
The Journal of Systems and Software 101 (2014) 69–85

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A separation-based UI architecture with a DSL for role specialization

Ivan Gibbs∗, Sergiu Dascalu, Frederick C. Harris, Jr.

University of Nevada, Reno, Reno, NV 89557, USA

a r t i c l e i n f o

Article history:

Received 6 May 2014

Revised 25 September 2014

Accepted 18 November 2014

Available online 28 November 2014

Keywords:

Domain specific language

Model driven engineering

User experience

a b s t r a c t

This paper proposes an architecture and associated methodology to separate front end UI concerns from

back end coding concerns to improve the platform flexibility, shorten the development time, and increase

the productivity of developers. Typical UI development is heavily dependent upon the underlying platform,

framework, or tool used to create it, which results in a number of problems. We took a separation-based

UI architecture and modified it with a domain specific language to support the independence of UI creation

thereby resolving some of the aforementioned problems. A methodology incorporating this architecture into

the development process is proposed. A climate science application was created to verify the validity of the

methodology using modern practices of UX, DSLs, code generation, and model-driven engineering. Analyzing

related work provides an overview of other methods similar to our method. Subsequently we evaluate the

climate science application, conclude, and detail future work.

© 2014 Published by Elsevier Inc.

1

l

t

m

m

b

b

t

U

s

c

t

a

t

t

m

t

b

t

s

t

r

r

d

p

s

i

a

w

c

d

e

i

v

a

i

t

m

t

f

t

U

(

s

(

c

l

a

h

0

. Introduction

In software development there are many deadlines, dead ends,

ong hours, and other difficulties. We believe that a large amount of

he accidental complexity (Brooks, 1995) contained in the develop-

ent of a software project lies at the boundaries between program-

ers and higher level designers. Our focus was specifically on the gap

etween User Interface (UI) designers and programmers, which we

elieve is becoming more complex due to two trends: (i) the desire

o attract and keep users is resulting in increasing complexities in the

I and (ii) the diversity of UI platforms is growing due to new devices

uch as tablets, smartphones, Google glass, and others that will be

reated in the future. The current status quo of UI development is

o allow a UI designer to specify the UI while the programmer uses

UI builder and associated framework to create the UI. We believe

hat this status quo will become increasingly difficult to deal with due

o the aforementioned trends. This exchange is hampered by a com-

unication gap between those two groups, an accidental complexity

hat we have identified and attempted to rectify in our approach.

We address the UI–Code interface of the traditional separation

ased UI architecture (Fig. 1) in order to simplify that interface and

hereby alleviate a number of difficulties pertaining to developing

oftware. In contrast to other approaches, we attempt to determine

he design of the UI–Code interface by basing it on specialized roles

ather than solely on the code and some principle such as don’t

epeat yourself (DRY; Hunt and Thomas, 1999). Our architecture em-
∗ Corresponding author. Tel.: +1 7753848968.

E-mail addresses: igibbs@cse.unr.edu, igibbs.cse@gmail.com (I. Gibbs),

ascalus@cse.unr.edu (S. Dascalu), fredh@cse.unr.edu (F.C. Harris, Jr.).

t

(

e

d

ttp://dx.doi.org/10.1016/j.jss.2014.11.039

164-1212/© 2014 Published by Elsevier Inc.
hasizes specialized roles involving User Experi- 35 ence (UX) profes-

ional designers and programmers. The architecture and the result-

ng methodology based on it benefit from automated code generation

nd are generic and flexible enough to be applied in numerous soft-

are development projects. Our main premise is that specialization,

ombined with a mechanism for integration and bridging knowledge

omains such as a Domain Specific Language (DSL) can be particularly

ffective in software applications with significant UIs.

We combined existing methods and technologies in order to fash-

on a software development approach to address the difficulties in-

olved with changes of the UI that inevitable occur when UI design

nd programming are happening concurrently. The techniques used

n our approach include Interaction Design (IxD), DSLs, code genera-

ion, Graphical User Interface (GUI) builders, and Integrated Develop-

ent Environment (IDE)s. Due to time constraints, we focused on the

ools as they are today and did not attempt to greatly modify them

or our specific purposes.

The significance of this work stems first from addressing problems

hat arise from the current status quo in developing software with a

I. We see four problems that will become worse with trends (i) and

ii). The first two problems are related to the people developing the

oftware: (1) UX professionals are resigned to an advisory role and,

2) communication gaps between UX professionals and programmers

ause confusion and loss of productivity. Another set of problems re-

ates to the technology, namely (3) UI dependence upon a framework,

nd (4) UI creation dependence on knowing programming. Take note

hat these problems are not orthogonal and that (1) is a result of

4). Our software development methodology addresses and alleviates

ach of these problems thereby providing a new status quo to deliver

evelopers to a more productive future.

http://dx.doi.org/10.1016/j.jss.2014.11.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.11.039&domain=pdf
mailto:igibbs@cse.unr.edu
mailto: igibbs.cse@gmail.com
mailto:dascalus@cse.unr.edu
mailto:fredh@cse.unr.edu
http://dx.doi.org/10.1016/j.jss.2014.11.039


70 I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85

Fig. 1. Separation based UI diagram.

a

i

a

2

d

S

a

i

p

c

e

i

d

t

e

t

h

S

t

a

g

s

t

The paper is structured as follows. The derivation and description

of the approach is presented in Section 2. The creation of an appli-

cation using the methodology is described in Section 3. Section 4

provides an evaluation of the methodology as compared to similar

approaches. The application we created is evaluated in Section 5 with

a usability analysis, a code generation assessment, and a compara-

tive analysis. Finally, Section 6 presents our conclusions and future

work. This paper is based upon Gibbs (2013), which can be probed for

further details of the proposed methodology.

2. The approach

2.1. Derivation of the approach

This section describes the essential aspects of our proposed ap-

proach. The approach is a combination of a separation-based UI ar-

chitecture, UX considerations, and Model-Driven Engineering (MDE).

We identify the premises we used to base our architectural decisions

on and illustrate our deductive process to create the architecture. The
Fig. 2. Scores of software engineers and psychologists (Burk
pproach is then described in detail with regards to how it should be

mplemented. The role of the developers is explained and the tools

nd techniques we used are described.

