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a b s t r a c t

In the past three decades, the interest in trust has grown significantly due to its important role in
our modern society. Everyday social experience involves ‘‘confidence’’ among people, which can be
interpreted at the neurological level of a human brain. Recent studies suggest that oxytocin is a
centrally-acting neurotransmitter important in the development and alteration of trust. Its administration
in humans seems to increase trust and reduce fear, in part by directly inhibiting the amygdala.
However, the cerebral microcircuitry underlying this mechanism is still unknown. We propose the first
biologically realistic model for trust, simulating spiking neurons in the cortex in a real-time human–robot
interaction simulation. At the physiological level, oxytocin cells weremodeledwith triple apical dendrites
characteristic of their structure in the paraventricular nucleus of the hypothalamus. As trust was
established in the simulation, this architecture had a direct inhibitory effect on the amygdala tonic firing,
which resulted in a willingness to exchange an object from the trustor (virtual neurorobot) to the trustee
(human actor). Our software and hardware enhancements allowed the simulation of almost 100,000
neurons in real time and the incorporation of a sophisticated Gabor mechanism as a visual filter. Our
brain was functional and our robotic system was robust in that it trusted or distrusted a human actor
based on movement imitation.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Computational neuroscience is an interdisciplinary science,
which combines diverse fields, especially neuroscience, and com-
puter science and engineering. It uses computational approaches
to investigate properties of the central and peripheral nervous sys-
tems at different levels of detail (De Schutter, 2008). It involves
cycling back and forth between high-performance computing, ex-
perimental data recording and complex brain modeling to further
construct real-time intelligent systems and understand neurologi-
cal disorders.
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There are a variety of neural simulators available to computa-
tional neuroscience researchers today. Although many share simi-
lar approaches and features, most have their unique qualities. The
two well-known simulators that allow compartmental modeling
are: NEURON, which is a simulation environment for creating and
using empirically based models of biological neurons and neural
circuits (Brette et al., 2007; Carnevale &Hines, 2006) ; GENESIS (the
General Neural Simulation System), which is an extensive general
simulation system for realistic modeling of neural and biological
systems (Bower & Beeman, 1998; Brette et al., 2007). There is also a
variety of spiking neural network simulators, such as BRIAN (Good-
man & Brette, 2009), NEST (Gewaltig & Diesmann, 2007), PyNN
(Davison et al., 2008). Even though these simulators have their own
strengths, they donot have the capability for real-time simulations,
which is very important for artificial intelligence (AI) and robotic
interfaces. The latest spiking neural network was developed by
Richert, Nageswaran, Dutt, and Krichmar (2011), and it generates
large-scale computationalmodels in real-time. However, it runs on
single Graphic Processing Units (GPUs) (Richert et al., 2011).
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Here we have utilized the updated version of our NeoCortical
Simulator (NCS) (Brette et al., 2007) to compute integrate-and-fire,
conductance-based synaptic neurons of brain regions involved in
human emotions such as trust. The Virtual NeuroRobotic (VNR)
system developed in our laboratory (Goodman, Buntha, Zou, &
Dascalu, 2007; Goodman, Zou, & Dascalu, 2008) was also used to
rapidly engineer a robotic system that can interact with humans.

The field of social robotics has been focused on better under-
standing the important dynamics of human emotion (Dautenhahn,
2007; Goodman et al., 2008; Scheutz, Schermerhor, Kramer, & An-
derson, 2007). For many decades, intelligent systems have tried
to replace a human mind in planning, learning new functions,
and making decisions, but some traits such as social skills have
been hard to replicate. Breazeal et al. have focused on developing
creating socially intelligent robot partners that can interact with
humans. Also, Thomaz et al. have been interested in machines
learning newgoals frompeople. Thesemachine intelligent systems
can effectively cooperatewith people, but they are still socially lim-
ited (Thomaz & Breazeal, 2008). Therefore, it is tempting to try to
incorporate realistic neuromorphic properties (hypothalamic oxy-
tocin release) to demonstrate how an emotional behavior such as
trust can be established.

