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Abstract

A new collision detection algorithm is presented that
solves the all-pairs collision detection problem using parallel
processing. The design of the algorithm is based on a linear
octree and runs in parallel with a theoretical performance of
O((n log n)/k) run time. The algorithm has been implemented
as a collision detection system using object-oriented design
techniques and a client-server architecture. The architecture
of the collision detection system is designed to use the parallel
capabilities of both shared-memory, multi-processor computers
and clusters of networked computers. Additionally, the
modularity of the collision detection system gives application
developers the flexibility to choose the level at which the
collision detection system is integrated into an application.
Using the collision detection system, experimental results have
been generated that demonstrate how the algorithm performs
according to the calculated theoretical performance.
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1 Introduction

Interactive 3D graphical applications are a class of
application which continuously query a user for input and
provide output by means of three-dimensional graphics.
Techniques used to implement these types of applications are
enabling technologies which make other types of application
areas possible; for example, Virtual Reality. Virtual reality
applications that simulate visual environments are examples of
interactive 3D graphical applications. In [5] and [24], two
applications are described that apply virtual reality to workplace
training in the surface mining industry. In the first application,
virtual reality is used to train off-highway vehicle operators on
how to inspect a vehicle before operation in an open pit mine.
In this application, a user is presented with a simulated vehicle
to inspect. The purpose of the application is to train vehicle
operators on how to identify indications of problems that may
compromise the safety of a vehicle. The second application
uses virtual reality to simulate operating a vehicle. In this
application, the user drives a simulated truck in an open pit
mine to practice safe driving practices unique to open pit mine
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operations. The applications described in these two papers
illustrate the necessary qualities of a successful interactive 3D
graphical application.

In order for an interactive 3D graphical application to be
successful, it must present the user with a visually believable
environment. The believability of a simulated environment can
be broken down into three main factors. First, the models used
in the simulation must be recognizable. Second, the user must
be able to interact with the simulated environment at a rate
comparable to a real-world experience. Third, objects in the
simulation must behave in a manner similar to their real-world
counterparts. In interactive 3D graphical application, these three
factors are mutually dependent. In general, the more detailed
a model is, the slower the model is to render to a display.
When models in a simulation are slow to render, the slower the
simulation is at responding to user input. When the application
is slow at responding to user input, the period of time with which
realistic object behavior can be implemented is decreased.

In summary, in order for an interactive 3D graphical
application to be successful, all calculations performed by the
application must be completed in a timely manner before the
graphical display can be updated. When an application fails to
update the display rapidly, a time lag will exist between when
the user inputs a command or action and when the graphical
display is updated. When users experience lag, they often re-
input a command expecting the application to respond faster.
When the application eventually does respond, the graphical
display is updated according to input from a prior point in
time or using the cumulative sum of all input collected from
the last display update. The display generated is usually much
different than what the user expects and causes a great deal
of confusion. For example, if turning the steering wheel of
a driving simulation is not reflected by the graphical display
for several seconds after the wheel is turned, the user will
have difficultly judging what effect steering actually has in the
simulation.

One of the most costly operations performed in interactive 3D
graphics applications is collision detection. Collision detection
is a key technology used for implementing realistic object
behavior in interactive 3D graphics applications. Specifically,
collision detection is used to determine when objects in a
simulated environment are intersecting with one another. This
information allows the simulation to prevent solid objects from
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passing through one another. Collision detection is a nontrivial
problem and is actively researched in many fields of study
besides interactive 3D graphics, including robotics, physically
based simulation, and computational geometry.

In this paper, the collision detection problem is explored in
Section 2 by presenting the challenges imposed by interactive
3D graphics on collision detection algorithms and discussing
several previously developed methods for solving collision
detection problems. A new collision detection algorithm is
then presented in Section 3 which solves one aspect of the
general collision detection problem using parallel computing. A
description of software that implements the proposed algorithm
is described in Section 4 followed by performance results in
Section 5. This paper concludes in Section 6 with final remarks
concerning what the project has accomplished and a discussion
of future work.

2 Introduction to the Collision Detection Problem

For the purpose of this discussion, the collision detection
problem will be limited to its applicability in 3D interactive
graphics applications. However, the concepts, ideas, and
algorithms presented have been drawn from many areas of
research concerned with collision detection, including robotics
[10, 22, 23], computational geometry, and physical simulation
[6, 26, 27].

2.1 Collision Detection and Interactive Graphics

The purpose of collision detection is to determine if, and in
what manner, objects are colliding at a moment in time. To
illustrate this purpose, one might simulate dropping a ball onto
a flat level floor. In this simulation, collision detection is used to
determine when the ball hits the floor. The obvious solution is
to calculate the time of impact using the initial height of the ball
and a gravitational constant. Unfortunately, this solution doesn’t
constitute collision detection, but rather collision prediction. By
calculating the time of impact, the assumption is made that
the path of the ball remains unimpeded for the duration of the
simulation. However, if unpredictable changes in the simulation
occur, the prediction may be incorrect. This is the case imposed
by interactive 3D graphics on collision detection algorithms.

In an interactive 3D graphics application, the flow of control
runs in a continuous loop, sampling time at discrete intervals.
This flow control is illustrated in Figure 1. At the end of
each interval of time, the state of the simulated objects is
updated to reflect changes that occur during the interval. For
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Figure 1: Control flow of an interactive 3D graphics application

example, an object moving along a path is translated to a new
position according to its velocity vector. Interactive 3D graphics
applications create the illusion of smooth, animated motion by
redrawing the screen at the end of each interval of time, as
shown in Figure 2.
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Figure 2: Position of object is updated as a function of time to
create smooth animation

Along with updating the state of simulated objects, collision
detection is also performed to determine whether the new
position of an object causes it to interfere with the positions of
other objects. It is important to note that collision response is
an application-dependent issue and is not addressed by collision
detection algorithms.

The mechanics of the simulation impose restrictions on
collision detection algorithms. By sampling time at discrete
intervals, only a fraction of the total elapsed time is accounted
for in the simulation. As a result, it is possible for important
events to be overlooked.

For example, consider the simulation of a ball falling to the
floor. At time interval tn, the ball is positioned just above
the floor. Then, at tn+1, the ball’s position is calculated to be
just below the floor. If the floor is represented as a plane and
collision detection is done using an intersection test, then the
simulation would have incorrectly determined that no collision
occurred.

