
Submission No.---to be inserted—INGNORE THIS LINE

1



Abstract—Sign languages are as capable of expressing human

thoughts and emotions as traditional (spoken) languages. The

distinctive visual and spatial nature of sign languages makes it

difficult to develop an interfacing system as a communication

medium platform for sign language users. This paper targets this

problem by presenting some explorations in the areas of computer

graphics, interface design, and human-computer interaction with

emphasis on software development and implementation. We

propose a sign language interfacing system, as working platform,

that can be used to create virtual human body parts, simulate

virtual gestures, and construct, manage and edit sign language

linguistic parts. It is expected that the system and the results

presented in the paper would provide an example for the future

sign language “editor.”

Index Terms—Graphical user interfaces, human gesture

simulation, interactive systems, sign language.

I. INTRODUCTION

IGN languages have been proven linguistically to be

natural languages [1], [2], just as capable of expressing

human thoughts and feelings as traditional languages are. The

visual and spatial nature of sign languages contributes to the

lack of “editors” in such languages. The current writing

systems, while making full use of various suggestive 2D icons

or phonetic symbols, are indirect, unnatural transcriptions and

transformations of the 3D expressions inherent in sign

languages. This symbol representation for a sign language is,

in fact, like a text encoding of spatial contents.

To address these problems, we draw from computer

graphics and human-computer interaction (HCI), specifically

human body modeling, user interface design, and software

implementation, to develop a framework of a sign language

interfacing system which we call sEditor. Based on an

Manuscript received August, 10, 2012. This work was supported in part by

the National Science Foundation under Grant number IIA-1301726.

Beifang Yi is with the Department of Computer Science, Salem State

University, Salem, MA 01970 USA (email: byi@salemstate.edu).

Xusheng Wang is with the Department of Mathematics, Computer Science

and Cooperative Engineering, University of St. Thomas, Houston, TX 77006

(email: xwang@stthom.edu).

Frederick C. Harris, Jr is with the Department of Computer Science and

Engineering, University of Nevada, Reno, Reno, Nevada 89557 USA (email:

fredh@cse.unr.edu).

Sergiu M. Dascalu is with the Department of Computer Science and

Engineering, University of Nevada, Reno, Reno, Nevada 89557 USA (email:

dascalus@cse.unr.edu).

expanded version of [3], we present this system.

Considering biomechanics, a virtual human body is first

constructed as a set of functional body components. Using the

virtual body and focusing on the creation of natural hand

configurations and the application of body joint motion

constraints, virtual gestures are created by controlling the

movements of the functional components. From the virtual

gestures, sign language linguistic parts can be constructed by

using the Movement-Hold Model. A graphical user interface

supports the operations of gesture generation and editing,

gesture database management, and creation, editing, storage,

and retrieval of sign language linguistic parts.

Under the Fedora Core of Red Hat Linux operating system,

sEditor is implemented in C++ and OpenGL and uses the

Coin3D graphics library (an Open Inventor clone). The GUI

interface is implemented using the Qt API and C++. It also can

run in the VMware Virtual environment under Windows 7.

sEditor is designed to support constructing, managing, and

editing virtual gestures. From these signing components, then

sign language linguistic components, then phonemes and

finally sentences can be created. To support other linguistic

components, components may be stored and retrieved from

sign language databases.

The organization of this paper is as follows: Section 2

presents related literature. Section 3 overviews the interfacing

system. Section 4 discusses modeling and simulation of the

human body. Section 5 presents the design, creation, and

management of virtual gestures. Section 6 discusses the

creation of sign language linguistic parts. Section 7 presents a

discussion. See http://cs.salemstate.edu/~byi/sEditorDemos/

for additional related materials.

II. RELATED LITERATURE

An early interactive system analyzed and modeled the

complex hand and arm movements of sign language [4].

Through the reconstruction and manipulation of actual sign

movements, this system was designed to convey American

Sign Language (ASL) essential grammatical information using

line drawing.

The Dictionary of ASL on Linguistic Principles (DASL [5]),

now the Multimedia Dictionary of American Sign Language

(MM-DASL [6]), presents ASL signs in full-motion (video of

ASL entries), enabling users to search for words by entering

English words or ASL pronunciation criteria.

Live-action video clips with graphical user interfaces

sEditor: a Prototype for a Sign Language

Interfacing System

Beifang Yi, Xusheng Wang, Frederick C. Harris, Jr, and Sergiu M. Dascalu

S

mailto:byi@salemstate.edu

Submission No.---to be inserted—INGNORE THIS LINE

2

support sign language studies. For example, SignStream is a

multimedia database tool designed to facilitate ASL linguistic

and computer vision research on visual-gestural language [7],

[8]. Data from native signers are collected with video

collection equipment and users can enter annotation

information into data distinct fields [9], [10]. The video clips

and associated linguistic annotations are available in multiple

formats for ASL studies and gesture analysis. One example

concerns the design of an online web browser for the deaf

community [11]. It provides hyperlinks within video in a sign

language-based, text optional web environment.

Today, lifelike virtual human figures can be constructed

[12], [13]. Human avatars can imitate human actions and even

facial expressions. All the body joints and featured parts (such

as eyebrows or mouth), represented as various parameters, are

controlled in their motions, allowing the creation of virtual

gestures.

The use of virtual human figures in sign language studies is

a popular approach [14]-[18]. However [19] provides

framework concepts and [20] provides sign language gesture

issues (with respect to modeling transitions between signs,

modeling inflectional processes, and related concerns) to

inform virtual signing systems.

Human avatars (i.e., virtual human bodies) may provide

advantages over videos of native signers ([9], [10], [14], [15],

[16], [18]). However current systems are limited because the

linguistic parts (the sign language phonemes, words, and

sentences) are fixed and the lexicons are limited. Therefore,

the users cannot create new sign language “words” or

“phrases.”