A variety of external cues are involved in trust, but we mostly
concentrate on imitation. This recurrent mechanism has been
shown in human behavior from early ages to adulthood and is
associated with cooperation and trust (Saavedra, Smith, & Reed-
Tsochas, 2010). Observations of social interactions between two
or more people have shown that humans unconsciously and
unintentionally learn to imitate trustworthy behaviors. Several
laboratories have worked on human–robot interaction, especially
on mimicking behaviors, such as children and robots playing hide
and seek (Trafton et al., 2006) or learning from demonstration
(Koenig, Takayama, & Mataric, 2010). Recently, Paukner, Suomi,
Visalberghi, and Ferrari (2009) showed that capuchin monkeys
display affiliation toward humans who imitate and spend more
time interacting with them (Paukner et al., 2009).

Intent recognition has been a wide research area in robotics
since it is very important for developing social robots that
can cooperate with humans in performing tasks (Kelley, 2009;
Tahboub, 2005). Often, the intention of a person can be represented
explicitly by visual or auditory stimuli. For social robots to operate
in the human world, intent recognition plays a key role and the
importance of it can be understood from real world examples
such as: for a robot-controlled car to travel on roads, it needs
to understand the intentions of other drivers and also let the
other drivers know about its own intentions by giving appropriate
signals to avoid accidents; during military operations such as
anti-terrorist activities robots have to determine the intentions
of the enemy in order to prevent them from performing illegal
activities; if robots are supposed to guard the society from anti-
social elements then there is a crucial need for them to sense the
intentions of people in order to resolve whether anyone is going to
create any damage to the society; and, for a robot to assist a human
in industrial work it needs to know what he/she is expecting
from it.

Oxytocin has been found to be responsible for developing
human trust (Baumgartner, Heinrichs, Vonlanthen, Fischbacher
& Fehr, 2008; Heinrichs, von Dawans, & Domes, 2009; Huber,
Veinante, & Stoop, 2005; Kosfeld, Heinrichs, Zak, Fischbacher, &
Fehr, 2005; Zak, Kurzban, & Matzner, 2005). It is a neuropeptide
mammalian hormone that is known to primarily be produced by
the hypothalamus and acts as a neurotransmitter in the brain. It
is considered to be responsible for certain physiological functions
in females such as oxytocin serves to stimulate and regulate
continuous contractions of smooth muscle tissue of the uterus
during labor, milk letdown for breastfeeding in lactating women,
pair bonding, maternal care, and sexual behavior (Anderson-Hunt
& Dennerstein, 1995; Carter, 2003; Ferguson, Young, & Insel, 2002;
Lim & Young, 2006; Young & Wang, 2004). Apart from these well-
known functions oxytocin is also considered to be responsible for
developing trust in humans (Baumgartner et al., 2008; Heinrichs
et al., 2009; Huber et al., 2005; Kosfeld et al., 2005; Zak et al., 2005).

We speculate that the role of hypothalamic oxytocin and
amygdala is essential in simulating complex neuromorphic brain
models of social cognition involving short term memory (Domes,
Heinrichs, Michel, Berger, & Herpertz, 2007; Rimmele, Hediger,
Heinrichs, & Klaver, 2009), trust (Baumgartner et al., 2008; Kosfeld
et al., 2005; Zak et al., 2005) and suppression of fear (Kirsch et al.,
2005; Petrovic, Kalisch, Singer, & Dolan, 2008). An increase in
the level of oxytocin establishes trust by suppressing activity in
the amygdala (Domes et al., 2007; Kirsch et al., 2005; Petrovic
et al., 2008), which is present in the medial temporal lobe and
is responsible for social cognition and fear in mammals (Choleris
et al., 2007; Ohman, 2005; Whalen et al., 2004).

Basedon these observations, our goalwas tomodel a neuromor-
phic brain and implement it on a virtual neurorobot, which could
learn to trust a human if its actions were imitated by a human ac-
tor. To the best of our knowledge, we propose the first real-time
simulated biological brain model (including visual, parietal, pre-
motor and inferotemporal cortices, hypothalamus, and amygdala)
for human–robot interaction.