A common solution to correct the problem of objects
“jumping through” other objects is to increase the sample rate
of the simulation timeline which will increase the probability
of all collisions being detected. Using this solution, one must
determine the sample rate to be employed. If the rate is too high,
application performance suffers. If the rate is too low, collisions
might be missed.

One might consider expanding the simulation’s capabilities to
allow multiple balls to collide with the floor and with each other.
Under the previous conditions, intersection between the ball and
the floor could be tested rapidly at the end of each interval
of time. However, with the new conditions, collision must be
detected between all pairs of balls,

(N
2

)
, and between each ball

and the floor. The naive approach to solving this problem tests
all pairs of balls and each ball with the floor for collision. This
approach runs in O(n2) time.
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The situation is further complicated when objects that are
more complex than spheres are introduced into the simulation.
Testing for collision between two spheres or between a sphere
and plane can be performed in a few operations. Due to the
symmetry of a sphere, both tests reduce to a distance calculation
using the center of the sphere. Detecting a collision between
spheres runs in constant time.

This is not the case for general polyhedra. As shown in [22],
testing the intersection between two convex polyhedra can be
done in O(n) time in the worst case where n is the combined
number of vertices of two polyhedra. Convex polyhedra are
a special case of general polyhedra and are easier to test for
intersection. For this reason, general polyhedra are often
decomposed into convex entities. As a result of the running time
of testing polyhedra for intersection, the number of polyhedra
that can be tested for collision in a given period of time is much
smaller than the number of spheres that could be tested in that
period of time. Complex objects may collide in many different
ways, making testing for collision a more complex and time
consuming process than testing spheres for collision.

Testing for collision between multiple moving objects and
testing for collision between complex objects are some of the
cases effective collision detection algorithms must address.
The manner in which an algorithm handles these situations
determines the problem domain for which an algorithm is
suitable. Issues of object representation, resource utilization,
and acceptable performance characteristics also constrain
applicability of an algorithm from one problem domain to
another. Consequently, the breadth of highly specialized
collision detection algorithms is great.

Although collision detection algorithms are specialized,
many processes, concepts, and structures they employ are
common throughout collision detection research. This is
particularly true for algorithms that use similar data structures
and geometric principles as a basis for their design and for
hybrid algorithms that use multiple existing algorithms in
conjunction with one another.

Many surveys and comparative overviews of collision
detection algorithms are available in [13, 17, 34]. These sources
discuss application domains, useful geometric principals, and
strategies available for solving collision detection problems.
Rather than exploring all aspects of collision detection
algorithms, the remainder of this section will discuss the
components of general collision detection solutions followed by
examples of collision detection algorithms.

2.2 The Collision Detection Pipeline

General solutions to collision detection problems in
interactive 3D graphics applications are multifaceted. For
example, detecting collisions between many objects and
detecting collision between two complex objects are separate
problems with separate solutions. These two problems are
commonly referred to as the all-pairs problem and the exact-
object problem. Another facet of the collision detection problem

is concerned with exactly how the geometric features of two
objects intersect. Geometric features, or simply features, refer
to a region or part of an object comprised of one or more
polygons. This problem is commonly called the exact-feature
problem. Software that implements a general solution to
collision detection typically uses a collection of algorithms to
address each facet.

Despite the disparate nature of each sub-problem, the
algorithms for solving facets of the collision detection problem
have well-defined relationships. These relationships have been
studied in [34]. In this paper, the relationship among aspects
of collision detection algorithms is described as a pipeline of
successive filters. Filters correspond to algorithms that address
aspects of the collision detection problem, and the pipeline
describes the order in which filters are applied to data. Input
to the pipeline is a set of objects, and output is a pairwise
description of collisions between objects. Internally, data flows
from one filter to the next and is successively refined at each
stage.

The relationship among various aspects of the collision
detection problem has also been described as a multi-phase
[8, 14, 30] and a multi-stage [15] process. In this description,
the broad phase and the narrow phase are respectively analogous
to the first stages and the last stages of pipeline filters.

Although these descriptions of the relationships among facets
of the collision detection problem express the same idea, the
pipeline paradigm is preferable because it emphasizes the
composition of solutions to the general collision detection
problem. Because each pipeline filter has a well-defined role,
filters can be implemented as reusable components. Using
the pipeline as a framework, specialized application-specific
collision detection systems can then be assembled from filter
components.

Another quality of the pipeline paradigm is that it remains
conceptually flexible, allowing for modification without
breaking existing conventions. As new collision detection
algorithms are developed, pipeline filters can be inserted or
replaced as a natural and expected process.

2.3 Algorithms for Solving the All-Pairs Problem

Stated formally, the all-pairs problem is to determine all pairs
of n objects that are colliding. Algorithms that solve the all-
pairs problem are positioned at the beginning of the collision
detection pipeline and are designed to reduce the number of
exact-object tests performed in the latter stages of the pipeline.

The naive solution to the all-pairs problem is to test “all
pairs” of objects for collision. This solution is considered naive
because it is a brute force approach and runs in O(n2) time. To
solve the all-pairs problem efficiently, a strategy must be devised
that can quickly differentiate between those objects that might
collide from those that definitely will not.

Many algorithms have been developed to address the all-
pairs problem. A common feature among them is their
use of bounding volumes. The bounding volume of an
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object is another object that completely encloses the original
object. Bounding volumes are designed to have a simple
representation compared to the object they bind. Common
choices for bounding volumes include cubes, boxes, and
spheres. Algorithms that solve the all-pairs problem using
bounding volumes instead of the original objects for collision
detection are more efficient because testing for intersection
between bounding volumes is, by design, much faster than
testing for intersection using the actual objects.

2.3.1 Seep and Prune Algorithm. One of the earliest
algorithms developed to address the all-pairs problem is the
sweep and prune algorithm [28]. The basic idea behind
sweep and prune is to sweep a plane across a volume
of space, testing pairs of objects for collisions that are
simultaneously intersecting the plane. Pairs of objects that are
not simultaneously intersecting the plane cannot collide and are
eliminated from further collision tests.

