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Abstract

Adding value to action-selection through

reinforcement-learning provides a mechanism for modifying

future decisions of real and artificial entities. This

behavioral-level modulation is vital for performing in complex

and dynamic environments. In this paper we focus on three

classes of biologically inspired feed-forward spiking neural

networks capable of action-selection via reinforcement-learning

embodied in a minimal virtual agent. Their ability to learn

two simple games through reinforcement and punishment

is explored under varying levels of noise and feedback.

There is no bias or understanding of the task inherent to

the networks and all of the dynamics emerge based on

environmental interactions. Value of an action takes the

form of reinforcement and punishment signals assumed to be

provided by the environment or a user. The variation in the

four classes arises from different levels of network complexity

based on differences in network architecture, the nature of

network interactions including the interplay between excitation,

inhibition and reinforcement, and the degree of bio-fidelity of

the model. A novel aspect of these models is that they obey the

constraints of neuromorphic hardware that are currently under

development, including the DARPA SyNAPSE neuromorphic

chips for very low power spiking model implementations.

The simulation results demonstrate the performance of these

models for a variant of classic pong as well as a first-person

view selection task. Embodying models in games allows for

the creation of environments with varying levels of detail that

are ideal for testing spiking neural networks. In addition, the

performance results suggest that these models could serve as

building blocks for the control of more complex robotic systems

that are embodied in both virtual and real environments.
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1 Introduction

The combination of action-selection and

reinforcement-learning in biological entities is essential for

successfully adapting and thriving in complex environments.

This is also important for the effective operation of intelligent

agents. However, strategies for embedding artificial intelligence

have resulted in agents with limited demonstrable emergent

properties. Because of this, it is still unreasonable to deploy a

neurorobotic entity and expect it to learn from and perform in

its environment the same way biological entities can. Similarly,

neural models require complex and varied input signals in order

to accurately replicate the activity observed experimentally.

One strategy for creating this complex stimuli is through

immersing a model in a real or virtual environment capable of

providing the feedback necessary for the model to extract value

and interact appropriately. These are part of the motivations

for the DARPA SyNAPSE program [13, 21]. Through the

creation of low-power neuromorphic architectures both suitable

for efficient remote operation and capable of replicating many

of the biologically salient features of neural systems, the

program can reduce the technological and theoretical barriers

of embodied modeling.

Embodied modeling can be described as the coupling

of computational biology and engineering. This can be

accomplished in many different ways but games are one of

the most beneficial for exploring those. The varying levels

of complexity combined with quantifiable performance result

in environments appropriate for testing many different levels

of biological fidelity. Two of the most basic aspects of

playing those games are action-selection and reinforcement

learning. These are important for making decisions based on

past experience to achieve the desired outcomes.

Action selection is the appropriate negotiation of competing

signals. In the mammalian nervous system the complex circuitry

of the Basal Ganglia (BG) is active in gating the information

flow in the frontal cortex by appropriately selecting between

input signals. This selection mechanism can affect simple

action all the way up to complex behaviors and cognitive

processing [8]. Although overly simplified, it can be helpful to

relate the BG to a circuit multiplexer, actively connecting inputs
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to outputs based on the current system state.

Reinforcement or reward learning (RL) is the reinforcement

of actions or decisions that maximizes the positive outcome

of those choices. This is similar to instrumental conditioning

where stimulus-response trials result in reinforcement of

responses that are rewarded and attenuation of those that are

not [7]. Reinforcement-learning in a neural network is an ideal

alternative to supervised learning algorithms. Where supervised

learning requires an intelligent teaching signal that must have a

detailed understanding of the task, reinforcement learning can

develop independent of the task without any prior knowledge.

Only the quality of the output signal in response to the input

signal and current contextual state of the network is needed.

In this work we focus on three different classes of small

biologically inspired feed-forward spiking networks capable

of action-selection and reinforcement-learning while immersed

in a virtual environment. Each is suitable for realization on

the neuromorphic hardware developed under the SyNAPSE

project and provides a theoretical framework for testing future

novel reinforcement-learning algorithms. These networks are

embodied in a minimal virtual agent and their ability to learn a

simple ping-pong game through reinforcement and punishment

is explored. There is no bias or understanding of the task

inherent to the network and all of the dynamics emerge based

on interactions with the environment. Value of an action takes

the form of simple reinforcement and punishment signals. This

concept is then extended by exploring how these networks

can be combined to perform more complex actions. Towards

this goal, a first-person view environment was developed. A

model combining multiple RL networks was then constructed

and trained to identify the most appropriate object in its

environment.