2. Computational design

2.1. Software platforms

This model included leaky integrate-and-fire neurons with
conductance-based synapses. The simulations required adequate
computer power, and therefore were performed using our
NeoCortical Simulator (NCS) (Brette et al., 2007; Drewes, Zou,
& Goodman, 2009; Wilson, Goodman, & Harris, 2001). Each
integrate-and-fire neuron is characterized by a membrane time
constant of 20 ms, a membrane resistance of 100 M�, and a
resting membrane potential of −60 mV.Whenever the membrane
potential crosses the spiking threshold of −50 mV, an action
potential is generated, and the membrane potential is reset to the
resting potential, where it remains clamped for a 5 ms refractory
period. Membrane voltages are updated at each time step (1 ms)
as follows:

CN
dV
dt

− IAHP − Isyn − Iext + Ileak = 0.

With small ionic currents (IAHP ), which contribute to the mem-
brane voltage by controlling spike-frequency adaptation; synaptic
currents (Isyn); external input currents (Iext ); and a voltage-
independent leakage current (Ileak).

Spike-timing-dependent plasticity (STDP) was defined as:

W (△t) =


A+ exp


△t
τ+


if △t < 0

−A− exp


−△t
τ−


if △t ≥ 0.

With the maximum amounts of synaptic modification (A); the
positive and negative windows (1t); and positive and negative
decay constants (τ ) (Caporale & Dan, 2008; Dan & Poo, 2004;
Markram, Gerstner, and Sjöström, 2011; Song, Miller, & Abbott,
2000; Zhang, Tao, Holt, Harris, and Poo, 1998).

NCS has focused on increasing simulation speed and improving
the functionality of our brain models. This optimization work has
produced better than sevenfold sequential speedup over previous
versions and decreased the memory footprint by almost 90%,
while shrinking our code base by more than 25%. Currently a
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Fig. 1. Robotic system configuration. Closed loop robotic system with its five
major components.

single compute node can run a simulation with 35,000 cells and
approximately 6.1 million synapses using 72% of a 4 GB memory.
Memory use per node is approximately halved as the number
of nodes is doubled. Each node requires only a few tens of KB
overhead for each other node, so the practical upper bound on
the size of a brain we can create is determined by the available
hardware.

2.2. Hardware platforms

We now use two clusters: one consisting of 208 Opteron cores,
416 GB of RAM, and more than a Terabyte of disk storage; and the
other one consisting of 4 SUN 4600machines (16-processors each)
connected via Infiniband with 128 GB Ram per machine, and 24
Terabytes of disk storage. This has allowed us to look at large scale
NCS models, and begin explore optimizations for shared-memory
parallelism.

2.3. Robotic system

The virtual robotic system for this project was designed around
a number of components unique to NCS and the VNR paradigm
(Whalen et al., 2004). The neural simulation was executed on a
remote computing cluster and was networked to the other system
components using our Brain Communication Server (BCS) (Choleris
et al., 2007), a publish–subscribe server developed specifically for
integration with NCS. The closed-loop robotic system is shown
schematically in Fig. 1, and the other major components are
described below.
NCSTools - is a software system written in C++ that provides a
number of mechanisms for communicating in real-time with a
running NCS simulation (Goodman et al., 2007). NCSTools accepts
plain text strings from clients connected through a built-in socket
server. Through a custom configuration file, users can then assign
these strings to define the input stimulus or simulation controls
for a running NCS instance. Similarly, NCSTools can be configured
to process simulation reports in a number of different ways, the
results ofwhich can be sent to connected clients through the server
interface. With this mechanism designers of remote tools can
interfacewith neural simulations in away that abstracts them from
the details of the model, ultimately allowing reuse of code without
modification for differentmodels (only the NCSTools configuration
needs to be changed).