.1.1. Premise 1: Role specialization increases productivity and success

Michael Jordan was a top athlete in professional basketball, who

ecided to play baseball. However, he was mediocre in baseball.

urprisingly he decided to go back to basketball and again became

top athlete. Why would Michael Jordan meet with less success

n baseball than basketball? The problem here is specialization—

eople adapt to their environment and the more adapted they be-

ome to one environment the less adapted they will be to another

nvironment. Though mental abilities are not as apparent as phys-

cal ones they are still there and without getting into a Darwinian

iscussion of heredity versus environment, we propose that men-

al abilities can limit the effectiveness of a person to a particular

nvironment.

The Johnson O’Connor Research Center has measured the apti-

udes of software engineers (Burke and Fitzgerald, 2003) and they

ave also done this for psychologists (Condon and Schroeder, 2005).

ince UX designers often may have a background in psychology as

hey need detailed understanding of human users, we assume the

ptitude profile of the UX designer to be close to that of a psycholo-

ist, in lieu of a better comparison. Fig. 2 provides evidence that the

kills needed by UX designers and programmers are very different,

hereby indicating poor performance of those individuals working in
e and Fitzgerald, 2003; Condon and Schroeder, 2005).



I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85 71

Fig. 3. A model of communication (Lynch, 2014).

t

r

2

d

t

(

f

i

t

t

u

t

H

t

i

c

o

F

p

U

N

m

s

c

H

t

e

2

U

k

c

t

o

w

a

t

a

t

w

k

Fig. 4. Separation-based UI architecture labeled with communication gaps.

Fig. 5. Identification of knowledge domains.

Fig. 6. Architecture of the approach.

t

s

2

b

a

p

1

u

i

w

p

a

i

u

m

s

t

(

c

(

t

d

t

p

2

D

t

he wrong area. To sum up our perspective, we think the invariant of

ole specialization in humans increases productivity and success.

.1.2. Premise 2: Communication gaps cause confusion and inefficiency

A communication gap occurs when the sender and receiver have

ifferent conceptual meanings for words. A common phrase in adver-

ising is “Nothing is too good for our customers.” Gause and Weinberg

1990) Upon a close inspection, we can derive two different meanings

or this statement: (1) “Our customers deserve so much that nothing

n the world can actually meet this requirement”, or (2) “Our cus-

omers are so undeserving that giving them nothing would be giving

hem too much.” Another example Cooper et al. (2007) is when a

ser asks the computer to “Find restaurants in Virginia and Georgia,”

he user wants (restaurants in Virginia) AND (restaurants in Georgia).

owever, a computer programmer would set up the UI to interpret

he phrase so as to finding restaurants in (Virginia AND Georgia)—an

mpossibility. So, the looseness of language contributes to possible

onfusions during communication.

The communication gap problem is complex and multiple models

f communication have been proposed, such as the one shown in

ig. 3. A prime candidate for the illustration of communication gaps is

rovided by the creation of user interfaces by programmers. A popular

X professional writes

“Our first four textual bloopers are about poor writing in the

text displayed by software. They are the result of giving the job

of writing text to the wrong people: Programmers.” Johnson

(2000)

umerous examples of programmers failing to write software to com-

unicate well with customers illustrates the fact that programmer

kill sets are distinct and do not generally enable programmers to

ommunicate clearly with the general population (Cooper, 1999).

owever, many programmers are not aware of the apparent fact that

he sender and receiver of a message could have entirely different

ncoding/decoding mechanisms (Fig. 3).

.1.3. Premise 3: The largest communication gap in a separation-based

I architecture is the UI–Code gap, between the user and machine

nowledge domains

We found that in any piece of software there are many communi-

ation gaps that can be identified. In this paper, we attempt to classify

he different communication gaps that we are aware of and to address

nly the largest of those gaps in order to reduce complexity in that

ay. Software constitutes whatever we insert in between the user

nd the machine. Therefore, we can consider this communication gap

o be represented by CG. If we illustrate the software using a sep-

ration based UI architecture, then we notice that we actually have

hree separate communication gaps; cg1, cg2, and cg3 (Fig. 4). Here,

e can find the largest communication gap by specifying the actual

nowledge domains that each component belongs to (see Fig. 5). It is
his communication gap, cg2, that we will address in order to alleviate

ome of the problems posed by communication gaps.

.1.4. Assertion: A commonly understood DSL can bridge the gap

etween the user and machine knowledge domains

There are ways to eliminate or reduce a communication gap, such

s having one person learn the jargon of the other, having both peo-

le learn the others jargon, or providing an interpreter. From premise

, we believe that attempting to educate the programmer regarding

ser knowledge is the wrong direction. The same applies to attempt-

ng to make the user learn more about machine knowledge. Instead,

e subscribe to an interpreter option, and that interpreter is a UX

rofessional who understands the realm of Human–Computer Inter-

ction (HCI) theory (Rogers, 2012). The UX professional serves as the

nterpreter between the user and the code and is not required to

nderstand machine knowledge.

By isolating our professionals in their respective knowledge do-

ains, we also isolate their communication to that of a discus-

ion of one communication gap between their knowledge domains—

he largest communication gap of the architecture shown in Fig. 4

Premise 3). This isolates much of the confusion and allows for a fo-

used effort to be put on bridging the largest communication gap

Premise 2).

In an effort to tackle this gap, we will bridge it with a DSL in order

o use a technology that already exists and has available literature

escribing it (see Fig. 6). This DSL will also eliminate the need for

he UX professional to understand machine knowledge or how to

rogram, thereby supporting Premise 1.

.2. Description of the proposed approach

Our approach brings together three different ideas, that of UX ,

SLs, and code generation. We believe that much of current indus-

rial practice for software creation follows (Fig. 7). The designer is



72 I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85

UI CODE
Programmer

User
Designer

Fig. 7. Typical workflow.

UI Creation Code Creation

Graph Key

UI Prototype

UI Prototype

Create UI

UI

Integrate

Write grammar

Grammar

Write templates

Templates

Generate code

Code

Gather
Requirements

DSL based SRS

Design

Design Document with
DSL Specification

Application

ProcessToolArtifact

Fig. 9. Process diagram.

w

r

o

a

h

b

o

responsible for defining the user’s needs and specifying what needs

to be done with the UI. The programmer then translates this specifi-

cation into a program consisting of two parts—the UI and Code.