To target this issue, sEditor is an “open” platform for

different sign languages with user interfaces for the creation

and management of sign language linguistic parts (from

phonemes to sentences). To produce more natural hand

configurations, the handshapes (the most important sign

language parameters) generated by sEditor incorporate hand

biomechanical constraints.

sEditor serves as sign language “word” editor prototype

with which sign language users can “write” in their languages

like a regular text editor for spoken languages [21].

III. THE ARCHITECTURE OF THE PROTOTYPE

The sign language interfacing system provides an interactive

virtual environment in which users can construct virtual

gestures through a virtual human body, associate the gesture

sessions with sign language linguistic parts (such as

morphemes, words, and phrases), create virtual signs with the

use of databases for managing the linguistic parts, and even

“write” in a sign language. The architecture of the system is

shown in Figure 1.

The system consists of five main functional components:

1) A virtual human body: This central and foundational part

of the interfacing system is modeled based on the

anatomical structure of the human body. The whole body

is divided into various functional parts, each of which is

represented by a set of parameters (discussed in detail

later).

2) A virtual environment: Several virtual cameras are

“installed” in this virtual box, and the background can be

set to different colors. Because the hand plays the most

important role in signing, two virtual settings are created

for both hands of the virtual body.

3) Inputs and Control: This provides the inputs either from

the databases or from users to the virtual body for

producing virtual gesture sessions, to set up a particular

virtual environment (such as background and camera

setups), and to control the output processes and formats.

This part includes the following components:

 VB Control: to provide rotations at the body joints and

define facial expressions.

 VE Control: to set up the virtual environment and fine-

tune virtual cameras; to select and place a character as

the virtual sign from a character pool (male and female

virtual characters in diverse races).

 Rendering Control: to render the virtual body in a

chosen style, to display and record the outputs (images

and parameter values for the virtual body and

environment) on the screen or storage in a certain

format.

 VG/DB Control: to construct and edit virtual gestures

and store/retrieve them to/from the virtual gesture

database.

 VS/DB Control: to create and edit virtual signs and

associate them with a particular sign language

notation; to store and retrieve from the virtual sign

database the virtual signs and their corresponding

related notations.

4) Outputs: The output of the system is represented in

different formats: visual signs displayed on the screen,

Figure 1: The sEditor architecture (VE: Virtual Environment; VB:

Virtual Body; VG: Virtual Gestures; VS: Virtual Signs; DB: Database).

Submission No.---to be inserted—INGNORE THIS LINE

3

their image session recorded and saved to storage, and

parametric representations of the virtual gestures of the

virtual body and those of the virtual environment.

5) Virtual gesture/sign database: All the created gestures,

virtual signs, and their sign notations are stored in their

databases. Gestures and signs are sets of parametric values

defined in particularly designed data structures. Sign

notions are English translations of the signs. Two

databases are included in the system:

 VG/DB Database: a database for virtual gestures. A

gesture is a list of virtual postures with a timing factor

for each of the postures. Thus a gesture, after being

loaded from the database, is displayed as an animation

session on the screen. This gesture database includes

sub-databases for body postures and hand

configurations.

 VS/DB Database: a database for virtual signs. A sign

consists of one or more virtual gestures and is a sign

linguistic part in a particular sign language. A sign is

stored in the database together with its sign notation

and the links to its related signs.

One screen shot of the sign language interfacing system is

shown in Figure 2. The upper part of the system layout is for

display with a main display window in the middle for

displaying body gestures/signs and two accessory (smaller)

ones on either side for demonstrating hand gestures. Below the

hand display windows are hand icons of the most frequently

used hand configurations in sign languages. Clicking on a hand

icon will load from the hand database the corresponding hand

configuration to the current hand (right or left). The lower part

is arranged as a set of graphical tabs for controlling virtual

body and environment, creating and editing gestures and signs,

managing their databases, and rendering and recording

outputs.

IV. CONSTRUCTING A VIRTUAL HUMAN BODY

A virtual human body is a module that can be sub-divided

into sub-modules (i.e., body parts) according to the

hierarchical structure of the human body as it moves and how

body part motion is coordinated. In this section, we introduce

the structure of the body modules and then describe the

simulation of the motions of the human body parts.

A. Modeling the Human Body

The first step in human body modeling is the classification

of body parts according to their contributions to gestures and

signing. The lower parts of the body (legs, feet, and hips) are

rarely used during signing, and thus they are abstracted using a

single body part. The Torso represents the body trunk, which

is connected to the shoulders and head. The body part Head

contains the eyes, hair, neck, and the frontal part, which is

used to model the facial expressions or NMS (nonmanual

signals) in sign languages. The part Shoulder consists of the

upper arm and the clavicle. The part Hand, composed of the

palm, fingers and thumb, is critical in the simulation of signing

and is modeled differently than the other body parts. The part

Forearm connects the shoulder (upper arm) and the hand.

Figure 2: One screen shot of sEditor: an example of creation and edition of hand configurations on left and rights.

Submission No.---to be inserted—INGNORE THIS LINE

4

We use a tree structure (see Figure 3) to design algorithms

for the movements of the body parts that are connected and

thus the movements of a parent node in the tree will propagate

to all of its child nodes (children); the ultimate movements of a

child are the cumulative combination of the movements of all

its parents in the tree. Each part’s motions are modeled in its

own (local) coordinate system; the movements upon the body

parts to which that part is connected will be recorded in a

motion engine (see the following subsection), which in turn

will drive the connected body parts for corresponding

reactions automatically in the system.

For example, rForearm’s movement at its local coordinate

system is noted as rForearm-local; the relationship between

 rForearm and rShoulder is noted as rForearm-rShoulder; the

relationship between rShoulder and Torso is rShoulder-Torso;

and so on. Thus, rForearm’s movement in the World

Reference Frame, is expressed as MTorso-WorldrShoulder-

Torso rForearm-rShoulderrForearm-local.

The body parts that make up the human body share some

common features that take the form of user-defined data types,

functions, and rendering algorithms for the modeling

implementation. We use xBody for the abstract representative

body part that accomplishes all operations (different motions

such as rotation and bending) for these common features. For

a particular body part, its deformation algorithms and

movement patterns (represented as a set of parameters) are

embedded into the body object upon its substantiation.