In addition to supporting hardware validation, the resulting

models are ideal for simple robotic embodiments and

are capable of demonstrating reinforcement-learning and

action-selection in different ways. Similarly, the two games

developed for testing these networks illustrate the utility of

embodied modeling in competitive environments.

There have been a number of research efforts aimed at

utilizing games to explore action-selection and reward learning.

For instance, Wiles et al. [25] developed a spiking neural model

to control a rat animate performing phototaxis. The network was

constructed to perform the task similar to a Braitenberg vehicle.

Burgsteiner et al. [5] created a liquid state machine using a

recurrent network with fixed internal synapses and plastic output

synapses that learned a similar task.

The model of Arena et al. [1] consisted of three layers

of Izhikevich neurons to control a virtual robot with several

sensory modalities. The networks were constructed with an

initial understanding of how to process low-level sensor input

such as proximity and contact sensors as well as visual cues.

These were used to direct the robot through the environment.

Simultaneously, the network learns to perform this navigation

using range-finding sensors. The inherent low-level sensors

essentially train the network on how to respond to the high-level

sensors.

Florian et al. [9] evolved a fully recurrent spiking neural

network to control a simple virtual agent to seek out, push and

release balls in its environment. An evolutionary algorithm

was used to calculate the synaptic weights of the network to

accomplish the task.

Barr et al. [3] implemented a mode of the basal ganglia on a

neural processor array. Although not directly demonstrated in

the hardware presentation, the original software neural model

was capable of performing action selection. However, there

are no inherent mechanisms for reinforcement-learning and the

micro-channels of the basal ganglia were predefined by the

network.

Merolla et al. [13] presented a neuromorphic processor

capable of playing a game of pong against a human opponent.

This description was later extended by Arthur et al. [2]. The

network was constructed off-line and once programmed on

the hardware remained static. In that, a neural network,

consisting of 224 neurons, that could also play a pong style

game was created. The network was constructed off-line and

was demonstrated on a neuromorphic processing core. Training

involved teaching the network to predict different patterns of

motion by the puck. Rather than simply tracking it, like the

networks here, the model would plan where the paddle must be

placed. The resulting networks, however, are specialized for that

task and can not adapt to changing environments once embodied

in hardware.

2 Design and Methods

2.1 Neuron Model

The neural model supported by the initial SyNAPSE hardware

is the Leaky-Integrate and Fire (LIF) neuron. The LIF model is

defined by

Cm
dV

dt
= −gleak(V − Erest) + I. (1)

where

Cm is the membrane capacitance.

I is the sum of external and synaptic

currents.

gleak conductance of the leak channels.

Eleak is the reversal potential for the background

leak currents.

As the current input into the model neuron is increased the

membrane voltage will proportionally increase until a threshold

is reached. At this point an action potential is fired and the

membrane voltage is reset to the resting value. The neuron

is placed in a refractory period for two milliseconds where no

changes in the membrane voltage are allowed. If the current is

removed before reaching the threshold, the voltage will decay

to Erest. The LIF model is one of the least computationally
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intensive neural models but is still capable of replicating many

aspects of neural activity [6].

The connections between neurons are modeled by

conductance-based synapses. The general form of that

influence is defined as

Isyn = gmax · geff · (V − Esyn). (2)

where

gmax is the maximum conductance for the

class of synapse.

geff is the current synaptic efficacy between

[0, 1].
Esyn is the reversal potential for that particular

class of synapse.

Although the synapses are conductance based the buffering and

reuptake of neurotransmitter is treated as a pulse event lasting

one time step. In that way it is similar to current based synapse.

For numerical integration An Euler method is used with time

step τ = 1ms.
Learning at the synaptic level is achieved through the

spike-timing dependent plasticity rules defined by Song et al.

[19]:

ġeff = PijXi(t)−DijXj(t−∆ij) (3)

Ṗij = −
Pij

τ+
+A+Xj(t−∆ij) (4)

Ḋij = −
Dij

τ−
+A−Xi(t), (5)

where Xj(t) is the spike train of neuron j defined as a sum of

Dirac functions over the action potential times tAPk

j equal to
∑

k δ(t− tAPk

j ), Pij is the potentiation, modeling the influence

of incoming spikes, andDij is the depression value, tracking the

influence of outgoing spikes. The global parameter values used

in this study are presented in Table 1.