Our approach differs in that it specifies a UX designer instead of

a general designer and the role specialization is isolated with a DSL.

In order to further increase productivity for the machine knowledge

domain, we use MDE code generation techniques to quicken software

development, reduce errors, and increase flexibility (Fig. 8).

The UX designer will be an expert in user interfaces and is not

required to understand how to program. The UI will be created by

the designer through the use of a simple GUI builder or by directing

a programmer. Though there exist numerous GUI builders, we have

not found many that do not require some understanding of program-

ming languages and these also have limitations in expressivity which

detract from the creation of some UIs. The UI designer will interact

with the DSL in order to communicate with the application.

The programmer will need to understand programming and DSL

creation. The DSL will be defined by the stakeholders during the re-

quirements and design stages of development. The programmer will

create the DSL (another option would be to have this created by a lan-

guage designer if resources exist). All technical issues arising during

the UX design can also be solved by the programmer. The ultimate

responsibility of the programmer is to create the software application

code through code generation and manual edits.

The overall process is shown in Fig. 9. We begin with gathering

requirements for the application and then create the software re-

quirements specification (SRS; Sommerville, 2010) with a specific

vocabulary of terms, precisely defined, in order to prepare for our

eventual DSL creation. From there, the design will be created to de-

scribe how a technical solution will be reached to meet the SRS and

here we also focus on specifying terms exactly for the next stage.

The critical stage of creating the DSL then gives the design a formal

description from the perspective of a UI interacting with an appli-

cation, because the intention of creating the DSL is to make a well

defined interface between the UI and the application. For example, in

an ATM application, requirements such as “USER deposits MONEY,”

“USER withdraws MONEY,” and “USER closes ACCOUNT” clearly indi-

cate an interface between the USER and the ATM machine, which can

be formalized with a DSL. Now the benefits begin to show up because

the code creation and UI creation may now progress independently.

The UI may be prototyped, tested with users, and finalized. Conse-

quently, the DSL can be used to generate partial code in lieu of full

generation, such that code can be added by the programmer after

the generation phase. After the UI and code have been created, they

will be integrated to create the final product. At this point, we note

that the integration phase consists of merging a UI which interfaces

with a human and produces a DSL script to communicate to the ap-

plication, while the application is controlled via the DSL commands.

The flexibility here is that two or more separate UIs can be integrated
UI DSL
UX Designer

Co
 an

User
UX Designer

Fig. 8. Workflow with
ith the same application in order to accommodate different envi-

onments such as an instance running on an individual workstation

r one running in a web browser. The connection between the UI

nd application can be managed via a connector component which

andles the details of routing messages to and fro, thereby allowing

oth UI and the application to be ignorant of their distance from each

ther.
PIM
PSM 

 aka Code
Code Generator

de Generator 
d Programmer

code generation.



I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85 73

Xtext

Stand
Alone
Build

Eclipse
Plugin
Build

Write
grammar

Grammar file
(.xtext)

Generate
Artifacts

Write
template

Template
files (.xpand)

Create
generation
workflow

MWE2

GeneratorInterpreter Main class

Create
runnable Jar

Start Eclipse
instance

Parser Metamodel Editor

write
DSL script

(.nc)

Build

Generated code

Build

Eclipse
Java

application

Eclipse
Runnable

Jar

Run
Jar

Generated code

Write
DSL script

(.nc)

DSL Script

Build

Stand-alone
application

Fig. 10. Code creation details.

2

g

s

g

t

f

w

c

m

c

a

Fig. 11. A script for our DSL.

Graph Key

Step 1 
 Identify the Gaps

Step 2 
 Identify the Knowledge Domains

Step 3 
 Create a DSL

Step 4a 
 Create the UI

Step 4b 
 Create the Code

Step 5 
 Integrate

ProcessToolArtifact

Fig. 12. A simplified workflow representation of our methodology.

E

o

s

e

D

b

S

t

c

o

2

U

2

i

n

M

2

b

w

2

r

t

t

s

d

d

t

.2.1. Code creation

The code creation process shown in Fig. 9 is a DSL-based code

eneration process that uses several development tools that we have

elected. Fig. 10 presents a much more detailed code generation dia-

ram highlighting our choice of using the Xtext tool. The first step is

o take the DSL from the DSL specification and distill it into a grammar

or Xtext. Once we have an understanding of the form of the grammar,

e start a new Eclipse Xtext project and then enter the grammar. The

reation of this grammar enables us to generate the parser, the meta-

odel, and an Eclipse editor tool via the ‘Generate Xtext Artifacts’

ommand. In the next stage, we create templates for the code gener-

tion; these templates are coded in Xtend. The Modeling Workflow
ngine 2 (MWE2) tool then allows us to generate either a generator

r an interpreter for our DSL. When we take the interpreter path, we

tart a new Eclipse instance that incorporates the editor tool created

arlier and that tool provides syntax corrections while writing our

SL script (Fig. 11). After the DSL script has been created, we can then

uild that script which results in the creation of the generated code.

ubsequently, the generated code is built to give us the final applica-

ion. Here, we have only explained the Eclipse plugin branch of the

ode generation process, but if the readers desire to learn the details

f the Stand Alone branch, they are referred to Bettini (2013).

.2.2. UX creation

The creation of the UI will be largely performed by experienced

X designers. We closely followed the methods of IxD (Cooper et al.,

007) such as design ethnography and sketching the UI. Our ideal

s for the UX professional to use tools such as GUI builders that will

ot require the understanding of programming; such as the MetaCase

etaEdit tool (MetaCase, 2013) or Meta-Gui-Builders (Luyten et al.,

008). The end result of this work is that the UI provided will be capa-

le of generating scripts in the defined DSL and thereby communicate

ith the application code.

.2.3. Steps of implementation

There are a number of well-defined steps which, if followed cor-

ectly, will allow the implementer to design software that conforms

o our proposed approach (Fig. 12). Our approach does not replace

raditional requirements analysis, and other design processes but in-

tead enhances the design during use case construction, architecture

esign, and code production. Step 1 is to analyze the use cases and to

etermine what the actual gaps are that the software is being asked

o address. Then, in Step 2, the implementer separates the tasks of the



74 I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85

Table 3

Classifying steps into domains.