B. Simulation of Body Motion

A body part has its own movements and will influence and

be influenced by others connected to it, depending on the

relationship between them. More importantly, there is a

deformation at the joint that connects the body parts. We have

designed and implemented a motion engine which is

embedded in each body part to “propagate” a body part’s

motions to its connecting body parts and to simulate the

deformation around the connection joint.

When a body part (i.e., a cluster of 3D vertices) moves or

other parts connected to the part move, different types of

signals (different types of rotations) will be sent from this part

to the motion engine connected to the part. These signals will

trigger a set of calculations of new vertex positions, normals,

and properties, depending on the types of the signals. The

updated vertex data will be used for rendering the body part.

The resulting outputs (including motion information of the

local coordinate system for the body part will spread to the

body part's immediate child (in the tree), which generates a

chain of operations and renderings on the connected body

parts (through the engines).

Simulation of the Hand Configurations and Motions

There are sixteen hand parts in a hand: a palm, three finger

parts on each of the four fingers (the index, middle, ring, and

pinky), and three thumb parts. All these sixteen parts are

modeled with an ordered tree structure ([22]). The hand, when

in motion under constraints, generates natural hand gestures.

One such example is that bending of the middle finger will

result in the follow-up movements on the index and ring

fingers. The hand constraints have been implemented and the

results from [22] have been incorporated in sEditor. Figure 4a

is a screenshot of the control panel for generating hand

configurations.

Modeling the Upper and Lower Parts of the Body

The upper body consists of the abdomen, chest, clavicle,

shoulders, and part of the hips and neck. All of these parts are

covered by clothing, and their movement patterns can be

described with a tree structure. All nodes in the tree should be

independent body part modules with an individual motion

paradigm, but in our interfacing system we combine the hips,

abdomen, chest, neck and clavicle into one large body part, as

Figure 3: Coordination of the motions of the human body parts.

Figure 4a: Hand configuration control panel.

Figure 4b: Upper body posture control panel.

Submission No.---to be inserted—INGNORE THIS LINE

5

a rigid body part with deformation only on the borders with the

shoulders. The right and left shoulders, together with their

corresponding upper arms, are modeled separately. Thus, we

have five upper body parts to be modeled individually: the

main part of the torso (the hips, abdomen, chest and neck),

right and left shoulders (including the upper arms), and right

and left forearms (attached to the right and left shoulders in the

tree). Particular attention was focused on the simulations of the

shoulders and forearms and specific algorithms were

implemented to deal with the deformations in the shoulder and

forearm movements. Figure 4b depicts a screenshot of the

control panel for the simulation of the upper body movements.

There are three widget groups on the panel for controlling

the upper body movements: (1) Shoulder: the shoulder and

upper arm's twist (rotation) are adjusted with an iconic dial,

and the raising and swing movements are adjusted with two

vertical slide-bars; (2) Forearm: the forearm's rotation (twist)

is adjusted with a dial widget, and its bending movement is

controlled with a vertical slide-bar; and (3) Wrist: the wrist's

bending and side-to-side movements are adjusted with two

vertical slide-bars. All these widget groups are under the

control of another widget group on the same panel entitled

Body part, which indicates whether the left body part or the

right one will get inputs from the three widget groups. There is

another widget group that controls the whole body's

movements: displacements (translations) along and rotations

around three perpendicular axes of the coordinate system for

the whole body.

V. CREATING VIRTUAL GESTURES

In this section, we discuss how to transcribe the movements

generated from the virtual body and then how to create and

coordinate the movements of individual body parts for the

simulation of the human gestures.

A. Parametric Representation of Human Gestures

A virtual human body is made of many different body parts,

each of which can be implemented with an abstract

representative body part, xBody, with an extension based on its

motion patterns and deformation methods. To control and

simulate the movement of that body part, parametric values of

the motions (translation and/or transformation) must be fed

into that body part through an interface. This process is shown

in Figure 5.

When a body part receives inputs, it will “interpret” the

inputs, based on the nature of the body part, as values for some

or all motion parameters for three types of rotations:

abduction-adduction, twist-rotation, and flexion-extension.

Then the deformation and motion mechanisms of the body part

will calculate the new locations, normals, and transformations

for the body part according to the motion patterns and

parametric values. Finally, the calculations will be fed back for

rendering this part and for updating its neighboring body parts.

Thus the movements of the virtual body can be described by

and controlled with the inputs of the component body parts of

the avatar, and a virtual gesture is a set of movements of the

virtual body in a certain order. These inputs of the body

components are a set of motion parametric variables with

certain values, and therefore, a virtual gesture can be described

with a cluster of sets of parametric variables. In the following

we will illustrate the parametric representation of the gestures.

But we will first give a definition of body posture and its data

structure.

The Representation of Body Posture

Body posture means the position, pose, and bearing of the

body, for example, sitting posture and erect posture. In

sEditor, we extend this definition such that body posture

defines the positions and bearing characteristics of all body

parts including facial expression features and hand

configurations. This makes it convenient to design and

implement data structures that are used to represent and

process the linguistic parts of a sign language. A data structure

for body posture is defined as a tree structure (Figure 6).

Figure 5: Process of how a body part module processes its input data and

model the movements.

Figure 6: Data structure for body posture.

Submission No.---to be inserted—INGNORE THIS LINE

6

A posture contains the following elements:

1) head: for modeling the head movement (through

parameters nodA, tiltA, and turnA) and for simulation of

facial expressions, or NMS (through parameters rEyeID,

lEyeID, mouthID, and facialID).

2) ID: a unique integer for the posture.

3) center: a point in 3D space (an array of three floating

point numbers) for the center of the body.

4) orientation: a vector for identifying the body's orientation

in 3D space.

5) rShoulder and lShoulder: for the description and control

of the movements of both shoulders (through parameters

of raiseA, swingA, and rotateA).

6) rForearm and lForearm: for the description and control

of the movements of both elbows (through parameters of

bendA, rotateA, and elbowCenter).