Table 1: Global model parameters

Parameter Value

Cm 1. (pF)

Eexc 0. (mV)

Einh −80. (mV)

Vrest 0. (mV)

A+ 0.025
A− 0.026
τ+ 20. (ms)

τ− 20. (ms)

The spiking neural networks were simulated using the

HRLSim
TM

package [14]. HRLSim
TM

is a distributed CPU and

GPGPU spiking neural simulation environment. HRLSim
TM

was developed to support the modeling aspects of the

SyNAPSE project. It has also been effective in general neural

simulation studies [15, 20, 22, 23]. The experiments in

HRLSim
TM

are defined in C++—providing higher performance

as well as compile and run time optimizations. In addition,

embodying of models can be accomplished using different

mechanisms; including compiling the environment directly into

the experiment.

2.2 Networks

Three possible embodied networks are presented here.

Initially, each of these networks have no knowledge or inherent

understanding of their environment. The behavior is learned

through feedback from the environment in the form of reward

and punishment signals that can be encoded as either random or

structured spike events. These strengthen or weaken the synaptic

connections between neurons.

2.2.1 Excitatory Only Network. The first model explored

was a simple feed-forward network that consists of 70 excitatory
neurons, Figure 1. The input and output layers are divided

into channels represented by populations of neurons. The

connections between the layers are diffuse and are randomly

established— resulting in no intentional bias between channels.

The parameters are presented in Table 2. Note that each output

neuron receives a maximum of 16 inputs.

Figure 1: Excitatory neuron only network

Table 2: Parameters for the excitatory only network

A. Neuron parameters

Neural Region
Neurons

Per Channel

Input 3
Output 3
Reward 1

B. Connections

Source→ Destination
Synaptic Conductance

(gmax) · (geff )
Number of Incoming

Connections (total)

Input→ Output (10.0) · (0.25) 15
Reward→ Input (10.0) · (1.0) 1

2.2.2 Lateral-Inhibition Network. As an extension of this

idea, lateral inhibition between the output populations is added,
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as shown in Figure 2. These diffuse connections create an

on-center off-surround activity pattern where the most active

population suppresses the other output populations. The

parameters of this model are included in Table 3.

Figure 2: Lateral-inhibition network

Table 3: Parameters for the lateral-inhibition network

A. Neuron parameters

Neural Region
Neurons

Per Channel

Input 3
Output 3
Inhibition 3
Reward 1

B. Connections

Source→ Destination
Synaptic Conductance

(gmax) · (geff )
Number of Incoming

Connections (total)

Input→ Output (10.0) · (0.25) 15
Output→ Inhibition (10.0) · (1.0) 15
Inhibition→ Output (10.0) · (1.0) 15
Reward→ Input (10.0) · (1.0) 1

2.2.3 Basal Ganglia Direct Pathway. The third network

presented is an implementation of the direct pathway of the

BG, Figure 3. This network emulates the physiological activity

of the rodent BG direct pathway where the neurons of the

SNr are tonically active, firing around 30 Hz. This basal

activity is suppressed by the inhibitory afferents of the striatum,

resulting in a disinhibitory mechanism of action. Learning

occurs between the cortex and the neurons of the striatum to

develop the appropriate input-output channel combinations.

Physiologically neurons in the SNr are tonically active,

however, the LIF neuron is not capable of replicating that

spontaneous activity. To compensate, a Poisson random

excitatory input is introduced into the SNr populations. In

addition, low-level uniform random noise is injected into

the membrane voltage of the neurons in the network. The

parameters of this model are included in Table 4.

2.2.4 Combined Reward Learning Network. Although

simple, these networks are capable of distinguishing competing

inputs under noisy conditions. They can also be used as

building blocks to perform more complex tasks. To illustrate

this concept we combine three of the lateral-inhibition networks

of Section 2.2.2. Each network is divided into multiple channels

with the outputs of two of the channels directly connecting to

the corresponding input channel of the third, Figure 4. The

connections are made one-to-one at a weight of 0.5, with output
channel 1 connected to input channel 1, output channel 2 to input
channel 2, and so on.
As illustrated in Figure 4, each network receives a different

input signal. Through reinforcement the networks can learn

to appropriately respond to different combinations of inputs.