User knowledge Machine knowledge

Search for data

Find data in NetCDFs

Download NetCDFs

Extract data

from NetCDF

Analyze data in Matlab
use cases into a two columned table identifying if the particular task

is in the User domain or in the Machine domain. With this table, the

UX professional and the programmers can work out what informa-

tion needs to be communicated between the machine and the user

with the DSL (Step 3). Once the DSL has been specified, the UI and

Code development can carry on independently with Steps 4a and 4b.

Finally, in Step 5, the two artifacts from Step 4 are integrated with the

formalized DSL.

3. Application

To illustrate the application of our methodology we chose to work

on a problem which affected climate scientists—that of the subset-

ting of NETwork Common Data Form (NetCDF; Unidata, 2014c) files.

Although the application was kept relatively short for simplicity, it

is nevertheless intended to give the reader a comprehensive view of

how the methodology works in practice. The current section is struc-

tured according to the flow of the methodology shown in Fig. 12.

3.1. Step 1: Identify the gaps

In order to learn how the user interacted with NetCDF files, the UX

professional performed a number of ethnographic interviews (Rogers

et al., 2011). With the information our UX professional collected, a

Persona was created (Table 1) for reference and a use case to subset

data from a NetCDF file was written (Table 2). In performing this use

case, the scientists were accomplishing their goal of analyzing climate

data for their research needs.

3.2. Step 2: Identify the knowledge domains

Our UX professional and programmer got together and discussed

the steps of the subsetting task in order to categorize those steps as

shown in Table 3 into their respective domains. This categorization

was to illustrate our methodology with a simple example and there

are many potential categorizations that could be chosen with this use
Table 1

Climate scientist persona.

Joe Greenfield

Job: Climate scientist

IQ: High

Time spent: Gather data

Analyze data

Write reports

NetCDF needs: Explore data sets

Grab data sets

Put data into Matlab

Analyze data

Table 2

Use cases for subsetting NetCDF

files.

1. Search for data

2. Find data in NetCDF files

3. Download NetCDF files

4. Extract data from NetCDF

5. Analyze data in Matlab

Fig. 13. Designing a DSL for the NetCDF file subsetting application: UK=user knowl-

edge, MK=machine knowledge.

c

o

3

T

T

h

3

c

a

t

a

i

b

r

U

ase. With this identification of domains, we have separated the work

f the team and can benefit from role specialization.

.3. Step 3: Create a DSL for the domains to talk to one another

Our UX professional and programmer worked together to enhance

able 3 to that of Fig. 13 to show the messages to bridge the domains.

his DSL will later be formalized, but for now it is only important to

ash out the details of exactly what needs to be communicated.

.4. Step 4a: Creating the UI

The UX professional created a prototype UI to get feedback from

limate scientists. This first prototype was a drag and drop GUI that

llows a climate scientist to create a workflow out of components

hat are familiar to them. The prototype was sketched, wireframed,

nd implemented. In order to be faithful to the methodology, we

dentified the MetaEdit+ application which could be used as a GUI

uilder without requiring the user to understand programming. The

esulting MetaEdit+ prototype is shown in Fig. 14. Unfortunately, the

I had a number of problems: (1) it required user to have MetaEdit+



I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85 75

Fig. 14. A prototype in MetaEdit+.

i

fi

t

T

d

a

a

i

t

n

s

c

r

t

i

c

e

h

t

a

e

m

I

g

(

G

m

t

a

T

a

d

t

a

3

m

a

a

i

X

p

p

a

c

3

a

d

t

c

t

(

t

w

p

4

m

t

w

c

4

d

nstalled, (2) it did not have a clear area for the tool icons for NetCDF

les and the filters, and (3) it contained all MetaEdit+ controls rather

han only the controls needed to create a NetCDF subsetting model.

he limitations of this GUI builder motivated the UX professional to

elegate the UI creation to a programmer.

A second prototype attempted to present the database contents as

node-link tree to the user; see Fig. 15. In searching a database, such

s a library catalog, the user is presented with a textual hierarchy, but

t is easy to lose yourself in the hierarchy. Our goal here was to be able

o present a node-link tree that indicated how much data a particular

ode contained (Fig. 16) and allow the user to click on that node to

how the sub-nodes. To specify a subset of the data, the user would

hoose a particular combination of nodes.

Though we feel that this interface had some promise, it had some

eal downsides regarding our methodology. First, the creation of

his browser required some significant programming. We were us-

ng Sparx Enterprise Architect (Sparx Systems, 2014) to create the

ode and we used the D3 JavaScript Visualization package (Bostock

t al., 2011). A second downside is that we ran into difficulties in

ow to display node contents and in getting information passed be-

ween the server and node-link tree in an efficient manner. Eventu-

lly after spending a significant time on this idea, we abandoned the

ffort.

A usability study informed us that a non-graphical approach is

ore effective than a graphical one for a climate science Search User

nterfaces (SUI) in some cases. Three UI sketches were created: a

raphical SUI, a text-oriented one, and a natural language output

Cooper et al., 2007) one. When tested with users and analyzed with

OMS (Card et al., 1983), the natural language output version was the

ost popular and efficient (Fig. 17).

At this point the UX professional began to test the UI with users

o begin the iterative process of evolving the UI. Our testing for the

pplication showed a marked improvement over earlier SUI designs.

he eventual prototype consisted of a local desktop application which

llowed the user to drag and drop NetCDF files to it. Once a file was

ropped, the file would appear in a file list (Fig. 18). If the user chose

he file in the file list, appropriate details and search terms would

ppear (Fig. 19).
.5. Step 4b: Creating the code

The DSL specified in Table 3 was formalized for all messages that

ust be passed between the UI and Code components. Fig. 20 shows

couple of these formalized messages.

Our programmer used Xtext on the Eclipse platform with the Ecore

rchitecture. The complex process of creating the textual DSL is shown

n Fig. 10 and further details are provided in Bettini (2013). Using

text, we defined a grammar for our textual scripts (Fig. 21), wrote the

rogram in Xpand and Java, and incorporated that code into our Xtext

roject as templates. We then generated the parser code (see Table 6)

nd tested scripts by feeding them into our parser and generating Java

ode.