In practice, implementations of sweep and prune operate by
projecting all objects onto a coordinate axis, which results in
intervals along the axis line. Overlapping intervals indicate
possible collisions between objects. This is demonstrated in
Figure 3. Determining overlapping intervals is a two-step
process:

1. Sort the list of intervals in ascending order using the
minima of the intervals.

2. Traverse the list in ascending order, testing intervals
against the successive intervals to determine overlap. If
the end-point of one interval is greater than or equal to the
beginning-point of a subsequent interval, then the intervals
overlap.

X

Y

Figure 3: Example of Dimension Reduction: Objects are
projected onto the x-axis. Overlapping intervals along
the axis indicate possible colliding objects

Sweep and prune is also called dimension reduction because
it reduces the number of dimensions in which objects are
compared.

A variation on sweep and prune is implemented in the I-
Collide collision detection library [4]. In I-Collide, the sweep

and prune algorithm projects objects onto three coordinate axes.
Pairs of objects are considered for further collision tests only
when their intervals overlap in all three dimensions. Costs
associated with this algorithm include sorting three lists of
intervals and testing for interval overlap on all three intervals. In
the general case, sorting the lists runs in O(n log n) and testing
for overlap runs in O(n2) in the worse case. However, as cited in
[4], when objects maintain temporal and geometric coherence,
performance of this algorithm is improved.

Temporal coherence is the property that application
state does not change significantly between time
steps or frames. The objects move only slightly
from frame to frame. The slight movements of the
objects translates into geometric coherence because
their geometry, defined by the vertex coordinates,
changes minimally between frames [4].

Moreover, if the interval of time between object updates is
small, objects can be expected to move relatively little between
time steps. This makes the next position of an object predictably
close to its previous position.

The sweep and prune algorithm described in I-Collide takes
advantage of coherence by keeping the three lists of intervals
between time steps. As a result of coherence, if the sample rate
is high, the lists of intervals will remain in an approximately
sorted order. This reduces the problem of sorting the lists
of intervals to that of resorting partially sorted lists from the
previous time step. In the I-Collide collision detection library,
the lists are resorted by first updating the endpoints of the
intervals and then using an insertion sort. When coherence is
maintained, resorting the list using an insertion sort runs on
average in O(n) time.

An additional cost incurred by this algorithm is in
maintaining a data structure that stores the overlap status of
objects. Again, if coherence is maintained, updating the overlap
status of an object runs in O(n) time. Total running time of this
algorithm is O(n+ s) [4] where n is the number of objects and
s is the number of overlapping intervals.

2.3.2 Octree Data Structures and Algorithms. Octree data
structures belong to a class of structures that represent a volume
space as a hierarchy of discrete units. Octree algorithms use
a divide and conquer approach to navigating and searching a
volume of space and have many uses in the fields of collision
detection and interactive 3D graphics.

As the name implies, an octree data structure is a tree
structure in which each node has eight child nodes. To represent
a volume of space, the root node of an octree is associated with
a cubic region within which the octree structure is contained.
Below the root, each of the eight node children are associated
with an even subdivision of the space enclosed by the root.
The relationship between the root and its eight children can be
recursively expanded to any number of levels, creating further
subdivisions of the original cube associated with the root.
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When discussing octrees, several terms are used for
describing their components. The term octant is used to describe
a cube that is one of eight even subdivisions of a larger cube.
In the octree data structure, as with other tree data structures,
nodes that terminate a branch are called leaves. Octants that
correspond to leaves in an octree are called voxels. A voxel
describes the smallest unit of space that can be addressed in a
discretized three-dimensional volume.

Octree data structures are commonly implemented as pointer-
based tree data structures because pointer-based trees allow for
a high degree of flexibility and simplicity in tree construction
and traversal. As a feature of pointer-based trees, octants can
be added and removed from the octree as needed. Internal to
the octant data structure, parent octants store pointers to child
octants which are used for navigating the octree data structure.
In addition to pointers for navigation, octants store a record of
data or a pointer to data that is associated with the octant. A
good description of pointer-based octree can be found in [33].

Because of the manner in which octrees subdivide and index
volumes of space, they are well suited to representing three-
dimensional data volumetrically. To represent data as a volume
of space in an octree, the data is associated with an octant. The
position and size of the octant indicate the volume and location
of the data. When data is stored in an octant that is not a leaf,
it is implied that the data occupies all octants below the octant
within which it is contained.

A typical strategy for inserting data into an octree is to
perform a recursive traversal beginning with the root of the
octree and searching for octants within which to store data.
Beginning at the root, data is checked for intersection with each
of the root’s eight children. The traversal is continued within
each child the data intersected. Depending on the needs of
the algorithm, traversal of the octree can be terminated at a
suitable time. Generally, most octree traversal algorithms run
in O(log n) time with n being the depth of the tree as a result of
a divide and conquer approach to navigating the octree.

Octree data structures have been used in several collision
detection algorithms [8, 12, 19, 30], the most successful of
which operate in a similar manner. After a pointer-based
octree is constructed and populated with objects, objects are
moved in and out of octants as they move through space. To
test for collision, the octree structure is searched to determine
which objects share octants. Only objects that share octants are
considered for further collision tests.

The differences among algorithms that use octrees are the
way in which objects are moved between octants and how the
octree data structure is searched. Two examples of collision
detection algorithms that use octrees are [19] and [30]. In both
examples, an octree is constructed so that it contains paths to
only non-empty octants. This guarantees that every search path
in the octree yields objects that need to be tested for collision.
Also, both of these algorithms use an indexing scheme which
allows the octants an object occupies to be calculated as a
function of the center of the object. The algorithm in [30] uses
coherence when moving an object from one octant to another

and is able to maintain the octree in O(n) time. To move
objects between octants, the algorithm in [19] builds additional
search trees to manage collision events. This operation takes
O(n log n) time.

In [8], a collision detection algorithm based on an octree
uses coherence to achieve O(n) when moving objects between
octants. However, unlike [30], [8] uses an auxiliary data
structure to determine when an object is moving between
octants. In [8], three lists are used to store the x, y, and z
endpoints of intervals defined by the axis aligned bounding
boxes of the objects. After sorting the lists, the indices of the
intervals that straddle the leaf octant boundaries are recorded.
The recorded indices define the boundaries of buckets within
the lists. By using an insertion sort, the order of the intervals
in the buckets can be maintained in linear time as long as the
positions or lengths of the intervals do not change significantly
between sorts. This algorithm reduces the number of times that
objects are checked for movement between octants by limiting
its search to the objects that move between buckets.