Here, these are used to dynamically solve a first-person view

identification task, described below.

Figure 3: basal ganglia direct pathway network.

Table 4: Parameters for the basal ganglia direct pathway

A. Neuron parameters

Neural Region
Neurons

Per Channel

Cortex (Ctx) 4
Striatum (Str) 3
Substania Nigra

pars reticulata
(SNr) 3

Excitatory 9
Reward 6

B. Connections

Source→ Destination
Synaptic

Conductance

Number of Incoming

Connections (per channel)

Ctx→ Str 0.1 4
Str→ Str (diffuse) 10.0 3
Excitatory→ SNr 0.08 3
Str→ SNr 10.0 3
Reward→ Str 10.0 6

2.2.5 Stimulus Learning. Learning in the experiments

is driven by a conditioned stimulus injection. Stereotyped

spiking signals are sent to an input population and the reward

populations. The timing of the signal is delayed for the target

channel so the synaptic weights between the input populations

and the desired output populations are potentiated, while all
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Figure 4: First-person view identification control network.

Three lateral-inhibition networks from Section 2.2.2

are combined to perform more complex tasks

other channels are depressed. The stimulus period lasts for

either 300 or 500 ms depending on the experiment.

2.3 Games

2.3.1 Pong. To illustrate the capabilities of these networks a

pong style virtual environment was implemented. This version

of the game has a single player controlling the paddle at the

bottom of the board. The puck bounces off of the left, right

and top walls with minimal physics that change the speed of the

puck based on the angle of incidence with the wall. The player

has to move the paddle to block the puck from falling through

the bottom of the game board.

The gamewas developed in different stages. First, A mock-up

of the game was created in Python using PyGame [18]. A game

controller was then developed in C++. However, the controller

has no visualization capabilities. It compiles directly into the

HRLSim experiment and provides the virtual environment for

the networks. The output of the environment is recorded by the

controller and can then be played back by the Python visualizer.

The position of the puck in the game space is encoded

and sent to a number of discretized neural channels. Each

of these channels represents a vertical column of the game

board. The input signal is Poisson random spike events with

a rate determined by a Gaussian curve, described below. This

provides a noisy input signal with overlap between channels.

The networks signal, through a winner-takes-all mechanism, the

position of the paddle.

The location of the puck on the map determines the peak

amplitude and center of a Gaussian function defined as

fXc
(b) = ae−(

(Xc−b)2/2c2) (6)

where

a Peak amplitude of the Gaussian function,

b Center of the Gaussian function,

c Spatial width or σ of the Gaussian function,

Xc The non-dimensional location of the channel.

The peak amplitude and Gaussian center are defined as

a = Y ∗ ·Rmax (7)

b = X∗ (8)

where

Y ∗ Non-dimensional location of the puck in the y
dimension,

Rmax Maximum input stimulus in Spikes/s,
X∗ Non-dimensional location of the puck in the x

dimension.

This is visualized in Figure 5 for a spatial width of c = 0.035.
The reward or punishment to the network arrives when the puck

reaches the bottom of the game board.

2.3.2 Pong Controller. The paddle is controlled by a simple

proportional controller. The environment receives discrete

locations from the neural network. The location on the screen

that the paddle has to move to is calculated based on these

discrete locations. Its velocity in the X direction is defined by

Vx = Vmax · P. (9)

The variable P is the output of the proportional controller

defined by

P = k · e. (10)

Where k is the gain variable and e is the error between the target
and current locations

e = XLocation −XTarget (11)

The output of the proportional controller,P , is a piecewise linear

function that is dependent on the distance from the target.

P =







−1 −e < − 1

k
1 e > 1

k
e− k |e| ≤ 1

k

This ensures that the speed of the paddle does not exceed the

maximum defined velocity. The pivot point 1

k is calculated by

setting k · e = 1. In addition, the proportionality constant k is

less than 1 to ensure that the paddle slows down as it gets closer
to its target.

2.3.3 First-Person View Identification Task. The

first-person view (FPV) identification task is modeled after

some of the original first-person games; such as [12]. In

this implementation the player moves along a specified path

controlling its forward movement, where its attention is focused

laterally, and selecting which object in its view is important.