.6. Step 5: Integration

Our DSL served as the glue to connect the UI and Code components

nd this worked well. The actual climate scientist user would enter

ata into our SUI. Any user action that required information from

he Code component would create a DSL script and query the Code

omponent. For example, when the user presses the “Execute” button,

he UI creates a script (Fig. 22) which is then fed into our parser

Fig. 23), which in turn places the parsed information into our code

emplates and then generates the Java source code for the specified

orkflow (Fig. 24). These files are then compiled into an executable

rogram which is run to execute the workflow.

. Related work

To place our work in the landscape of related software develop-

ent methods, we surveyed prior work in the area of UI separa-

ion based architectures and UI creation techniques. Our approach

as compared to related efforts in regards to user interaction and UI

reation.

.1. UI architectural patterns

Although there are many UI architectural patterns, here we ad-

ress only those that isolate usability concerns to a UI component of



76 I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85

Fig. 15. A graph of the data in the database.

Fig. 16. Details of a particular node.

o

f

b

u

A

d

t

t

c

i

o

u

d

t

p

the software architecture. Though the reader may be familiar with

patterns such as model-view-controller (MVC), our view is that many
f these patterns primarily address non-usability concerns and there-

ore we do not include them here.

GUI wrappers have been used to improve the usability of text-

ased console UIs. Recently, Microsoft has registered a patent for

sing Windows Powershell commandlets for a UI (Pintos et al., 2009).

n essential source of this pattern is that the UI code is conceptually

ifferent than the machine code and that inspires the developers

o separate these parts. While there was a great debate regarding

ext versus graphical interfaces, we believe that the GUI reduces the

ognitive load of a user and therefore improves usability for user

nterfaces.

Though GUI wrappers may actually have much in common with

ur architecture, it is still quite different. Our architecture requires the

se of a DSL during the requirements and design stages of application

evelopment. However, a GUI wrapper is more of an ad hoc addition

o a console based program. While one could introduce a GUI wrap-

er consideration in the requirements and design stages, the wrapper



I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85 77

Fig. 17. Natural language search UI.

Fig. 18. Desktop NetCDF subsetting application after a NetCDF file was added.

p

m

p

G

t

b

c

u

i

c

attern does not indicate any preference and therefore leaves imple-

enters to their own devices, whereas our associated methodology

rovides a guide to developers as well as an architecture.

GUI builders offer a simple graphical building block interface for

UI construction to ease the difficulties of creating such GUIs. Though

here are many of these builders in existence, there do not seem to
e simple GUI builders where programming is not needed in order to

reate the final GUI. And though some GUI builders do pay attention to

sability, such as Microsoft Expression Web’s validator tool, usability

s not the focus of any builder we are aware of.

Our focus is aligned with the overall concept of a GUI builder, but

urrent GUI builders do not free the user from needing to know quite



78 I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85

Fig. 19. Desktop NetCDF subsetting application showing details of the NetCDF file that has been chosen.

Fig. 20. The formalized DSL: UK=user knowledge, MK=machine knowledge.

a

t

A

u

g

t

r

U

a

e

a

f

b

t

l

c

p

p

2

t

d

v

t

o

lot of programming. Our approach attempts to remove the need

o understand programming from the construction of the entire GUI.

nd, although we have not found an optimal GUI builder to allow

s to implement our method in this way, our GUI builder would be

raphical and require only knowledge of UX and the DSL interface for

hat particular application.

Usability-supporting architecture patterns (USAPs) arose as some

esearchers have took an interest in the limitations imposed on the

I from the supporting architecture. Some usability concerns such

s a Cancel feature generally need a considerable amount of support

xternal to the UI module and therefore are difficult to add later in

project lifecycle. Ways to identify these architecturally sensitive UI

eatures of a software product during the requirements phase have

een developed (Juristo et al., 2007; Rafla et al., 2007). Deriving archi-

ecture patterns from the requirements has also been described in the

iterature (Bass and John, 2003; John et al., 2009). USAPs have been

reated to provide insight for designers in order to deal with incor-

orating usability into the software architecture (Bass et al., 2004); a

attern-language has also been created with these USAPs (John et al.,

009). Research regarding the effectiveness of USAPs has found them

o be effective (Golden et al., 2005) and addressing usability concerns

uring the architectural and design stages of product lines has also

erified the practice (Stoll et al., 2009).

The USAPs allow designers to recognize the dependencies between

he UI and the code. However, they do point to a methodology as

ur approach does. Nevertheless, our approach is subject to these



I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85 79

Fig. 21. Xtext grammar.

Workflow w01

input : / cygdr ive /c/ f i n a l −
d ra f t /x3 . nc ;

output : / cygdr ive /c/ f i n a l −
dra f t /out . nc ;

trans form : prec ip > 20 ;

Fig. 22. The original.ncdsl script for our DSL.

U

m

4

t

u

b

e

a

a

a

i

t

L

G

l

t

d

o

g

l

l

p

t

w

L

c

(

c

d

a

T

a

e

T

w

s

e

G

G

SAPs as well and the USAPs may be used in conjunction with our

ethodology.

.2. User Interface Markup Languages

The declarative creation of a GUI has gotten a fair amount of atten-

ion, but the focus seems to be on separation of concerns rather than

sability (Goderis and Deridder, 2004; Goderis and Lab, 2007). Flexi-

ility for multiplatform UIs (Bendsen, 2004; Falb et al., 2009; Fatolahi

t al., 2011; Helms and Abrams, 2008; Nebeling et al., 2012; Nichols

nd Myers, 2009), consolidation of multiple UI markup languages,

nd customizability (Jones et al., 2007) are common directions in this

rea. UI markup language work that considers multiplatform flexibil-

ty conflicts with the expressivity of the UI that can be gained by using

he platform’s native framework. Since most User Interface Markup

anguages (UIMLs) are cryptic, they are generally accompanied by a
Fig. 23. Command to create generate

Fig. 24. Generate
UI builder to make them usable. In this sense, they form a meta-UI

anguage which can be mapped to different UI platforms.