Besides being suitable for solving the all-pairs problem in
collision detection algorithms, octrees have been successfully
applied in other fields relating to computer graphics such as
Constructive Solid Geometry (CSG) [3]. Constructive Solid
Geometry is concerned with performing high-level, logical
operations between objects to construct new objects. The
motivation for this type of representation is to facilitate an
interactive mode for solid modeling [32]. An example of a
logical operation between two objects is to Boolean OR their
volumes together to produce a new object.

Octree data structures are well suited for CSG applications
because of the way in which volumetric regions are represented
in octrees. In CSG applications, an octree is used to encode the
volume of an object to a high degree of detail. This is done by
finding the intersections between the surface of the object and
the octants in a high resolution octree. A high resolution octree
has an exceedingly high number of leaf octants. The resulting
octree is a hierarchical voxelization of the object’s volume that
captures the details of the shape of the object.

Logical operations between objects are performed using their
octree representations. For example, subtracting one object
from another is done by combining the octree data structures
of two objects and deleting the common leaf octants.

In addition to octrees, other hierarchical and space-indexing
data structures exist. These include BSP/k-d tree [13] and k-
dop trees [21], which have been used extensively in collision
detection algorithms.

2.4 Exact-Object Algorithms

In interactive 3D graphic applications, it is important to
present users with a visual display of believable objects. One
way to accomplish this is by representing objects with detailed
models. Typically, these models are constructed using polygons
positioned in 3D space. Polygons positioned in 3D space
are preferable because they are convenient for constructing
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continuous surfaces that simulate the features and contours of
real-world objects. Unfortunately, detecting collisions between
these types of models is substantially more difficult than
between simple objects. In interactive 3D graphic applications,
algorithms that perform exact-object collision detection are
designed to address the complexities of testing for collision
between objects constructed from polygonal surfaces.

In much the same way that algorithms for solving the all-
pairs problem prune the number of objects passed to exact-
object collision detection algorithms, exact-object algorithms
prune the number of features between two objects passed to
exact-feature collision detection algorithms.

Many methods have been developed for analyzing the
geometry of two objects in order to decide which features to
test for collision. Of those methods, the most widely used are
Bounding Volume Hierarchy (BVH) algorithms.

A BVH is a set of bounding volumes that recursively encloses
the geometric features of an object. The resulting volumes form
a hierarchy of enclosed spaces where levels of the hierarchy
represent the resolution of enclosure around a geometric feature.
Moreover, bounding volumes at lower levels of the hierarchy
have tighter fits around their corresponding geometric features.

BVHs are designed to isolate quickly geometric features that
are participating in collisions. This is done using an object’s
BVH as a guide to search for geometric features using a divide
and conquer strategy.

BVHs are typically implemented as tree data structures. Tree
nodes are used to store the volume bounding a geometric
feature, and the relationship between parent and child nodes
is such that the bounding volume of the parent encloses the
bounding volume of the child. An octree data structure can be
used as a BVH.

Algorithms that use BVHs to the find colliding features
between two objects follow the same fundamental steps.
Beginning at the root of each BVH tree, bounding volumes are
tested for intersection with each other. When intersections are
detected, the corresponding branches in each tree are descended.
The differences among BVH implementations lie in the type of
volumes used, how intersections between volumes are tested,
and the algorithms used to build volume hierarchies for objects.

An example of an algorithm that uses a BVH in a parallel
collision detection algorithm is presented in [20]. In [20], an
octree BVH is built around the faces of two objects that may be
colliding. When the octrees of two objects are compared with
one another and voxels from the objects are found to overlap,
the faces within the voxels are distributed to another processor
where exact-feature tests are performed.

Another example of a algorithm that uses a BVH in a parallel
collision detection algorithm is presented in [31]. In [31] a
bounding volume hierarchy is constructed from bounding boxes
and bounding spheres to obtain tight fits around the features of
an object. Internal to the bounding volumes, balanced binary
trees are used to store polygons enclosed by the bounding
volume. This algorithm implements parallelism by spawning
threads to perform searches between the branches of the BVH.

Other examples of BVH implementations include Oriented
Bounding Box trees (OBB) [11], Axis-Aligned Bounding Box
trees [1], Brep-Index trees [18], Binary Space Partitioning trees
[2, 29], Sphere Trees [14], and octrees [28].

2.5 Exact-Feature Testing

The final stage of the collision detection pipeline concludes
with an exact-feature test. Exact-feature tests are used to
determine if the geometric features from two objects are, in
fact, intersecting. Algorithms for these tests are based on
mathematical solutions to geometry problems. When objects
are constructed from polyhedral surfaces, this problem reduces
to detecting if the edge of one surface pierces the face of
another. For a discussion of efficient techniques used to solve
this problem, refer to [17] and [32].

3 Linear Octree-based Parallel Collision Detection
Algorithm

As presented in Section 2, collision detection is a multi-
faceted problem requiring individual solutions to subsets of
the collision detection problem. Current collision detection
algorithms use a collection of algorithms to solve subset
problems. The relationships among subsets of collision
detection algorithms and how they can be used in conjunction
with one another is best described as a pipeline. By optimizing
each algorithm used in a collision detection pipeline, fast
solutions to the general collision detection problem can be
devised.

This section describes the data structures and algorithms
explored in the development of a parallel collision detection
algorithm designed to solve the all-pairs problem. This section
is organized into four subsections. In Sections 3.2 and 3.3,
two octree-based data structures considered for use in a parallel
collision detection algorithm are described. In Section 3.4, a
new parallel collision detection algorithm for solving the all-
pairs problem is presented and an algorithmic analysis of the
new algorithm is discussed.

3.1 Distributed Octree Data Structure

In the process of designing a parallel collision detection
algorithm, two strategies were explored, the first of which
involved pursuing a distributed octree implementation that
would facilitate parallel processing for collision detection.

A distributed octree is an octree data structure in which the
octants and the objects they contain, are assigned to separate
processors. In this configuration, objects can be operated on
concurrently by the processors that manage the octants within
which the data are contained.