Similar to the pong environment described above this was

implemented at different levels of abstraction. The game

engine and visualization was developed in Python, with the

latter using PyGame [18] and the Pyggel library [16]. The
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Figure 5: Pong game board disrectizations for a 10 channel

network. The spatial width, c, is 0.035. In the top

row is the stimulus maps for channel 2. The middle

row illustrates the overlap between two consecutive

channels. The bottom row shows how the location of

the puck (top) translates to input stimulus for each of

the 10 channels (bottom)

game engine is separated from the visualization to facilitate

faster simulations and communication with the simulations is

provided through a socket server. The engine and the simulation

are synchronized—performance is determined by the slowest

component.

There are two types of game elements in the current

version—black blocks that the player must target and blue

blocks the player must ignore. Each of these creates a different

input into the black and blue channels respectively. It is assumed

that a separate mechanism identifies the element and determines

which channel is stimulated. The arena is a square track

with equal width, Figure 6. As the player moves through the

environment game elements enter into the view of the player.

Elements in the players POV are picked up and their location

in that view creates the input stimulus injected into the saliency

channels of the network.

(a)

(b)

Figure 6: Example stimulus encoding and FPV game board. (a)

Target element only. (b) Target and benign elements

The game board is discretized based on the player’s

perspective. The hemispherical point-of-view (POV) for the

player is partitioned into a rectangular region, Figure 7a. The

POV is then segmented into discrete channels with centers at

equally spaced angles along the hemisphere, Figure 7b. This

defines the center for each of the channels that are represented

by the network, Figure 7c. The channels create a pie-shaped

region of interest, Figure 7d, which have arc lengths with a

10 percent overlap between channels, Figure 7e. Each of the

segments defines that channels stimulus map, which is described
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by a Gaussian function, Figure 7f.

(a) (b) (c)

(d) (e) (f)

Figure 7: FPV Discretization. (a) A rectangular frame is

taken from the hemispherical point-of-view (POV)

of the player. (b) The POV space is discretized

into equal segments (channels). (c) The resulting

frame segments the players view of the world. (d)

Each of the channels is centered along equal angular

steps about the space with arc-lengths defining the

stimulus regime for that channel. (e) The channels

are constructed with overlapping stimulus regions

to create a noisier environment for the networks to

negotiate. (f) The stimulus space for a single channel

is defined by a Gaussian function that is railed to the

segment boundary

fΘc
(b) = ae−(

(Θc−b)2/2c2) (12)

where

a Peak amplitude of the Gaussian function.

b Center of the Gaussian function.

c Spatial width or σ of the Gaussian function.

Θc The non-dimensional angular location of the

channel.

The peak amplitude and Gaussian center are defined as

a = r∗ · Rmax (13)

b = Θ∗ (14)

Where

r∗ Non-dimensional location of the element in

the radial dimension.

Rmax Maximum input stimulus in Spikes/s.
Θ∗ Non-dimensional angle of the element relative

to the player.

For this implementation the game engine directs the stimulus.

Figure 6a illustrates the stimulus for a black element in the

players POV. Figure 6b illustrates what the stimulus for the two

different game elements would be.

3 Results

Initially, all of the networks are randomly constructed and, in

the absence of feedback, the synaptic weights change randomly.

When immersed in the game environments the weights form

input-output pairs with maximal synaptic efficacy. How rapidly

those pairs are formed as well as how effective the network is

under these tasks will affect how it performs in the environment.

3.1 Pong Performance Analysis

There are a number of additional factors that determine the

network’s performance in the game tasks. The first is the

spatial width of the Gaussian stimulus curve, c. This affects the
overlap between channels—the larger the value of c the larger

the overlap. For testing we use three spatial widths: 0.025,
0.035, 0.045. The next factor is the peak of the Gaussian

stimulus curve—the larger the value the more active the input

channels become. Two input peaks, Rmax, are used, 10 Hz and

40 Hz. Finally, the length of reward is an important factor. This

determines how long a feedback stimulus lasts and can affect the

magnitude of the change in synaptic efficacy. Two values are

chosen for this: 300 ms and 500 ms. For each combination of

these parameters 5 simulations of 500 seconds were completed.

The accuracy, (saves/opportunities) ·100, is computed for 25
second windows and the average of 5 simulations is presented.

3.1.1 Excitatory Only Network. Figure 8 presents the

results of the pong performance of the excitatory network.

The network struggles when the input stimulus is too high

(40 Hz results). However, for the lower activity stimulus the

performance is similar throughout the spatial widths. This

network benefits most from a longer reward period and in those

cases not only does the variability in the 10Hz peak input results
go down but the overall performance is better throughout the

spatial widths. As the peak input stimulus is raised, the results

for c = 0.025 are comparable to the lower input stimulus.