The NCSTools server monitors the robotic avatar and creates
the appropriate stimulus for proprioceptive feedback and pre-
motor movement to replicate the role of a biological brainstem.
Similarly, theNCSTools software receives spiking information from
the premotor region of the neural simulation. This activity is moni-
tored, and when a configured threshold is reached the appropriate
command is sent to the robotic avatar, initiating the appropriate
motion.
Virtual robotic interface - was constructed using Webots 5
(Cyberotics, Lausanne, Switzerland). Motions were programmed
in C++ using the provided interfaces and the communication was
accomplished using the NCSTools C++ client.
Gabor filter -is considered one of the better representations
of mammalian visual receptive fields (Jones & Palmer, 1987).
Often used for edge detection, the Gabor filter can spatially filter
an image by frequency and orientation (Mehrotra, Namuduri,
& Ranganathan, 1992). Although Gabor filters provide a good
approximation of human visual processing, the computational
cost is often too high for real-time applications. To reduce
the processing time, a GPU-based Gabor filter application was
developed. The Gabor processing application is designed around
NVidia’s CUDA GPU programming environment. CUDA provides
mechanisms for GPU algorithm development with an emphasis
on high-performance applications. Processing for our simulation
begins with the capture of a 320 × 240 pixel image at a frequency
that is determined by the user during configuration. A 128 × 128
pixel area of interest concentrated on the image is then selected
and grayscale information is extracted. The area of interest is
differenced with the previous frame. This differencing provides
an immediate representation of the motion between the two
frames. The differenced image is then padded with zeros to 256 ×

256 pixels and a fast Fourier transform (FFT) is computed. The
frequency space/domain image is processed with a pre-computed
complex Gabor kernel and the inverse FFT is computed. The
original 128×128 pixel area of interest is extracted and segmented
into a user-defined number of regions. Each resulting values,
especially the ones that are not in the range of [0, 1] are normalized
using the convolution theorem. These values are averaged for each
region and sent directly to the running NCS brain simulation as a
stimulus using the network interface.

3. Behavioral scenario

In our application, a virtual humanoid neurorobot stood behind
a table holding a yellow rod, and this virtual environment was
projected onto a large screen. The human participant sat in front
of a camera placed on a table and held a rod similar to the one
present in the virtual environment. The screen and table were
arranged so that the two subjects faced one another. A dumbbell
was placed on the table, and a similar object was loaded into the
virtual environment at a later phase of the experiment.

The experiment consisted of two phases, a learning phase and
a challenge phase. These were integrated into a single interaction
between the human participant and the virtual neurorobot. During
the learning phase the neurorobot was configured to perform
sequences of vertical or horizontal motions with the rod for
5 s at a time. During this time the motion of the interacting
human was captured by the camera and processed by the system
described in Section 2.3. If the human matched the neurorobot
motion (concordant motion) the brain model learned to trust
the participant. However, if the human performed the opposite
motion (discordant motion) then the brain model caused the
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Fig. 2. Behavioral paradigm of the instinctual trust-the-intent scenario. During
the learning phase, the human matched or mismatched the virtual neurorobot’s
horizontal or vertical motions. During the challenge phase, the human reached for
an object to test the trust instinct of the neurorobot.

neurorobot to build distrust for the human participant. A transition
to the challenge phase could be triggered either manually by
someone monitoring the experiment or automatically by a signal
from the brain simulator. This transition would redirect the visual
information being captured by the camera to a different region
of the brain model designed to control a reaching movement.
During this phase the human reaches for the dumbbell, and if the
neural model has learned to trust the participant the robot hands
over the corresponding object in the virtual environment. If the
neural model has not learned to trust the human participant, the
robot grabs the object and pulls it away from the participant. This
behavioral scenario is illustrated in Fig. 2.