In contrast to a UI markup language, we are focusing on a DSL

o create an interface based on role specialization. Another important

ifference is that while many UIMLs are motivated by generalizations,

ur DSL is specific to each application and does not attempt to be a

eneralized solution. Our method can support the use of a UI markup

anguage, but is by no means required to use them. As UI markup

anguages have certain limitations, the decision to use them is not

rescribed or prohibited by our methodology and they are expected

o be isolated in the UI component of our architecture (and therefore

ill not affect our Code component).

One UIML which is comparable to our DSL is the Game Maker

anguage (GML), which has been created to enable people to make

omputer games more easily. The GameMaker:StudioTMenvironment

YoYo Games, 2014) integrates with the language to facilitate the

reation of the scripts. Users are allowed to use menus, dialogs, and

rag and drop commands to set up a large portion of their games

nd this can be enhanced with textual scripts written by the user.

hough the term scripts is used, these scripts are as complicated as

programming language and serve to allow GameMaker:StudioTMto

xport the game to iOS, Android, OS X, PlayStation R©, or Windows.

he purveyor of GML claims that one can create games 80% faster

ith their tool and scripting language.

While GML supports creating games, it appears that the user

till needs to know quite a lot about programming, such as objects,

vents, sprites, drawing depth, and basic code. While the supporting

ameMaker:StudioTMdoes help, it does not transform the writing of

ML into a simple activity. Additionally, the user is not expected to
d java files from original.ncdsl.

d java files.



80 I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85

m

w

u

c

q

c

f

o

f

D

b

d

t

t

fi

b

T

a

U

c

d

g

t

p

s

o

t

p

o

a

c

j

p

P

v

c

a

p

c

p

w

m

o

u

l

d

T

a

u

U

c

u

n

A

p

D

2

(

fi

t

have any UX knowledge and therefore introduces potential usability

problems into the game created. Our approach instead attempts to

remove the need to know programming from the UX professional—

and this goes beyond just attempting to increase the productivity

of programmers by offering them a higher level of abstraction to

program in.

Another comparable UIML is the Linden Scripting Language (LSL),

which allows users of the virtual 3D world game Second Life R© to write

scripts to control their games. This scripting language resembles the

C programming language syntax and uses event-based programming.

Objects in the virtual world can be created and imbued with behavior

with this language. The game interface is used to program and there-

fore offers some similar capabilities as an IDE in working with LSL.

The Second Life R© game was built by the users through the use of LSL.

Although LSL does offer a programming interface to users, that in-

terface still requires knowledge of programming as evidenced by the

C programming language syntax. It seems to us that the market for LSL

could be greatly expanded by simplifying this interface. In contrast,

we are not offering users a way to program, but are seeking instead

to enable a UX professional to work independently of code creation

in order to improve the productivity of the software development

process. Although UX professionals may want to create a UX for the

user to be able to program, they generally are not concerned with

it, and therefore our methodology does not focus itself on end-user

programming.

For contrast to the previous UIMLs of GML and LSL, we can also

look at a multi-platform UIML. The Interaction Flow Modeling Lan-

guage (IFML; Rossi, 2013) is an Object Management Group (OMG)

standard to express a GUI and to interact with a supporting back-

end application. This standard was based on the long-standing Web

Modeling Language (WebML; Ceri et al., 2009). The primary benefits

offered by IFML are the ability to define a GUI with a graphical DSL

and thereby allowing for a Unified Modeling Language (UML)-Profile

type of solution to the GUI. The standard also may permit different

GUI builders to interoperate. While humans could write IFML in tex-

tual form, it is expected that a UML IDE, such as WebRatio or Eclipse,

will provide the user with a way to create the interface.

Compared to our proposed method, IFML is limited to GUIs, while

our method is applicable to more general UI such as speech or touch.

Additionally, our DSL method does not require the user to understand

and work with the graphical IFML tool, but instead is able to use the

more general available DSL tools. IFML requires the user to under-

stand the language and the background object oriented design (OOD)

paradigm. If a typical GUI builder is used to create the UI and IFML

is generated in the background, then this solution is similar to our

approach with the exclusion of easy understanding by laypersons of

what the interface between the UI and Code components is doing.

Plastic user interfaces attempt to address the lack of collaboration

between the human–computer interface and software engineering

(SE) by using MDE to attain an ability to easily modify the UI. UI

plasticity is defined as ‘the capacity of user interfaces to adapt to

the context of use while preserving usability’ (Thevenin and Coutaz,

1999). Three context models are specified as the user model, the

environmental model, and the platform model. The usability of the UI

is defined differently for different contexts. If a UI is intended to run

in a set of different contexts (C) then we can define a set of values (V)

to represent our usability. The set V can then be mapped to the set C

of contexts in unique ways to preserve usability across the contexts.

With this formal model of the UI with usability values V and contexts

C, further conclusions may be reached (Sears and Jacko, 2007)

Now, with a solid base, MDE is brought in and a meta-modeling

language is created (Calvary et al., 2001, 2002). This method of com-

bining MDE to generate UIs while preserving usability defines plastic

user interfaces (Coutaz, 2010).

In contrast to our method, plastic user interfaces require a fair

amount of specialized and sophisticated knowledge of software
odeling. Additionally, they do not directly address usability and one

onders how easy it would be to later modify the model to address

sability concerns. Instead, our method focuses on more popular and

ommonly known methods of programming and only the DSL re-

uires more advanced skills. Also, by focusing on the UX professional

reating multiple UIs for different platforms, we can meet multiplat-

orm requirements but also allow our UIs to be easily modified based

n feedback from users.

Another MDE methodology uses the Unified Communication Plat-

orm (UCP; Popp and Raneburger, 2011; Raneburger et al., 2014).

omain experts create a graphical discourse model (Falb et al., 2006)

ased on the communication between the user and the computer. The

iscourse model is defined by domain experts, the GUI prototype can

hen be automatically generated, which is followed by the incremen-

al and iterative development of that prototype. Once the prototype is

nalized, development on the back end code and refining of the GUI

y hand can be done.