7) rHand and lHand: for the description and control of the

movements of both hands (through parameters of wristFE

for wrist’s flexion-extension or rotation/bending) and

wristAA for wrist’s abduction-adduction or side-side

movement), palmCenter and palmOrientation for the

palm, thumb, index, middle, ring, and pinky for the thumb

and fingers). Since the hand has the most complicated

configurations, we assign each hand pose a unique ID.

8) thumb: for the description and control of the movements

of the three thumb parts (through parameters ipFE for the

flexion-extension of the thumb tip, mcpFE and mcpAA for

the flexion-extension and abduction-adduction of the

middle thumb part, and cmcFE, cmcAA, and cmcTwist for

the movements of the thumb’s base part).

9) index, middle, ring, and pinky: for the description and

control of the movements of the three finger parts

(through paramenters dipFE for the flexion-extension of

the finger tip, pipFE for flexion-extension of the finger’s

middle part, and mcpFE, mcpAA and mcpTwist for the

movements of the finger’s base part).

The elbowCenter and palmCenter data structures record the

positions of the hand and elbow and play an important role in

classifying the virtual gestures and searching a sign language

for linguistic parts. As a new posture is constructed, the

positions for the elbow and the hand are automatically

calculated by the system and become a part of the parametric

representation of the posture.

The Representation of Body Gestures

People make gestures by starting with a posture and ending

with another posture, assuming a series of varying postures in

between. In a similar way, a virtual gesture can be described as

an ordered set of postures of a virtual human body. A timing

factor is thus introduced to describe the order of the postures:

posture pi occurs at time ti where pi is a parametric

representation of the posture at time ti and has a data structure

defined in the previous section. Thus we use a list to define the

gesture, vg = [(p0, t0), (p1, t1), … (pn, tn)] in which p0 is the

starting posture at time t0 and pn is the ending one at time tn.

There is a big difference between a human's gesture in real

life and the gesture defined above: the former is a continuous

process, which means an infinite number of postures in a

gesturing session, while the latter is only a limited number of

postures in a posture list. We address this problem in two

steps. First, for a virtual gesture, a group of distinctive

postures is selected (like key frames in video) that reflect

characteristics of the gesture; then temporary postures between

two adjacent postures (i.e., key frames) are interpolated during

the output process of the virtual gesture based on the rendering

speed (frames per second) and time difference between the two

adjacent postures (i.e., key frames).

B. Construction and Management of Body Postures

As illustrated above, body posture in the sign language

interfacing system is interpreted as a set of parametric

variables that describes the distinctive features of a body's

bearing. According to the characteristics of the body parts and

their functionalities in a signing process, we classify the

parametric representations of the body parts into three separate

groups: hand configuration, upper limb positioning, and NMS

(nonmanual signal).

We now discuss the construction and management of virtual

postures in the interfacing system. We focus on the

introduction of the functions (wrapped in a graphical user

interface) of these operations. The functions are “wrapped” in

an efficient graphical user interface, through which body

postures are created and edited by providing and adjusting

parametric values for the posture's representative parametric

variables. The management of body postures such as storing,

editing, and retrieving of the postures is handled by a posture

database.

The Hand Configurations

A Hand Configuration Control panel has been built and

embedded in sEditor (see Figure 4a) for the creation and

editing of hand shapes. Graphical widgets are used to provide

and adjust values (degrees of rotation angles) of the parametric

variables for a certain hand configuration.

A hand configuration database is used to assist in the

creation, editing, and management of the hand configurations.

We constructed several dozen hand shapes (like in Figure 2),

stored them into the hand configuration database, and

embedded them into the system.

To create a new hand shape, we first search for a basic hand

configuration in the database that has a similar pattern. If we

cannot find one, we use a default hand shape with a neutral

position. Then we use the hand configuration control panel to

fine-tune the angles of the hand's joints (including the wrist’s

joints). Finally, the newly created hand configuration is saved

in the database. The hand shapes can be applied to both hands

of the virtual body.

The Upper Body Postures

The upper body parts of the virtual figure in the interfacing

Submission No.---to be inserted—INGNORE THIS LINE

7

system include the shoulder (together with the upper arm),

forearm, and the wrist joint, responsible for the hand (palm)

orientation. A body posture control panel is incorporated into

the sign language interfacing system for providing inputs for

upper body part joints as (Figure 4b), using the data structure

previously described.

A body posture database is used together with the NMS and

hand configuration databases for storing, editing, and

retrieving body postures. Some basic body postures are

included in the posture database.

When a new body posture is created, the parametric values

corresponding to the posture's data structure (as defined

above) can be stored in the body posture database. Of the

parameters, two groups are critical for categorizing and

designing virtual gestures: the locations of the center of each

hand palm and of the center of each elbow in the coordinate

system for the whole virtual body. These locations are

automatically calculated based on the inputs to the body

posture control panel.

C. Creation and Management of Virtual Gestures

We have defined a virtual gesture vg as [(p0, t0), (p1, t1), ...,

(pn, tn)] with pi being the ith posture in vg at the time ti. The

postures p0, p1, …, pn constitute a complete set of postures for

a given gesture and are the most representative and

characteristic postures for that gesture, which describe the

gesture process. Once a posture list vg is extracted for a certain

gesture, intermediate and temporary postures can be

interpolated between any two adjacent postures in the list for

display and output. The problem of creating a virtual gesture is

how to construct such a posture list given the gesture. We next

describe the architecture and implementation of the

construction of virtual gestures.

The Architecture for Creating and Editing Virtual Gestures

Figure 7a illustrates the architecture for creating and editing

virtual gestures and Figure 7b shows the implemented control

panel). In the figure, the boxes with bold edges represent

display windows for displaying the temporary and overall

Figure 7a (above): A prototype for creating virtual gestures; Figure 7b (below): Virtual gesture creation/editing panel.