4. Neuromorphic brain architecture

The computational neuromorphic brain architecture consisted
of small regions of the visual (VC), parietal (PR), inferotemporal
(IT), and pre-motor (PM) cortices and the hypothalamus (HYP)
and amygdala (AMY) limbic systems, as shown in Fig. 3. These
regions were represented by 12,000, 16,000, 8000, 8000, 26,000,
and 13,000 neurons, respectively. This an order of magnitude
larger, which improves the functionality of the brain compared
to our previous model for this task (Anumandla et al., 2011).
We used a realistic four-compartment triple apical dendrite
model for the hypothalamic oxytocin cells, where the three
dendrites received stimuli from columns in the visual, parietal, or
inferotemporal cortex, one for each. The three dendrites together
stimulated the hypothalamus, and thus the synapses connecting
the inferotemporal cortex to the hypothalamus learned to trust a
human.

The visual cortex was composed of three columns (reach,
horizontal, and vertical) with 4000 neurons each (2000 excitatory
and 2000 inhibitory). It received input from the external camera,
which captured the humanparticipant’s actions, and differentiated
horizontal, vertical and reach motions from one another.

The parietal cortex was composed of four columns (horizontal,
vertical, trust, and distrust) with 4000 neurons each (2000
excitatory and 2000 inhibitory). It received input from the
neurorobot, based on its motions, and also made the distinction
between trust and distrust.

The inferotemporal cortex was composed of two columns
(E and I pools) with 8000 neurons (4000 excitatory and 4000
inhibitory). It had direct projections fromand to the hypothalamus,
and reinforced the learning synapses for concordant motions.

The hypothalamus was composed of two columns (horizontal,
and vertical) with 13,000 neurons each (10,000 excitatory and
3000 inhibitory). After being activated by VC, PR, and IT the
hypothalamus fully allowed (or not) the inhibition of the amygdala.

The amygdala was composed of two columns (E and I pools)
with 13,000 neurons (10,000 excitatory and 3000 inhibitory). It
was stimulated by a monotonic current to replicate biological
sensory stimuli and by the hypothalamus, and sent information
to the parietal cortex for either trusting or distrusting the human
participant.

The premotor cortex was composed of two columns (trust,
and distrust) with 4000 neurons each (2000 excitatory and 2000
inhibitory). It received input from the parietal cortex, and triggered
the action for keeping (distrust) or giving (trust) the object to the
human participant.
Reach Horizontal Vertical

Horizontal Vertical

Horizontal Vertical

Trust Distrust

Trust Distrust

Fig. 3. Computational neuromorphic brain architecture of the instinctual trust-the-intent scenario. During the learning phase, the dominant pathway depends on
vertical or horizontal motions (dotted line) while during the challenge phase, it depends on the reaching action (dashed line). (VC: Visual Cortex; PR: Parietal Cortex; PM:
Premotor; IT: Inferotemporal; HYPOTH: Hypothalamus; AMY: Amygdala).



134 L.C.J. Bray et al. / Neural Networks 32 (2012) 130–137
Table 1
Description and analysis of the computational neuromorphic brain.

A Model summary

Populations Inferotemporal cortex (IT), visual cortex (VC), parietal cortex (PR), premotor cortex
(PM), hypothalamus (HYP), and amygdala (AMY)

Neuron model Leaky integrate-and-fire, fixed threshold, refractory time
Plasticity STDP
Synapse model Conductance-based
Measurements Membrane potential

B Extrinsic connectivity

Type Description Probability (%) Conductance (mS)

VC/PR/IT–HYP Visual, parietal, and inferotemporal input to the hypothalamus dendrites 10 0.001–0.005
VC–PR After the visual cortex receives input from the activity is projected to the parietal

cortex
10 0.08

HYP_E–AMY_I The hypothalamus activates interneurons to suppresses or not the amygdala 30 0.003
HYP–IT Feedback loop from the hypothalamus to the inferotemporal cortex 10 0.005
AMY_E–PR_I If the amygdala is not suppressed, information is sent to the parietal cortex 10 0.3
PR–PM The parietal cortex is directly connected to the premotor cortex 10 0.01

C Intrinsic connectivity

VC Visual cortex internal connections 10 0.09
PR_I–PR_E Parietal cortex internal connections 10 0.03
AMY_I–AMY_E Interneurons suppressed the amygdala activity based on the hypothalamus firing 10 0.008