However, this performance is lost again as the spatial width is

increased.

3.1.2 Lateral-Inhibition Network. The interneurons in the

lateral-inhibition (LI) network suppress the overall activity of

the output populations resulting in lower rates and more control

than the excitatory only network. This directly affects the

changes in the output weights, which are much smaller than

in the excitatory case (not shown). Figure 9 illustrates the

performance of the network as it learns the rules of the game.

Figure 10 presents the pong performance results. For the 10
Hz stimulus the network performs considerably better than the

excitatory network results of Figure 8. The variability in the

standard deviation is much lower and the overall performance

is higher (not shown). However, when the peak input stimulus

is higher the performance drops considerably. When the reward

time is increased to 500 ms the overall performance throughout

the parameter space is surprisingly consistent. The slopes in
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Figure 8: Excitatory network pong performance. Top: 10 Hz

stimulus peak. Bottom: 40 Hz stimulus peak. The

y-axis is the accuracy of the network. A value of 100
means the network blocked all of the pucks in that 25
second block

the accuracy curves are slightly different but all approach an

accuracy of 100 percent.

3.1.3 Basal Ganglia Direct Pathway. In the BG direct

pathway network a channel is activated through disinhibition

facilitated by the Str neurons. As a consequence of this

increased activity, the peak value of the input stimulus for the

BG direct network needs to be higher than the other networks

to sufficiently activate the desired channel. Because of this

the lower input rate is set to 50 Hz and the higher rate is

set to 80 Hz. With a 300 ms reward period the BG direct

network performs well for small spatial widths, Figure 11. As

the overlap is increased however, the performance degrades

quickly. Increasing the reward period to 500 ms improves the

performance of the network for the first two spatial widths,

Figure 11. When the spatial width is 0.045 the performance

is improved, but it fails to perform as well as the LI network.

3.1.4 Learning Capabilities. An important characteristic of

this class of networks is the ability to not only learn arbitrary

pairs but then later learn new ones. The rules of the game

can be changed and through the same feedback mechanisms

the networks will adjust to the new rules. This scenario is

illustrated by the spiking activity presented in Figure 12. The

stages, marked by the letters in the center are:

A. The network is initialized with all input/output connections

have a synaptic USE value of 0.25; as illustrated in

Figure 12a by the heat map of the average weights between

input/output populations.

B. A Poisson random input is injected into consecutive

channels for 10 seconds to establish the basal activity of

the network. The resulting average synaptic weight matrix

is shown in Figure 12b.

C. Alternating reward signals are sent to establish single

input/output pairs. The weight matrix is now dominated

by the diagonal shown in Figure 12c.

D. The repeated Poisson input signals from B are injected

for 10 seconds. After this, the weight matrix shown

in Figure 12d demonstrates further potentiation of the

established input/output pairs and a continued depression

of the other connections.

E. An opposite set of input/output associations are established

using alternating reward signals. For stable retraining of

the network the reward protocol needs to be about twice

as long as the original training. The new weight matrix is

shown in Figure 12e.

F. 10 seconds of the repeated Poisson inputs illustrate the

newly established input/output pairs, Figure 12f.

The importance of this capability should not be overlooked.

Adapting in changing environments is essential for an entity to

thrive. This adaptation is similarly vital for artificial agents and

for the successful deployment of neuromorphic models.

3.2 First-Person View Identification

The combination of three LI networks allows for more

complex decision making. The individual networks can learn

to weight different classes of input information based on reward

feedback and the results can be combined to perform different

tasks. In the network presented here each of the subnetworks has

9 channels, with the Black and Blue subnetworks both feeding

into the action selection (AS) subnetwork. The AS subnetwork

also receives saliency information from the environment.

Using the same stereotyped reward mechanisms, the FPV

network can be trained to perform more complex action

selection tasks, Figure 13. In this case the Black and AS

subnetworks have learned a one-to-one correlation, while the

Blue subnetwork has been effectively disconnected. The result

is that the saliency information alone is not enough to cause the
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Figure 9: Lateral Inhibition network pong game play. The input signal corresponds to the position of the puck. Notice that the time

course runs along the y-axis from top to bottom. The x-axis is the corresponding channel. (a) 0− 20 seconds. The network
has minimal responds. (b) 180− 200 seconds. The pair correlations become more defined and the output directly follows

the input

AS network to cross the selection threshold. A complementary

input is required from one of the other subnetworks, in this

instance only a black game element can contribute, Figure 14.