Submission No.---to be inserted—INGNORE THIS LINE

8

results in the gesture construction process. In the upper part

(corresponding to that of Figure 2) there are right and left hand

display windows on either side of a main display window for

displaying the current posture of the whole body. In the lower

part, there are NMS and upper body posture display windows,

the virtual gesture display window (for displaying the gesture

animation process), and posture display windows (for

displaying all of the postures of the gesture).

The other boxes are used for the interactions with the

databases and operations on gesture controls (such as setting

time and speed). When users are constructing a virtual gesture,

they first select from repertoires of upper body postures, hand

configurations, and NMS—the representative components for

the gesture. If some components are not in the databases, users

can use the corresponding control panels to create and save

them to the databases. When there are some components that

are close to the desired ones, the users can select them and use

the control panels to fine-tune them. In the following

discussion we assume that such components exist in the

databases.

For example, when a user is about to insert an ith posture

into the virtual gesture, she/he first clicks on one posture icon

in the box and a pop-up window appears containing postures

close to (or related to) the posture. The user then chooses one

posture from the window, and the selected posture replaces the

old posture of the virtual body and is displayed in both the

Upper Limb Display Windows.

When this process is completed, the posture i has been

inserted into the virtual gesture. Virtual Gesture Display

Window then automatically shows the gesture animation

session based on the speed setting. On the right of the virtual

gesture display window are display windows for all postures of

the current gesture. A user can click any of them to edit the

gesture with the posture control panels and change the time

setting. The newly created virtual gesture can be saved to the

gesture database with push button VG Save.

The Virtual Gesture Creation/Editing Panel

With the gesture creation prototype (Figure 7a) as a guide,

we have implemented a virtual gesture creation and editing

interface (Figure 7b) and incorporated it into the sign language

interfacing system. Users use this interface, together with the

posture control panels, to create, edit, store, and retrieve any

virtual gestures.

At the top of the gesture interface, there is a posture

sequence sliding bar and a gesture information line below it.

Users use the sliding button on the bar to display (on the upper

part of the interfacing system (Figure 2)) the postures of the

current gesture, either those representative postures (p0, p1, …,

in the vg) or any temporary interpolated ones between any two

adjacent postures in the vg. The middle part of the interface is

used for posture editing functions: importing (from the posture

database), editing, replacing, deleting, and inserting (into the

current gesture). The bottom of the interface is reserved for

displaying, saving, and recording the current gesture.

At the beginning, the gesture is made up of any two postures

distributed at time 0 and 2 (seconds). Users can replace these

postures with postures from the posture database with

graphical widgets such as the push buttons Import posture,

Replace, Insert posture in the v-gesture and the input space

Select the posture sequence # to type posture numbers of

postures to be edited or replaced. The timing factors for new

postures are input in space entitled for the time @. The current

posture can also be deleted with the Delete button.

The gesture session can be displayed dynamically depending

on the status of the Display switch button, which appears in

only one mode: Display: ON or Display: OFF. The gesture

display sliding bar and the sliding button on it are used for

accurate control of the gesture postures.

An Example of Creating and Editing a Gesture

Suppose we are about to create a gesture that has the four

characteristic postures shown in Figure 8a. These postures

(from left to right in this figure) will appear in the gesture at

time (in seconds) 0, 1.5, 2.8, and 4.2. These postures are

loaded from the posture database (or created instantly with the

use of the control panels introduced above) and are inserted in

the gesture (the posture at time 2:0 is deleted). Now we select

the Display switch button, and the display windows will

display the gesture animation process, which lasts 4.2 seconds

with the default speed of 24 frames per second. In this case,

sEditor will have automatically interpolated about 97 (i.e., 24

x 4.2 - 4) intermediate postures for this gesture.

Testing the gesture process we discovered that some

unnatural postures were generated and interpolated at 3.12

seconds (see Figure 8b).

We used sEditor control panels to edit these (interpolated)

postures by adjusting the left and right shoulders' (and

forearms') positions with the widgets on the Body Posture

Control panel. The modified postures were automatically

recorded and combined as the characteristic postures for the

gesture. These changes resulted in a new and natural posture

shown in Figure 8c. The gesture can be saved into the gesture

database with the button Save2DB and recorded in image files

with the button Record.

VI. CONVEYING LINGUISTIC MEANING

A signer of a particular sign language makes gestures

according to the grammar of that sign language; an avatar can

also imitate this process by following commands on the

movements of the virtual body parts if these movements are

designed to abide by grammatical rules of that sign language.

Thus a virtual gesture session, virtual signing, acquires a

meaning, and the virtual body makes virtual signs.

In the following we describe how to use this system to build

basic linguistic parts (such as “phonemes” and “morphemes”)

of sign languages, create sign language vocabularies, and even

“write” in a sign language (a control panel for this task is

shown in Figure 9). America Sign Language (ASL) is used as

an example.

Submission No.---to be inserted—INGNORE THIS LINE

9

A. Constructing Basic Linguistic Parts

The concept of “articulatory bundle” [23], which describes

hand posture with hand configuration, point of contact, facing,

and orientation, provides good guidelines for designing virtual

signing units. However, it is more effective to use graphical

designs and implementations when dealing with the five basic

linguistic parameters of a sign language: location, handshape,

orientation, movement, and NMS [2]. We have also

considered “local movement,” a special case of the movement

parameter. The Movement-Hold model [23] is embedded in

the graphical implementation.

The five basic linguistic parts (parameters) can be simulated

with a list of virtual gestures (defined above) combined with

timing factors: lp = [(vg0, t0), (vg1, t1), ..., (vgn, tn)] (lp

represents any of the basic linguistic parts), which was a long

sequence of postures. The question becomes how to quickly

construct the vgi's and combine these vgi's with their ti's. Our

solution is to use an efficient GUI wrapper for the operations

needed for the creation and editing of the basic linguistic parts.

Hand Shapes and Orientations

The hand shape is the most important phonological part of

ASL and other sign languages; thus we have constructed some

of the most frequently used hand shapes (as shown in Figure 2)

and embedded them in the sign language interfacing system.