D External inputs

Visual stimuli The visual cortex receives input from the external camera through the Gabor filter
which captures human motions

10 Amp = 1 mA

Proprioceptive The parietal cortex receives input from the neurorobot based on its motions 10 Amp = 1 mA
Monotonic The amygdala receives monotonic current to emphasize sensory stimuli 50 Amp = 1 mA
The primarymechanismwas that the hypothalamus stimulated
interneurons (AMY_I), which suppressed the amygdala (AMY_E). If
AMY_E was completely suppressed, interneurons (PR_I) between
AMY and PR were never activated, and thus never suppressed
‘‘trust’’ or PR_E (in the case of concordant motions). However,
if AMY_E was not suppressed because of the lack of activity
(and learning) in the hypothalamus, then ‘‘trust’’ or PR_E was
suppressed (in the case of discordant motions). Depending
on whether the parietal (PR_E) trust or distrust column was
activated, a corresponding pre-motor column (PM) was triggered.
Consequently, a motor command was sent to the Brainstem
subsystem (Peng, 2006), which directed it in turn to the
neurorobot.

STDP (Please see equations in Section 2.1) was used in the
hypothalamic synapses to reinforce learning as the hypothalamus
received a combination of signals from the visual and the parietal
cortices at the same time during concordant motions, and at
different times during discordant motions. This reinforcement
was also accentuated by a feedback loop with the inferotemporal
cortex.

For a better understanding of the network, the description and
the analysis of the neuromorphic brain architecture are given in
Table 1.

5. Results

After the stimulation (described in Section 4) was injected,
the activity in the visual and parietal cortices corresponding
to the human and robot motions along with the hypothalamic
firing increased, as shown in Fig. 4. Significant firing rates (up to
80 Hz above baseline) occurred in the hypothalamus when the
activities of the visual and parietal cortices overlapped in time
(Fig. 4, horizontal and vertical concordant). However, insufficient
consistent firing occurred in the hypothalamus because of
discordant activities in the visual andparietal cortices, even though
therewas the same stimulus from the inferotemporal cortex (Fig. 4,
horizontal and vertical discordant). The feedback loop between the
hypothalamus and the inferotemporal cortex, in addition to STDP,
reinforced these phenomena for learning purposes.

Since the visual, parietal, and inferotemporal cortices connected
to the independent dendrites of the hypothalamus, firing occurred
only when all three dendrites integrated and fired together.
Spiking in the independent dendrites of the hypothalamus
occurred in the case of concordant motions as the neurorobot
learned to trust the human. However, in the case of discordant
motions dendritic firing within the hypothalamus decreased.

During the reaching movement, a relatively significant firing
rate (up to 30 Hz above baseline) occurred in only one of the
parietal decision-making cortical columns, which depended on the
types of motion (concordant or discordant) during the learning
phase. Fig. 5 (left, concordant) shows higher firing rates in the
parietal trust column when compared to the distrust column
during concordant robot–human motions. In this figure, the firing
started between 20 and 25 s after the end of the learning phase
since a reach for an object was performed at that time. In Fig. 5
(right, discordant), the parietal distrust column fired more when
compared to the trust column after discordant robot–human
motion in the learning phase.

Additionally, the synaptic weight distributions of the vertical
and horizontal columns for both concordant and discordant
motions over both phases differed greatly. Whether the motion
was vertical or horizontal, there was a significant increase in the
synaptic weight during concordant motions, as shown in Fig. 6.
It was twice as high as it was for discordant motions due to
STDP present in the hypothalamus synapses. Also, in the case of
concordant robot–human motions, after significant learning has
occurred, the firing in the hypothalamus was strong enough to
inhibit the activity in the amygdala, which thus never shut down
trust in the parietal cortex. However, in the case of discordant
robot–human motions, because there was insufficient or no firing
in the hypothalamus, the activity in amygdala remained active, and
trust never occurred.