This UCP methodology has much in common with our method.

he graphical discourse model serves a similar purpose as describing

conversation in our DSL, but the DSL conversation is between the

I and the back-end whereas in the discourse model it is between a

omputer and a user. UCP also uses code generation to create a GUI

uring a prototype refinement stage. Our method only employs code

eneration for the back-end code and is more general in that it applies

o all UIs and not just a GUI. Although both methodologies allow for

arallel development of the UI and back end code after an initial

tage, the UCP focuses on this initial stage while our method focuses

n both the initial stage and the later parallel development. All in all,

he UCP is an effort to speed up development and to raise the quality of

roducts with MDE while our method focuses on separating the roles

f programmer and UX professional to enhance these specializations

nd thereby resulting in better products.

The idea of Intentional Programming began in the 1990s and has

onstantly progressed since. This method departs from traditional Ob-

ect Oriented Programming (OOP) by modifying the editor and com-

iler, and by introducing the concept of intentions. With Intentional

rogramming, a class is created, but in addition to the class itself, a

iewer for the class must be created along with a parser, and a version

ontrol component. By including with the class a bunch of function-

lity that is now concentrated in tools, we can create a higher level of

rogramming IDE. The advantages are that different representations

an easily be mixed and matched to create programs with better com-

rehensibility. The Intentional Software company (Intentional Soft-

are, 2014) promotes the concept of intentional programming. Their

ethod will allow one to have a domain expert program the software

n a domain level while the programmer will write and generate the

nderlying code for the domain.

The overall approach of intentional programming is very much

ike our methodology. However, the focus here is on providing the

omain experts with a means to code an application themselves.

he domain representation is now the interface between the code

nd the domain language. In contrast, our approach focuses on the

sability of the method by involving a UX professional to create the

I instead of a having a domain expert to code the application.

A number of applications have attempted to use a DSL to in-

rease the flexibility of a traditional application. Some researchers

sed DSLs to create an elevator application and allow people to ma-

ipulate that application with a DSL (Wienands and Golm, 2009).

s enterprise applications are typically composed of multiple inde-

endent units, other researchers have addressed this by creating a

SL for these independent units to communicate (Shtelma et al.,

009). Yet others have used DSLs to integrate multiple applications

Berger et al., 2010).

Though DSLs have been used in numerous applications, we did not

nd any indication of using them between the UI and Code sections of

he architecture. And, although client server systems are somewhat



I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85 81

Table 4

Approach comparison: L=layman, P=programmer, DE=domain expert,

GD=game designer, UXP=UX professional.

Test Who is the Can the user Who creates the

user? program? UI?

Architecture patterns

GUI wrapper L No P

GUI builder L No P

USAP L No P

UIMLs P Yes P

GML GD Yes GD

LSL L Yes N/A

IFML P No P

Plastic UIs L No P

UCP DE No P,UXP

Intentional

Programming DE No DE

Our method L No UXP

Table 5

How the UI is created.

Test Code Drag-n-drop Script GUI builder MDE

Architecture patterns

GUI wrapper X

GUI builder X X

USAP X

UIMLs

GML X X

LSL X X

IFML X

Plastic UIs X

UCP X X

Intentional

Programming X

Our method X

s

c

e

D

w

f

o

p

4

t

o

c

o

b

o

f

o

t

e

L

w

t

t

o

a

f

p

v

4

C

g

c

d

m

p

d

b

t

s

a

p

U

s

u

u

t

f

t

o

T

t

a

U

t

f

b

g

n

w

p

g

a

U

e

b

c

(

5

i

t

p

a

c

a

5

fi

c

a

i

p

s

A

w

imilar, they are really concerned about the distance between the

lient and server rather than the usability or the creation of the UI. For

xamples, HyperText Markup Language (HTML) could be considered a

SL, but it is much more of a general DSL in comparison to our method

hich aims at creating an application-specific DSL. Our method dif-

ers from all related work we have surveyed because it focuses

n making the UI creation feasible without needing to understand

rogramming.

.3. Comparison

Here we compare and contrast the various approaches identified in

he previous section to provide an overall picture of how our method-

logy is positioned in relation to the listed methods. We decided to

ompare the roles of people involved with the related software devel-

pment and use this comparison in order to explain the differences

etween the various approaches. However, we are not experts in any

f the other approaches; hence our comparisons should be viewed

rom this perspective. Tables 4 and 5 show that our method is the

nly one to specify a UX Professional as the one to create the UI and

his is the key distinguishing characteristic of our approach. The clos-

st to our method in respect to who creates the GUI is the Game Maker

anguage which contains a simplified builder for video games. In fact,

e see that the need for a new type of GUI builder which excludes

he user from a need to understand code is somewhat represented by

he Game Marker Language GUI and other game creation platforms

f this ilk. So the UI creator and the GUI builder are closely related

nd the game creation platforms may provide a fertile source of ideas

or how to create this new type of GUI builder. As it can be seen, our

roposed method is more generic, and flexible, as it can involve using

arious types of GUI builders.
.4. Discussion

The approach presented here provides the following benefits.

ommunication is improved between the UX designers and the pro-

rammers by focusing on the DSL as an intermediate language. In-

reased role specialization helps to increase the productivity of UX

esigners and programmers, which may improve the product. The

ethod is (i) compatible with web applications by using the DSL as a

rotocol between UI client and the application server, (ii) accommo-

ates the increasingly diverse UIs such as mobile, voice, tactile, etc.

y allowing separate UIs to be created without affecting the applica-

ion code, (iii) supports testing at the DSL level, and (iv) provides for

imple tracing of requirements.

Some drawbacks exist in our proposed approach. First, it requires

UX professional and a programmer. In approaching the problem of

latform diversity, the UI will typically not be generalizable such as

Ser Interface eXtended Markup Language (UsiXML), but would in-

tead be a GUI builder that is simple enough for the UX professional to

nderstand. It may be difficult to use this method if one is dependent

pon some software framework such as dotNet, because the use of

his method may affect some advantages of any particular software

ramework. Using the DSL with code generation may affect the ability

o finely tune the code (i.e. for special speed or other considerations)

r the UI for any specialized purpose beyond its general realization.

he DSL now becomes an important artifact in the software applica-

ion and therefore the DSL needs to be designed well and may require

language designer if things become complex. Certain cross cutting

SAPs will still be a problem if they have not been considered during

he design phase.