The hand shapes can be applied to both the left and right hands

of the avatar in the system with only mouse-clicks on the

interface. New hand shapes can be built and embedded into the

system.

For some hand shapes with many variations and/or other

hand shapes related to them, there will not be enough space in

the scrolled view areas to display them. One solution would be

to activate a pop-up window box with related hand shapes and

variations when the user clicks on the hand icons.

The hand (palm) orientation is dependent on the movements

of the other body parts (such as forearms) and is relatively

independent of hand shapes. The movements at the wrist joint

also affect the hand orientation. Thus we use a neutral

orientation as a default for all hand shapes before their

application to the avatar. When being applied to the virtual

body, a hand (shape) immediately takes on the orientation

defined by the other body parts.

Gesture Space and Locations

The gesture space is the space domain of the hand motions

when people make gestures and this space is divided into

different sectors [24]. Liddell and Johnson's description of

“point of contact” (POC) and their classification of about 20

major body locations provides direct guidance [23] for the

implementation of the hand locations in virtual signing.

We have applied heuristic methods (together with the POC

concept and the implementation of hand constraints) to classify

and record the hand and elbow's locations. When a posture is

created for the avatar, the locations of its hands and elbows are

automatically calculated. These locations are part of the

parametric representation of the posture and are stored in the

posture database. When searching for a particular posture, we

can use these locations to narrow down the search space.

A hand's location (palm center) is classified with three types

of location: hand height, hand depth, and hand across.

 Hand height describes how high the palm center is

from the ground. Its range is divided into High,

Mid, and Low.

 Hand depth measures how far away the palm center

is from the chest. Its range is divided into Far,

Mid, and Close.

Figure 8a: A virtual gesture: its four posture components.

Figure 8b: How to create a natural gesture: (left) unnatural temporary

postures interpolated during virtual gesture rendering; (right) choose a

representative posture of these unnatural postures, edit it, and insert it to

the gesture as a component posture for that gesture.

Figure 8c: An example of a virtual gesture sequence.

Submission No.---to be inserted—INGNORE THIS LINE

10

 Hand Across identifies the palm center with a

horizontal right-left cross line. For example, if the

right hand rests on the right side, it is marked as

Close; when it goes across the chest to the left side,

it will be on the Far side. This parameter is divided

into three ranges: Close, Middle, and Far.

 With this definition and classification, the hand's location

can be represented with a set of three variables, [across, depth,

height], each of which has one of three different values in its

range domain as defined above. There are 3x3x3 = 27

different combinations to describe a hand's location. In other

words, a hand's location will be in one of the 27 cubes in front

of the signer, defined by three perpendicular axes in the body

coordinate system marked with across, depth, and height in

the virtual body's coordinate system with its origin at the body

center.

The elbow's location is described with only one variable,

height, which has one of three values High, Mid, and Low.

Now with the consideration of locations of the avatar's two

hands and two elbows, we have 3 x 3 x 3 x 2 x3 x 3 x 3 x 2 =

6561 different combinations of the hand and elbow's location,

which means that we can divide the signing locations into

6561 different groups.

sEditor provides GUI interfaces to searching for postures or

close ones based on the user’s selections of location parameter

values of the hand and elbow. The resulting postures and the

ones during the searching are rendered and displayed in real-

time as a sequence of postures and the user may choose one or

more of them (two such control panels are shown in Figure 7b

and Figure 9).

Movements

According to [25] adding linguistically motivated pauses in

sign durations will make the sign animations more

understandable by the native ASL signers. Signs can be

described with Movement-Hold mode and are composed of

sequentially produced movement segments and hold segments

[2]. In our implementation, we adapted this model but

“disregard” the linguistic implications of a virtual sign. By

movements, we mean any kind of movements used in signing

and define a movement segment, mSeg, of a sign: mSeg = [(p0,

t0), (p1, t1), …, (pn, tn)] in which any adjacent pair of [p0, p1,

…, pn] will be different from each other because during

movement the articulation of linguistic parts is always in a

state of transition.

A hold segment is a pair of the same posture that occurs

sequentially at different times. For example, if the ith segment

of a sign is a hold segment, hSegi, then, hSegi = [(pi, ti), (pi+1,

ti+1)] where pi = pi+1 and ti ≠ ti+1. For a virtual sign, vSign,

which is composed of movement and hold segments, we have:

vSign = [mSeg0, mSeg1, hSeg2, ..., mSegi, ..., hSegj, ..., mSegn]

where the order of the movement and hold segments depends

on the contents of the sign.

B. Composing Other Linguistic Parts

The basic linguistic parts share a common representation

form: lp = [(p0, t0), (p1, t1), …, (pn, tn)] and are used to

compose other linguistic parts. As in spoken language, given

some basic linguistic parts (phonemes and some morphemes),

we can build larger linguistic parts (LP) such as morphemes,

words, phrases, and even sentences, which can be represented

as a combination of the very basic linguistic parts, which turn

out to be an ordered list of postures: LP = [lp0, lp1, …, lpm] =

[(p0, t0), (p1, t1), ..., (pN, tN)], where lpi indicates a basic

linguistic part.

Theoretically, we can use the formula, LP = [(p0; t0), (p1; t1),

..., (pN; tN)], to construct a sign language's words, phrases, and

even sentences—that is, to create or retrieve from databases

every posture, p0, p1, ..., pN. This means that the size of LP will

become too large. So we have to use another formula: LP =

[lp0, lp1, …, lpm]. But there is a problem in sign languages with

the transition between two adjacent postures, for example,

movement epenthesis, hold deletion, and assimilation in ASL.

Our solution is to use both of them: LP = [lp0, lp1, …, lpm] =

[(p0, t0), (p1, t1), ..., (pN, tN)]. First, we give some definitions:

1) We define wordItem to be any of the linguistic parts,

either basic or larger ones.

2) Every wordItem has several (zero to any number in

theory) keywords or related words associated with it. In

the case of the creation of words and phrases for a sign

Figure 9: A general control panel for creating and editing linguistic parts.