A distributed octree data structure has several qualities
that make it appropriate for implementing a parallel collision
detection algorithm. The five major qualities are:
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1. Decomposition of an octree hierarchy for distribution is
easy to understand and implement as a modified pointer-
based tree. As stated in the description of pointer-based
octrees in Section 2, an octree node stores pointers to
its child nodes. To facilitate the distribution of octant
nodes to multiple processors, pointers used for referencing
child octants are generalized, enabling them to reference
a processor that manages octants. From a distributed
octree implementor’s perspective, the generalized pointer
can be viewed as addresses used for communicating with
processors that manage octants.

2. Distributing an octree across a cluster of networked
computers is conceptually the same as distributing an
octree across the processors of a shared-memory, multi-
processor computer. As a function of the structure of
an octree, clearly defined boundaries between regions of
space are created. As a result of the logical structure
of an octree, octree data structures have clearly defined
regions by which data are segregated. In an octree, these
boundaries are defined by the volume of an octant, but in
an octree data structure, the boundaries are defined by the
tree nodes in which data are stored. This feature allows tree
nodes to be separated physically without compromising the
logical structure of the octree. To distribute an octree data
structure over a cluster of networked computers, pointers
to octants are allowed to be computer network addresses
where child octants are located.

3. When an octree is distributed across a cluster of computers,
the aggregate size of the octree data structure can exceed
the largest octree that can be stored on a single computer.
This allows for larger octrees to be constructed. On a single
computer, the maximum size of an octree data structure
that can be stored is limited to the amount of available
random access memory. By distributing octants to several
computers, the memory from each computer contributes to
the total space available for storing the data structure. It
is important to note that although an octree data structure
can be stored on disk, accessing the data structure is
prohibitively slow as a result of disk access speeds.

4. Distribution of data processing is a function of storing
data in octants. As objects are placed in octants that bind
their position and volume, they are accordingly distributed
among the processors that manage octants.

5. The complexity of distributing an octree across multiple
processors does not grow as a function of the number of
processors over which it is distributed. As a result of the
structure of an octree, once a program has been written to
handle a single distributed octant, the same program should
scale to any number of distributed octants.

In our first attempt to develop a parallel collision detection
algorithm, a distributed octree was used to partition and
manage objects among multiple processors and memories.
Each processor would then perform collision detection between
objects stored locally. However, after studying distributed

octree implementations, we determined that distributed octrees
are unsuitable for use in a parallel collision detection algorithm
because they require load balancing to remain efficient, and, in
some cases, must duplicate an object on multiple processors in
order to build a tight-fitting bounding volume for the object.

3.1.1 The Load Balancing Problem. When objects become
concentrated in small regions of space, their representations
become concentrated in the octants of the octree representing
that space. In the case of distributed octrees, processors
managing octants where concentrations of objects exist have a
disproportionately high workload. As a result of an unevenly
distributed workload, performance of the distributed octree
gained through parallelism is decreased. To solve this problem,
load balancing can be used to redistribute work among the
processors. Redistribution of workload is accomplished using
three operations: dynamic octant splitting, octant migration, and
octant consolidation.

An example of a distributed octree is described in [7].
Although not designed specifically for collision detection, the
distributed octree implementation discussed in this article can
also be used for parallel collision detection. A distributed
octree is used for storing and manipulating scientific data sets
for visualization. By distributing a data set across multiple
processors, operations on data can be performed in parallel. Due
to the large amounts of data, a distributed octree is well suited
for this type of application.

3.1.2 The Object-Octant Membership Problem. Object-
octant membership is a term that will be used to describe
which octants an object intersects. A major factor which
makes distributed octrees unsuitable for use in a parallel
collision detection algorithm is the manner in which object-
octant membership must be managed. The fundamental purpose
of using an octree is to segregate objects based on their position.
Octrees do this by creating a spatial relationship between objects
based on which octants objects occupy. A spatial relationship
exists between two objects that occupy a common octant.
Several methods have been developed to determine the object-
octant membership of an object. In this discussion, a search
method will be used to illustrate problems with distributed
octrees.

As discussed in Section 2, a typical strategy for inserting
data into an octree is to recursively search for octants that
intersect the object. Depending on how an algorithm terminates
recursive descents into the tree, upon completion of an insertion
operation, a reference to the object will have been stored with
octree data structure nodes that correspond to the location and
volume of the object. Octree nodes that store references to an
object define the object-octant membership of the object.

When the volume of an object straddles octants managed by
different processors, the object must be stored by each processor
that manage octants that intersect the object.

Storing objects on multiple processors is problematic for
distributed octrees because maintaining the state of an object
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requires coordinating the processors which store the object.
Although the difficulties surrounding distributed octrees can

be overcome, the cost of load balancing in terms of performance
outweigh the benefits of using it for parallel collision detection.
For this reason, distributed octrees are not suitable for use in a
parallel collision detection algorithm.

3.2 Linear Octree

The second data structure we considered for use in a parallel
collision detection algorithm was a linear octree. A linear
octree is not a tree-like data structure. It is an encoding
scheme derived from the structure of an octree. Codes generated
using a linear octree encoding scheme uniquely identify voxels
positioned within an octree. These codes are used for describing
three-dimensional objects volumetrically based on the voxels an
object intersects. The set of codes that describe the volume of
an object are called a linear octree. A linear octree is stored in a
list data structure.

The basic unit of a linear octree is an octal code, also called
octnode code. An octal code is a sequence of numbers that,
when read from left to right, describe a path from the root of
an octree to an octant. The numbers used in the sequence of
an octal code correspond to the indices of octants. The position
of a number in the sequence of an octal code corresponds to
a level in the octree. For example, the octal code {3, 1, 4}

refers to an octant located on the third level of an octree and can
be found by recursively descending into octant 3, followed by
octant 1, and finally octant 4.

The sequence of numbers in an octal code can be stored
conveniently in an unsigned integer by using the digit positions
to store the octal code sequence. For example, the sequence
{3, 1, 4} can be represented by the integer {314}.

Several variations of the linear encoding scheme have been
developed. [28] provides a comprehensive overview of these
variations as well as a description of their origins. [16] also
provides a thorough description of linear encoding schemes as
well as discusses set operations between linear octrees. [9]
briefly describes a linear encoding scheme and then describes
how to use linear octrees for ray tracing.

Linear octrees have several qualities that make them useful
for parallel computing environments. The most useful quality
is that a linear octree preserves the hierarchical nature of the
data it represents, while avoiding the need to retain a pointer-
based tree. Furthermore, the data representation of a linear
octree is convenient for transportation by means of interprocess
communications.