The resulting network learns to ignore the blue elements while

focusing on the black ones.

When placed in the FPV environment the network can move

through the board and select the appropriate elements when

in view. In addition, when presented with both types of

game elements, the network can appropriately select the black

element, even when a blue one is closer to the player, Figure 15.

4 Conclusion

4.1 Pong

The learning of channel associations is somewhat arbitrary

in the examples presented here. The correlation between input

and output populations can in fact be engineered to have more

complex relationships than a simple pair. As illustrated by the

FPV network results, other combinations can be created as well

as mechanisms for more intricate information processing.

The tracking of the puck in the pong networks is reactive,

with movements made based on the current position in the

game. In the future this concept will be extended to include

predictive control of the paddle. A recurrent network capable of

learning these kinds of associations could be included along side

the reactive networks presented here to achieve this. Initially

all of the weights would be random. Through the feedback

mechanisms demonstrated here the reactive networks can be

trained to track the position of the puck. This learned behavior

can then be used as an training signal to the predictive networks.

4.2 First-Person View Identification

First-person games have been extremely popular in Artificial

Intelligence (AI) research. The complex interactions between
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Figure 10: LI network pong performance for 300 ms reward.

Top: 10 Hz stimulus peak. Bottom: 40 Hz stimulus

peak. The y-axis is the accuracy of the network. A

value of 100 means the network blocked all of the

pucks in that 25 second block

the environment, game elements and multiple players, challenge

non-player controllers in unique ways. This popularity has even

led to competitions, such as the Botprize, where the goal is to

create the most “human like” AI controller [4].

Due to the different strategies required to successfully play a

modern FPV game, traditional AI domains have dominated [17,

24]. It is the complexity of the task that makes it attractive

to embodied modeling. The approach taken here relies on

abstracting some of that complexity away. As the networks

become more capable other aspects of the FPV paradigm can

be added.
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Figure 11: BG Direct pong performance. Top: 10 Hz stimulus

peak. Bottom: 40 Hz stimulus peak. The y-axis is

the accuracy of the network. A value of 100 means

the network blocked all of the pucks in that 25 second
block

4.3 Future Work

These simple feed-forward networks are a satisfactory start

to employing the SyNAPSE neuromorphic architecture in

embodied modeling. Alone they can be utilized as configurable

controllers but their real potential lies in their use as building

blocks in more complex control systems. We have already

demonstrated how these can be connected together in a simple

configuration but in the future these will be combined with

more sophisticated networks. For example, recurrent networks

can provide, through feedback, state information of the system.

This basic form of short-term memory can process the temporal

aspects of a system’s inputs and allow for more intelligent

processing.
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Figure 12: Left: Example lateral inhibition network reward-learning scenario. Activity rate map of the example scenario. Activity

was calculated using a moving Gaussian weighted window. Right: Average and maximum synaptic weights between

input/output pairs after learning. (a) 0 sec. (b) 10 sec. (c) 11 sec. (d) 21 sec. (e) 22 sec. (f) 33 sec
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Figure 13: FPV network learning capabilities
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Figure 14: FPV single channel activity after training. The

saliency input alone is not enough to push the AS

subnetwork above the selection threshold (dashed

gray line). The addition of a blue stimulus is ignored

and thus does not contribute to the AS subnetwork

activity. When a black element stimulus is added the

activity of the AS subnetwork is driven passed the

selection limit and that channel is selected

Although the performance of the BG direct pathway is

slightly lower than the LI network for the tasks presented

here, it is still an extremely useful building-block for future

models. Physiologically, the mammalian basal ganglia

achieves action-gating by removing its inhibitory influence on

thalamocortical relay neurons. This allows information from

higher cortical areas to pass through the thalamus to other brain

areas. This type of action-gating is replicated by the BG model

presented here and can perform a similar function in larger

neural models.

Finally, the feedback for these networks was dependent

on conditioned input stimulus to the reward modulation

populations. The games played the role of the critic. In the

future, more sophisticated reward and punishment signals, such

as those in Florian et al. [10] and Friedrich et al. [11], will be

implemented to find a generic reward critic and more efficient

controllers.
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