Submission No.---to be inserted—INGNORE THIS LINE

11

language, we use related words for the association; in

other cases, use keywords. But for the current version of

our sign language interfacing system, we use both of them

interchangeably. Thus we have following representations:

o wordItem = {lpi}: combination of any number of

basic linguistic parts.

o wordItem = {LPj}: combination of any number of

larger linguistic parts.

o wordItem = {lpi, LPj}: combination of any number

of basic and larger linguistic parts.

o wordItem = {mSegi, hSegj}: combination of any

number of movement segments and hold segments in

the Movement-Hold model representation.

o wordItem = {lpi, LPj, KWm} or wordItem = {lpi, LPj,

RWm}: combination of any number of basic and

larger linguistic parts and associated keywords or

related words.

o wordItem = {lpi, [(pk, tk)], LPj, KWm} or wordItem =

{lpi, [(pk, tk)], LPj, RWm}: same as above, but [(pk,

tk)] indicates the inserted postures modified postures

in {lpi} or {LPj} .

To construct a graphical user interface for creating and

editing linguistic parts, we have considered the following

requirements for such an interface:

1) It should be able to create and edit postures, and store to

and retrieve these newly built postures.

2) Based on the posture database, the interface should be

able to create basic linguistic parts with time controls, edit

them dynamically, store them to and retrieve them from a

linguistic part database.

3) It should be able to create large linguistic parts from the

posture database and linguistic part database and input

keywords or related words for them.

4) It should provide, if possible, an editing mechanism for

editing both the posture constituents and the linguistic

part constituents for a linguistic part.

These requirements for the linguistic part creation and

management interface were implemented in a control panel

(Figure 9) and its associated databases; the user can insert,

delete, and edit the postures and the linguistic parts. The

results are displayed in pop-up windows and can be saved in

the database. Figures 10a and 10b give two examples of virtual

signing for an ASL word and one sentence.

VII. DISCUSSION

sEditor is a prototype sign language interfacing system for

creating and managing sign language linguistic parts. The

system provides a GUI interactive mechanism for the creation

of correct basic signs (Figures 4c, 4d, 7b, 8b, and 9).

With the use of virtual gesture and sign databases, the users

of sEditor can construct, save, retrieve, and edit basic

linguistic parts and then build larger linguistic parts such as

words, phrases or sentences based on the basic ones (as shown

in Figures 10a, 10b, and 10c) at “lower level” (i.e., without

consideration of the grammatical conjugations), which may not

be correct unless under intensive examination and with

Figure 10a: Virtual signing output of an ASL word: EASY (the session

should repeat once more time).

Figure 10b: Virtual signing output (signed English) of an ASL sentence:

WE LEARN ENGLISH.

Figure 10c: An example of how to quickly retrieve a sign language

\word": these display windows display virtual signs (animation sessions)

for different but related (associated) \words"; the word “WordItem"

above the display window is supposed to be notation symbols of a sign

language for the sign below it. The user will have three input methods to

choose from: (1) clicking on the virtual sign in a display window, (2)

typing in the notation symbols, and (3) typing the number (1, 2, …)

above the virtual sign.

Submission No.---to be inserted—INGNORE THIS LINE

12

necessary corrections (as shown in Figure 8b).

It would be an ultimate goal for our sign language

interfacing system to become (or at least, give a direction for

creating) a sign language “editor” like a text editor (such as

Microsoft Word) for the spoken languages, in which users can

“write” with the system. There are two major problems to

consider for designing a sign language “editor”: (1) how to

retrieve (input) sign language “words” and (2) how to deal

with the transition between two adjacent “words” following the

sign language syntax.

As for the first problem, we can borrow methods such as

autocomplete used in several Asian language text input

techniques. When one clicks on a sign or types in the

transcription code for a sign, the signs related to that sign (e.g.,

with higher associated weights or sharing the first transcription

coding symbols) will be displayed on the screen, each of which

is an animation sequence accompanied by a number or

notation symbols, rendered in an easy-to-understand style in a

small screen area. One can click on the desired sign or type in

its representative number or notation symbols. Figure 10c

gives an explanatory example without consideration of the

association weights of the individual signs.

 The solution to the second problem is much more

challenging. In a text editor for spoken languages, letters,

words, and phrases are sequentially juxtaposed, but in a sign

language there is a transitional process between two signing

parts in which the two parts exert influence over each other,

following the syntax rules of a sign language. This means that

postures (including their corresponding time factors) on the

border of two adjacent signs have to be changed. For example,

there are four typical variations in a phonological process in

ASL: movement epenthesis, hold deletion, metathesis, and

assimilation [24]. In their computer graphics implementations,

this presents a movement-control-over-time design issue.

sEditor transits from one sign sequence to another one with the

use of interpolation (inserting “mid-signs” based on the two

adjacent signs) without consideration of the syntactical rules.

REFERENCES

[1] S. K. Liddell, “Grammar, Gesture, and Meaning in American Sign

Language,” Cambridge University Press, 2003.

[2] C. Valli and C. Lucas, “Linguistics of American sign language: an

introduction,” Gallaudet University Press, 3rd edition, 2000.

[3] B. Yi. “A Framework for a sign language interfacing system,” PhD

dissertation, Department of Computer Science and Engineering,

University of Nevada, Reno, 2006.

[4] J. Loomis, H. Poizner, U. Bellugi, A. Blakenore, and J. Hollerbach,

“Computer graphic modeling of American sign language,” ACM

SIGGRAPH Computer Graphics, vol. 17, pp. 105-114, July 1983.

[5] W. C. Stokoe, D. C. Casterline, and C. G. Croneberg, A Dictionary of

American Sign Language on Linguistic Principles, Linstsok Press,

1976.

[6] S. Wilcox, “The multimedia dictionary of American sign language:

learning lessons about language, technology, and business,” Sign

Language Studies, 3(4), pp. 379-392, Summer 2003.