Another useful quality of linear octrees is a unique property
that octal codes exhibit. By sorting in ascending order a list of
octal codes represented as integers, the resulting sequence is the
pre-order traversal of an octree [28]. As show in Figure 4, by
visiting octants from a list of octal codes that has been sorted in
ascending order, nodes in the tree are visited in order on lower
to higher numbered branches and from top to bottom. This
property of octal codes is useful because it provides a method
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Figure 4: Octal codes sorted in ascending order and the order
octree nodes are visited

for merging disparate linear octrees into a single octree. Given
a set of octal codes, a pre-order traversal of an octree that only
contains octants that intersect objects can be found by simply
sorting the list of octants. This property is the cornerstone of
the new algorithm presented in the next section.

3.3 A Parallel Linear Octree Collision Detection
Algorithm

In this subsection, a new collision detection algorithm is
proposed that uses a linear octree for solving the all-pairs
collision detection problem. The algorithm has O((n log n)/k)
performance, where n is the number of objects and k is the
number of processors.

The strategy behind the proposed algorithm is to construct the
linear octrees of n objects in parallel using k processors and then
merge the resulting octrees into a single linear octree on a single
processor. In the description of this algorithm, the following
assumptions are made:

1. All objects are cubes.
2. The parallel program consists of one master process and k

slave processes.
3. Each slave process either shares a single octree, or all

processes have an exact copy of the same octree.
4. The number of objects is an even multiple of the number

of processes.

3.3.1 Algorithm Outline. The following is an outline of the
steps performed by the algorithm to generate a linear octree of
a set of objects and test the objects for collision.

1. The master process divides a list of n objects by k processes
and distributes a list of n/k objects to each process.



238 IJCA, Vol. 21, No. 4, December 2014

The master process then waits for all slaves to complete
processing before execution is resumed.

2. Each slave waits to receive a list of objects from the master.
When the list of objects is received, each slave builds a
linear octree for each object. The resulting octal codes
are paired with an index of corresponding objects from the
main list of objects. All resulting octal-code/object-index
pairs are stored in a single list.

3. Each slave process sorts in ascending order its list of octal-
code/object-index pairs by the integer representation of the
octal codes.

4. Each slave sends its list of octal-code/object-index pairs
back to the master process. The slave process is complete.

5. The master process receives k list of octal-code/object-
index pairs from the slave processes.

6. The master process merges k lists of octal-code/object-
index pairs into a single list.

7. The master process iterates in ascending order through
the list of octal-code/object-index and finds all pairs of
octal codes that share octants. The indices of objects that
correspond to octant-codes that share octants are stored in
a list.

3.3.2 Algorithm Pseudo Code. The algorithm can be
summarized in two pseudo code programs, one for the master
process and one for the slave processes.

Master Process()

Begin

integer k := number of slaves

address slave[ 0 to k ] := locations of slave processes

cube object_list[ 0 to n ] := list of n objects

Pair<octalcode,integer> slave_lists[0 to k][] := NIL

Pair<octalcode,integer> master_list[] := NIL

Pair<integer,integer> colliding_pair_list[] := NIL

octalcode smallest_octalcode := NIL

// Step 1

sublist_size := sizeof(object_list[]) / k

index := 0

For each x := from 0 to k

{

Send( slave[x],

object_list[ index to (index + sublist_size) ] )

index := index + sublist_size

}

// Step 5

num_octal_codes := NIL

For each x := from 0 to k

{

Wait(slave[x])

Receive(slave[x], slave_list[x])

}

// Step 6

master_list[] := MergeSortedLists(slave_lists[])

// Step 7

index := 0

For( object1 := 0 ... sizeof(master_list[]) - 1 )

{

For( object2 := object1 ... sizeof(master_list) )

if( CommonPath( master_list[object1],

master_list[object2] ) == true )

{

colliding_pair[index] := object1,object2

index := index + 1

}

else

break from inner for-loop

}

End

Slave Process()

Begin

cube object_list[] := NIL

octalcode linear_octree[] := NIL

Pair<octalcode,integer> slave_list[] := NIL

address master := address of master process

// Step 2

Wait( master )

Receive( master, object_list )

For each x := object_list[]

{

linear_octree[] := SearchOctree(object_list[x])

For each y := linear_octree[]

{

slave_list[] append pair(linear_octree[y],x)

}

}

// Step 3

Sort( slave_list[] )

// Step 4

Send( master, slave_list )

End

Boolean CommonPath( octalcode1, octalcode2 )

{

Determines if the octal codes share an octant.

Two octal codes share an octant if both codes define

octants on the same path through the octree.

Return true if two octants are shared, otherwise return

false.

}

array SearchOctree( cube )

{

Determine the object-octant membership of an object return

the octal codes of the octants this object intersects.

}

Like other algorithms for solving the all-pairs collision
detection problem, this algorithm uses bounding representations
of objects to gain performance. In this algorithm, bounding
cubes are used. Bounding cubes are used for two reasons.
First, testing for intersection between two cubes is efficient.
This is important because the octree search algorithm makes
extensive use of cube intersection tests. Second, cubes can be
stored efficiently in memory. Storage efficiency is important
because it reduces the overall memory requirements of the
collision detection algorithm and can be quickly transported
over a network connection.

The CommonPath subroutine is used to determine if two
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objects are colliding by determining if they share octants. The
CommonPath subroutine is so named because octal codes that
define similar paths through an octree have overlapping octants.
The general algorithm for comparing two octal codes is a
piecewise equivalence test between the sequences of numbers
stored as octal codes. If any of the numbers between the
sequences differ, then the octal codes identify disparate regions
of space. Otherwise, the octal codes identify overlapping
regions of space, and the corresponding objects are considered
for further collision testing.

It is possible for two octal codes to define paths of different
lengths. When this occurs, the octant indices are compared
up to the maximum length of the shorter octal code. For
example, consider the two octal codes {1, 2, 3, 4, 5} and
{1, 2, 6, 0, 0}. In this case, because the second octal code
defines a shorter path than the first octal code, only the first three
numbers in the code would be compared.

In practice, the implementation of the general algorithm
exploits the integer representation of octal codes. When two
octal codes differ in length, the longer of the two is truncated
using a modulus and a subtraction operation. The octal codes
can then be tested for equivalence using an integer comparison.
Using the previous example of octal codes in integer form, octal
code 12345 would be transformed to 12300 so that it can be
compared to octal code 12600 using an integer comparison.