By modeling 91,000 neurons, our neurorobot brain has
become much more functional compared to our previous model
(Anumandla et al., 2011) in terms of consistently trusting or
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Fig. 4. Cortical and hypothalamic activities during concordant and discordant motions. Firing rates of three regions (VC: Visual Cortex; PR: Parietal Cortex; HYP:
Hypothalamus) are represented during horizontal concordant (top left), horizontal discordant (top right), vertical concordant (bottom left), and vertical discordant (bottom
right) motions.
Fig. 5. Activity in cortical columns during reaching. Firing rates of three regions (PR trust: parietal cortex trust column; PR distrust: parietal cortex distrust column; VC
reach: visual cortex during reaching) are represented during reaching and after concordant (left) or discordant (right) motions occurred during the learning phase.
Fig. 6. Hypothalamic synapticweights during concordantmotions. The increase
in the weight of hypothalamus synapses are represented during vertical (left) and
horizontal (right) motions during the learning phase.

distrusting the human actor. Consequently, the neurorobot always
learns discordant from concordant motions after a minimum of
four trials. After improving the Gabor filtering mechanism as well
as the brain architecture, the whole system has become more
robust. This allowed higher flexibility and greater margins of error.

As we build and simulate larger and larger brains, we had to
make design decisions regarding hardware and software in order
tomaintain the real-time performance we require. We have begun
design and implementation of a new GPU based version of NCS.
Preliminary results show thatwe are able to increase the number of
neurons we can simulate by an order of magnitude or more. When
this is coupled with multi-spatial simulations (that is the ability
of having different simulator engines for different portions of the
brain all working together), the capabilities our neurorobots will
further extend in the future.

6. Conclusions

We modeled unique biological aspects of a mammalian brain
related to the establishment of trust, including firing in the
hypothalamus based on dendritic potentials, and the roles of
oxytocin and the amygdala. The hypothalamic oxytocin cell model
was developed as a realistic four compartment triple apical
dendrite model where each dendrite receives stimulus from one
of the three cortical columns: visual, parietal, and inferotemporal
cortices. Our objective of increasing cooperativity between a
virtual neurorobot and a human was achieved, in a model where
the release of oxytocin into the hypothalamus (Bergquist & Ludwig,
2008; Komendantov, Trayanova, & Tasker, 2007; Neumann, 2007;
Sabatier, Rowe, & Leng, 2007) is strengthened by reinforcement
learning (Hurlemann et al., 2010) for concordant motions. This
activity in turn inhibited the amygdala, which was responsible
for cutting down cortical decision-making circuits. Thus the trust
levels of the virtual neurorobot went up, whereas in the case of
discordant behavior during learning there was no trust reaction
due to the lack of inhibition in the amygdala. Our findings
replicated the experimental results of Paukner et al. (2009), which
demonstrated similar behavior in capuchin monkeys.
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The trust established in our neurorobot is more consistent over
several experiments than in our earlier report due to the improved
Gabor mechanism and the higher number of neurons in every
region of the brain. We conclude that our system is functional,
robust, and biologically plausible.

The visual stimulus plays a dominant role in the VNR paradigm
presented here, and the results demonstrated that role is sufficient
in the trust building and decision making processes. This visual
dependence has been illustrated in other studies, but is not
a requirement in establishing trust (Tosoni, Galati, Romani, &
Corbetta, 2008). As more advanced architectures are constructed
based on these results, additional external stimuli such as facial
recognition, auditory learning, or mirror neurons (Fitch, Huber, &
Bugnyar, 2010) can complement or replace the visual cues.

The initial enhancements done on our hardware and software
platforms allowed the experiments to run real-time simulations.
The adequate processing power can handle a larger and more
complex brain, especially the forward and reverse conductance
between soma and dendrites of the hypothalamus.

We are now using this model as a basis for building complex
neuromorphic brain architectures related tomemory, trustworthi-
ness, and social interactions. These were implemented on virtual
robots in order to develop intelligent social agents using the VNR
paradigm. Furthermore, insights into the functions of oxytocinmay
ultimately provide therapeutic benefits in neurological disorders
such as autism (Andari et al., 2010; Hollander et al., 2003).
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