[7] C. Meidle, S. Sclaro, and V. Athitsos, “SignStream: a tool for linguistic

and computer vision research on visual-gestural language data,”

Behavior Research Methods, Instruments, & Computers, vol. 33(3), pp.

311-320, 2001.

[8] C. Neidle, “A database tool for research on visual-gesture language,”

report no. 10, ASL Linguistic Research Project, August 2000 [Online].

Available: http://www.bu.edu/asllrp/rpt10/ASLLRPr10.pdf (URL)

[accessed, 1/4/2014].

[9] P. Lu, “Modeling animations of American sign language verbs through

motion-capture of native ASL signers,” ACM SIGACCESS Accessibility

and Computing, 96, pp. 41-45, Jan. 2010.

[10] H. Kaneko, N. Hamaguchi, M. Doke, and S. Inoue, “Sign language

animation using TVML,” in 2010 Proc. 9th ACM SIGGRAPH Conf. on

Virtual-Reality Continuum and its Applications in Industry, New York,

2010, pp. 289-292.

[11] D.I. Fels, J. Richards, J. Hardman, S. Soudian, and C. Silverman,

“American sign language of the web,” in Proc. CHI EA ’04 Human

Factors in Computing Systems, pp. 1111-1114, CHI 2004.

[12] UPENN HMS Center, http://hms.upenn.edu/, [accessed, 1/4/2014].

[13] Virtual reality lab, http://vrlab.epfl.ch/, [accessed, 1/4/2014].

[14] DePaul ASL Synthesizer, http://asl.cs.depaul.edu, [accessed, 1/4/2014].

[15] eSign: Vitural Human Signing at UEA,

http://www.visicast.cmp.uea.ac.uk/, [accessed, 1/4/2014].

[16] Vcom3d, http://vcom3d.com/, [accessed, 1/4/2014].

[17] M. Huenerfauth, “A survey and critique of American sign language

natural language generation and machine translation systems,” technical

report, Computer and Information Sciences, University of Pennsylvania,

September 2003. [Online]. Available: http://www.cis.upenn.edu/grad/

documents/huenerfauth.pdf (URL) [accessed, 1/4/2014].

[18] M. Huenerfauth, L. Zhao, E. Gu, and J. Allbeck, “Design and evaluation

of an American sign language generator,” in 2007 Proc. Workshop on

Embodied Language, Prague, Czech Republic, 2007, pp. 51-58.

[19] N. Frishberg, S. Corazza, L. Day, S. Wilcox, and R. Schulmeister. “Sign

language interfaces,” in Proc. CHI/INTERACT ’93 conf. Huamn

Factors in Computing Systems, pp. 194-197, 1993.

[20] S.C.W. Ong and S. Ranganath, “Automatic sign language analysis: a

survey and the future beyond lexical meaning,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 27, pp. 873-891, Jun. 2005.

[21] B. Yi, F. C. Harris, Jr., and S. M. Dascalu, “From creating virtual

gestures to ‘writing’ in sign languages,” in proc. CHI EA’05

Conference on Human Factors in Computing Systems (CHI 2005), Apr.

2005, pp. 1885-1888.

[22] B. Yi, F. C. Harris, Jr., and S. M. Dascalu, “Real time natural hand

gestures,” IEEE Computing in Science and Engineering, vol. 7, pp. 92-

97, May 2005.

[23] S. K. Liddell and R. E. Johnson, “American sign language: the

phonological base,” Sign Language Studies, 64, pp. 195-227, Fall 1989.

[24] D. McNeil, “Hand and mind: what gestures reveal about thought,” The

University of Chicago Press, Chicago, 1992.

[25] M. Huenerfauth, “A linguistically motivated model for speed and

pausing in animations of American Sign Language,” ACM Trans.

Accessible Computing, vol. 2, article No. 9, Jun. 2009.

Beifang Yi is currently an assistant professor in

the Department of Computer Science at Salem

State University, Salem, Massachusetts, USA.

He received his MS in in Computer Science

from Southwest Jiaotong University, Chengdu,

China in 1988 and Ph.D. in Computer Science

and Engineering from the University of Nevada,

Reno, USA in 2006. His main research interests

are in the areas of human-computer interaction,

information visualization, computer graphics,

and education in the computer science.

Xusheng Wang is an Associate Professor in

the Department of Mathematics, Computer

Science and Cooperative Engineering at the

University of St. Thomas, Houston, Texas,

USA. He received his MS in Computer

Science from Southwest Jiaotong University,

Chengdu, China in 1986 and Ph.D. in

Information Technology with concentration in

Computer Graphics from George Mason

Submission No.---to be inserted—INGNORE THIS LINE

13

University, Fairfax, VA, USA in 2003. His main research interests are in the

areas of computer graphics, virtual reality, human-computer interaction, and

information visualization. He has published over 20 peer-reviewed papers.

Frederick C. Harris, Jr. is currently a

Professor in the Department of Computer

Science and Engineering and the Director of

the High Performance Computation and

Visualization Lab and the Brain Computation

Lab at the University of Nevada, Reno, USA.

He received his BS and MS in Mathematics

and Educational Administration from Bob

Jones University in 1986 and 1988

respectively, his MS and Ph.D. in Computer

Science from Clemson University in 1991 and

1994 respectively. He is a member of ACM (Senior Member), IEEE and

ISCA (Senior Member). His research interests are in parallel computation,

computational neuroscience, computer graphics and virtual reality.

Sergiu M. Dascalu is an Associate Professor in

the Department of Computer Science and

Engineering at the University of Nevada, Reno,

USA, which he joined in 2002. In 1982 he

received a Master’s degree in Automatic

Control and Computers from the Polytechnic

University of Bucharest, Romania and in 2001 a

PhD in Computer Science from Dalhousie

University, Halifax, NS, Canada. His main

research interests are in the areas of software

engineering and human-computer interaction.

He has published over 140 peer-reviewed papers and has been involved in

numerous projects funded by industrial companies as well as federal agencies

such as NSF, NASA, and ONR. In 2011 he received the UNR Donald Tibbitts

Distinguished Teacher of the Year award.