The feature of linear octrees that makes the proposed
algorithm efficient is the property of octal codes that, when
sorted in ascending order, result in a list that defines a pre-
order traversal of an octree [28]. This feature is used to
merge the linear octree representations of multiple objects into
a single space by concatenating the linear octree representations
of multiple objects and sorting the resulting list of octal codes.

The sorted list of octal codes is used to determine all colliding
pairs of objects using the CommonPath function. This is done
by testing each octal code for a common path with subsequent
octal codes from the list until an octal code representing a non-
overlapping region of space is tested. At this point, no additional
octal codes need to be tested for a common path because the
region of space represented by the octal code does not overlap
any additional regions of space represented in the list of octal
codes.

To understand why this works, recall that within an octree
each octant is a fully enclosed subdivision of a higher
level octant. Therefore, only parent and child octants
that lie on the same path along a branch of the octree
overlap. Because octal codes represent paths along octree
branches, octal codes that represent different paths indicate
non-overlapping regions of space. As a result of sorting octal
codes in ascending order, octal codes representing overlapping
regions of space appear contiguously and in order within
the list such that higher level octants intersecting lower level
octants appear first. For example, in the sequence of octal
codes {1200, 1210, 1214, 1330, ...}, 1200 identifies
the parent of both 1210 and 1214 and overlaps both of their
spaces. Octal code 1210 is the parent of 1214 and overlaps

its space. Octal code 1330 defines a region of space that
doesn’t overlap any of the previous spaces and indicates that
the previous spaces do not overlap any other regions of space
represented in the list of octal codes. This property allows the
search for overlapping octants to be performed in the fewest
number of steps. As a result of the ordering, once two octal
codes identifying non-overlapping regions of space have been
tested, no further comparisons with subsequent octal codes will
reveal any additional overlapping regions of space.

3.3.3 Analysis of the Algorithm. On the master processor,
steps 1 and 5 of the algorithm run in linear time as a function of
the data distributed to, and collected from, the slave processes.
Because every object is passed to the search subroutine in step
2 to build the linear octree for each object, each search time
becomes a constant factor. Therefore, searching for n objects
runs in linear time as a function of the number of objects. In
Step 3, each slave sorts n resultant octal codes which takes
O((n log n)) time in the worst case. In step 6, merging k lists of
sorted octal codes is done in linear time. Finally, step 7 runs in
O(n2) time in the worst case, but, if objects are not allowed to
remain in an intersecting state, then the running time is O(n) on
average as a result of the pre-order traversal ordering of the list.

Based on the individual run times of each step, the runtime
performance of this algorithm will be bound by the sort
performed in Step 3 by each slave processor. Therefore, the
expected runtime of this algorithm is O((n log n)/k).

4 Parallel Collision Detection System Implementation

4.1 Client-Server Architecture, Object-Oriented Design,
Modular Implementation

The structure of the collision detection system is a client-
server architecture. The application serves as the client, and
the collision detection system acts as the server. A client-
server approach is used to separate logically and physically the
application from the collision detection.

Logical separation of the collision detection system and
the application is achieved by using object-oriented design
techniques to encapsulate the data and functionality of
the collision detection system in a collection of reusable
components. A feature of this design is that it allows the
collision detection system to be used by client applications with
varying degrees of integration.

As part of the design of the collision detection system,
parallel aspects of the underlying algorithm are implemented
as separate processes. This feature requires the collision
detection system to be separated physically from the client
application and was made possible by the underlying object-
oriented design. Additionally, the physical separation of the
collision detection system from the application allows the
collision detection system to take advantage of both shared-
memory, multi-processor computers and a cluster of networked
computers.



240 IJCA, Vol. 21, No. 4, December 2014

4.2 Operating Environment

The collision detection system has been implemented for
use on Unix operating systems using the C++ programming
language. Interprocess communication between components
of the collision detection system on a single computer is
implemented with System V semaphores and shared memory.
Berkeley sockets are used for communicating over a network
connection.

4.3 Integrating Collision Detection into an Application

As part of the object-oriented design of the collision detection
system, application developers may choose from three levels
of integration. This choice is made by selecting certain
components of the collision detection system to build into an
application.

When the highest level of integration is used, the entire
collision detection system is run in a process owned by the
client application. In this configuration, the client application
has the highest degree of control over initializing data structures
internal to the collision detection system. The drawback to
fully integrating the collision detection system is that the client
application cannot take advantage of the parallel features of the
collision detection system.

A lower level of integration removes the task of building
linear octrees from a client-application-owned process and
performs this task in processes owned by the collision detection
system. The task of merging linear octrees is still performed
by a client- application-owned process using components from
the collision detection system. Components from the collision
detection system that run in a client-application-owned process
communicate with processes owned by the collision detection
system using shared memory and semaphores. When this
configuration is used, an application can begin to take advantage
of the parallel features of the collision detection system.

By using the lowest level of integration, all tasks
performed by the collision detection system are removed
from client-application-owned processes. In this configuration,
an application can take full advantage of the parallel
features of the collision detection system as well as
communicate asynchronously with the collision detection
system. Asynchronous communication with the collision
detection system allows a client application to submit a job
to the collision detection system and continue processing. At
a later time, the client application can query the collision
detection system to see if a previously submitted job is
complete.

There are two reasons for running the collision detection
system as part of a client-application-owned process:

1. The target platform is a single-processor computer. In
the collision detection system, multiple processes are used
to facilitate concurrent execution in parallel computing
environments. If the client application is not run on a
parallel computer, then no performance advantage will

be gained by using the parallel features of the collision
detection system.

2. The number of objects the client application manages is
small. The parallel features of the collision detection
system are designed to enable client applications to exceed
the number of objects other collision detection systems
can handle. When the number of objects is small, there
is no benefit to using the parallel features of this collision
detection system.

Details of the class design can be found in [25]. This
document goes through the class architecture and various
services provided by the algorithm’s implementation

5 Results

This section presents results from our implementation of the
collision detection algorithm. In the first sub-section, empirical
results obtained from running the collision detection system are
described through a series of figures. In the second sub-section,
the actual performance of the algorithm is described using
speedup and efficiency metrics. Finally, the last sub-section
presents an explanation of the performance of the algorithm by
analyzing the figures presented in the first sub-section of this
section and describing the actual runtime of several components
of the collision detection system.

