scale terrain visualization using
the restricted quadtree triangulation, 1998.

[14] Stefan Rottger, Wolfgang Heidrich, Philipp Slusallek,
Hans peter Seidel, Graphische Datenverarbeitung
(immd, and Universitt Erlangen-nrnberg). Real-time
generation of continuous levels of detail for height
fields. pages 315-322, 1998.

[15] Jason Shankel. Fast height_eld normal calculation. In
Game Programming Gems 3. Charles River Media,
2002.

[16] Thatcher Ulrich. Rendering massive terrain using
chunked level of detail control. ACM SIGGRAPH
2002: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, 2002.

[17] Huanxi Zhao. Fast accurate normal calculation for
heightfield lighting on a non-isometric grid. In CGIV
06: Proceedings of the International Conference on
Computer Graphics, Imaging and Visualization, pages
408-413. IEEE Computer Society, 2006.

William E. Brandstetter III
graduated from the University of
Nevada Reno with a bachelors of
science in computer science in
2005. He went on to graduate with
a master of science with a
specialization in computer graphics
in 2007, where he wrote his thesis
“Multi-resolution Deformation in

Out-of-Core Terrain Rendering”. His interests include
research in computer graphics, scientific visualization, and
game programming.

Joeseph Mahsman
received his Bachelor's degree in
2008 and his Master's degree in
2010 from the University of
Nevada, Reno. He worked as a
researcher in the High-Performance
Computation and Visualization
Laboratory at UNR and is currently
a Software Engineer for Eye Com

in Reno, NV. His research interests include interactive
planetary visualization, real-time 3D graphics, and building
virtual worlds.

Cody White
received his Bachelor's degree in
2009 and his Master’s degree in
2011 from the University of
Nevada, Reno. He worked as a
researcher in the High-Performance
Computation and Visualization
Laboratory at UNR and is currently
a Software Engineer for IGT in

Reno, NV. His research interests include real-time 3D
graphics and photorealistic rendering.

Dr. Sergiu M. Dascalu
is an Associate Professor in the
Department of Computer Science
and Engineering at the University
of Nevada, Reno, USA, which he
joined in 2002. In 1982 he
received a Master’s degree in
Automatic Control and Computers
from the Polytechnic University of

Bucharest, Romania and in 2001 a PhD in Computer
Science from Dalhousie University, Halifax, Nova Scotia,
Canada. His main research interests are in the areas of
software engineering and human-computer interaction.
Sergiu has published over 100 peer-reviewed journal and
conference papers and has been involved in numerous
projects funded by industrial companies as well as US
federal agencies such as NSF, NASA, and ONR.

Dr. Frederick C Harris, Jr.
is currently a Professor in the
Department of Computer Science
and Engineering and the Director
of the High Performance
Computation and Visualization
Lab at the University of Nevada,
Reno, USA. He received his BS

and MS in Mathematics and Educational Administration
from Bob Jones University in 1986 and 1988 respectively,
his MS and Ph.D. in Computer Science from Clemson
University in 1991 and 1994 respectively. He is a member
of ACM, IEEE, and ISCA. His research interests are in
Parallel Computation, Graphics and Virtual Reality, and
Bioinformatics.