5.1 Empirical Results

Results presented in this section were obtained by running
the collision detection system on variable size data sets and
recording the time taken to complete a collision detection
operation.

Figure 5 shows the performance of the collision detection
system by comparing execution times for 100,000 to 2,000,000
objects using one to forty processors. These computers are
interconnected with a high bandwidth, low latency network.
This network allows large amounts of data to be moved between
computers at speeds in upward of eight times faster than a
100baseT Ethernet network. Besides helping show how scalable
the collision detection algorithm is, the primary purpose of
this graph is to provide supporting evidence to the claim that
the collision detection algorithm runs in O((n log n)/k) time.
Unfortunately, these graphs appear linear. An explanation of
this phenomenon is presented in the last section of this section.

5.2 Analysis of Empirical Results

The tables in this section describe the performance of the
collision detection system using actual runtime data. Each table
contains the speedup and efficiency of the collision detection
system for a variable number of processors and data set sizes.
In each case, speedup is calculated by dividing the runtime of
the serial algorithm by the parallel runtime of the algorithm.
Speedup indicates how many times faster the collision detection
system performs using multiple processors compared to the
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Figure 5: Collision detection: remote, 2 processors per
machine, 1 to 20 machines

serial implementation of the algorithm. Efficiency is calculated
by dividing the speedup of the algorithm by the number of
processors used to attain the speedup value. The efficiency of an
algorithm is a percentage that indicates how much of the total
processing capabilities of the parallel computer an algorithm
can use while executing.

Tables 1 and 2 show that as the number of processors
increases the system can retain efficiency if the amount of work
(the number of objects) is increased.

5.3 Analysis of Algorithm Runtime

One of the goals of obtaining empirical data of the runtime of
this algorithm was to provide supporting evidence to the claim
that it performs in O(n log n)/k time. Figure 5 was intended to
do this by producing data that when graphed, resulted in a curve
similar to an n log n curve. Unfortunately, none of the plotted
lines in Figure 5 are curved. In fact, these lines appear linear.

To understand why these lines do not fit a characteristic
n log n curve, individual components that contribute to the
runtime of the algorithm where timed and compared. Based on
our findings, all operations performed internal to the collision
detection system are performing as expected, except for the

Table 1: Collision detection: 2 processors per computer,
1,000,000 objects

Processors Run time (µsec.) Speedup Efficiency
1 29,537,415 NA NA
2 15,596,299 1.89 94.7%

10 3,615,147 8.17 81.7%
20 2,177,746 13.56 67.8%
30 1,682,112 17.56 58.5%
40 1,480,608 19.95 49.9%

Table 2: Collision detection: 2 processors per computer,
2,000,000 objects

Processors Run time (µsec.) Speedup Efficiency
1 59,706,876 NA NA
2 31,332,310 1.91 95.3%

10 7,215,860 8.27 82.7%
20 4,298,207 13.89 69.5%
30 3,331,193 17.92 59.7%
40 2,889,864 20.66 51.7%

ResolveObject() routine, which is responsible for generating
the octal codes for each object.

The following list of functions and times are the primary
contributing factors that make up the runtime of the collision
detection system.

• Slave computer: qsort() 88,953 µ sec.
• Slave computer: ResolveObject() 1,307,631 µ sec.
• Networked slave computer: MergeSlaveResults() 38,622

µ sec.
• Master computer: MergeSlaveResults() 791,490 µ sec.

Obviously, the major contributing factor to the runtime
of the collision detection algorithm is the ResolveObject()
function. The runtime of the ResolveObject() function grows
linearly with the number of objects it operates on and, because
the runtime of the ResolveObject() function is an order of
magnitude greater than the other runtimes, the effects other
contributing components have on the overall runtime of the
collision detection algorithm are diminished. This explains why
the lines in Figure 5 appear so linear.

The second largest contributing factor in the list is
the MergeSlaveResults() function performed by the master
process. Although in this example, the runtime for the
MergeSlaveResults() function appears large compared to the
qsort() runtime, this is actually the effect of the number of
processors being used in the collision detection system. In this
example, forty slave processors are being used. If k was smaller,
or n was sufficiently larger, then the runtime of the qsort()
routine would dominate all other contributing factors and make
the curves in Figure 5 appear more n log n.

6 Conclusions and Future Work

In this paper we presented a new collision detection algorithm
that solves the all-pairs collision detection problem using
parallel processing. The design of the algorithm is based
on a linear octree and runs in parallel with a theoretical
performance of O((n log n)/k) runtime. The algorithm has
been implemented as a collision detection system using object-
oriented design techniques and a client-server architecture. The
architecture of the collision detection system is designed to
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use the parallel capabilities of both shared-memory, multi-
processor computers and clusters of networked computers.
Additionally, the modularity of the collision detection system
gives application developers the flexibility to choose the level
at which the collision detection system is integrated into an
application. Using the collision detection system, experimental
results have been generated that demonstrate how the algorithm
performs according to the calculated theoretical performance.

Distributed octree data structures are well suited for collision
detection when the data storage requirements of an application
exceed the memory capacity of a single computer. In this
case, a distributed octree data structure used in conjunction
with a cluster of networked computers is an effective solution
that will enable an application to meet the requirements of
a memory-intensive application. However, distributed octree
data structures are ill suited for implementing parallel collision
detection algorithms that compete with the performance of
existing collision detection algorithms. Issues of load
balancing and object representation in the data structure prevent
algorithms that use the distributed octree data structures from
performing efficiently. Linear octrees are an efficient and
robust method for representing objects in a collision detection
algorithm.

Many aspects of the algorithm and collision detection system
developed in this paper are the result of an evolutionary process
in which experimental designs were explored. Successful ideas
and techniques from these experiments became part of the final
algorithm and collision detection system. A prime example
of an evolutionary change the collision detection system
underwent is the transition from a distributed octree to a linear
octree used in the parallel collision detection algorithm. In
the same way that the algorithm and collision detection system
evolved into the current implementation, it can continue to
evolve with further development. The following are areas where
the algorithm and collision detection system can be improved:
faster octree searches, improved network performance, an
improved parallel merge operation, and exploiting spatial and
temporal coherence.
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