If a team decides to use this methodology they can expect the

ollowing impacts on the applications. The long term impact will

e improved usability through the UX approach and increased pro-

rammer productivity through role specialization and clear commu-

ication of application requirements via the DSL. Overall, the team

ill accomplish UI flexibility through independence from a specific

latform, and improved communication between designers and pro-

rammers. In the short term, the team may experience confusion in

dapting to this methodology, especially if they are not familiar with

X, large-scale design up front methods, DSL creation, or code gen-

ration. Breaking from the current framework paradigm, supported

y a majority of software producers today, could cause a certain dis-

omfort, as it usually happens when departing from the well known

in our case, departing from the existing frameworks).

. Evaluation

In this section, we evaluate our proposed methodology by assess-

ng the results of applying the methodology, that is, by evaluating

he “NetCDF application” created following our approach. The com-

onents of this evaluation include a usability study that informed our

pproach, a usability analysis, specific results of the code generation

omponent of our approach, and a comparative analysis of tools that

ddress the same case study as our NetCDF application.

.1. Usability analysis

Two usability tests were performed in an iterative fashion. The

rst usability test, which we called an informative test, was an A/B

omparison of a climate data search page to allow scientists to find

nd download data from a website. One page was a checkbox list-

ng of parameters, while the other one included a slightly different

arameter choice method along with a graphical display for location

elections. Ten users were tested and the results were that the version

of the site did slightly better than B, but the statistical significance

as inconclusive (Gibbs, 2013).



82 I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85

Table 6

Parser code generation.

Artifact LOC

Written code

Grammar definition 54

Templates 476

Total lines written 530

Generated code

xtext.mydsl.ncDsl 282

xtext.mydsl.ncDsl.impl 2005

xtext.mydsl.ncDsl.util 363

xtext.mydsl.parser.antlr 35

xtext.mydsl.parser.antlr.internal 2238

xtext.mydsl.serializer 241

xtext.mydsl.services 467

xtext.mydsl.validation 12

total lines generated 5643

Table 7

Script code generation.

Artifact Details LOC

Written code

dsl script Fig. 21 10

Total lines written 10

Generated code

NetCdf.java 122

NetCdf_Sink.java 99

Predicate.java 20

Workflow.java 11

Total lines generated 252

t

o

h

i

c

v

t

o

g

c

t

D

m

a

v

a

a

C

N

M

m

g

v

a

w

g

S

o

t

N

T

p

s

a

s

c

‘

N

t

fi

D

s

a

t

t

i

N

F

4

t

c

P

l

5

o

After searching the UX literature, we attempted to create a natu-

ral language output interface (Cooper et al., 2007). This interface was

developed following our methodology and we tested it against ver-

sion A data from the previous informative test. We discovered that

the natural language output version was more satisfying to climate

scientists than version A and that they executed tasks up to twice as

fast on the natural language output SUI (Gibbs, 2013). The result of

this test is that we chose a natural language SUI in our final appli-

cation artifact. Overall, the test results provide positive indications

of the benefits of applying our approach. These results also provide

direction for others working with climate scientists to create SUIs and

thereby have a broader impact than just for this application.

5.2. Code generation

We have two stages of code generation to address here. The first

stage is in the Eclipse IDE with Xtext, which generates our parser gen-

erator for the second stage of code generation. This first stage requires

us to define the grammar and write the associated code templates and

after building we get a Java Jar file which accepts DSL scripts as input

and generates Java code as output. Table 6 summarizes the lines of

code (LOC) measurement which results in a code generated:written

ratio of 10:1. The second stage of code generation involves using the

Java parser generator Jar file to read scripts and create Java source

code files (Table 7). The code generated:written ratio at this second

stage was 25:1.

5.3. Comparative analysis

To give the reader an understanding of how our NetCDF appli-

cation relates to other such tools, we present several tools that are

currently available to help climate scientists work with NetCDF files

and compare them with ours. In fact, there are a great number of

tools which manipulate NetCDF files and not all of them are listed

here as the time it would take to compare all of them would be quite

significant, but we do provide a spectrum of the contemporary free
ools. We have chosen tools which are close to ours in size and scope

r they are tools that were mentioned by the climate scientists we

ave worked with.

Since we are not climate scientists, our evaluation of these tools

s based on user concerns rather than the detailed abilities offered to

limate scientists. Thus, this tool does not aim to compete with these

arious capabilities but instead it aims to provide a better interface for

he user and to illustrate the effects of using our prescribed methodol-

gy. The limited comparison presented here serves that purpose and

ives the reader a view of how our tools UX features compare with

urrently available tools.

A command line program, ncdump (Unidata, 2014a), allows users

o extract data from a NetCDF file and export it to a network Common

ata form Language (CDL) or NetCDF Markup Language (NcML) for-

at. A second program, ncgen (Unidata, 2014b), can be used to create

NetCDF file from CDL. In using ncdump, we first want to know what

ariables our sample.nc file contains. Next, knowing what variables

re there, we can filter for only the ‘precip’ variable and put it into

CDL file. In the final step, we create our sample-precip.nc from the

DL file.

MATLAB offers a function based extension to their language for

etCDF files (Mathworks, 2014). The user must be familiar with the

ATLAB language. Users need to be able to compose a list of com-

ands to get the information they want from the NetCDF file such as

etting the variables available or getting specific information about a

ariable.

EverVIEW is an attempt by Joint Ecosystem Modeling Group (JEM)

nd the United States Geological Survey (USGS) to create a tool to

ork with NetCDF files (Roszell et al., 2014). The project has three

oals: subset NetCDF files, view tabular data, and convert to Comma-

eparated Values (csv) files. The project is currently in the Beta stage

f development (Roszell et al., 2009; Visualizing NetCDF Files by Using

he EverVIEW Data Viewer, 2013). The focus of the tool is to subset a

etCDF file with regards to time or geography (NetCDF Slice and Dice

ool, 2014).

The Ncview application (Pierce, 2014) runs on Unix systems and

rovides a graphical picture of the contents of a NetCDF file. Upon

tarting the program, the user is confronted with a command screen

nd asked to choose a variable. If the user chooses one of the variables,

uch as ‘precip’ then a plot of that variable is shown. Subsequently

licking on any point of the plot brings up a detailed 2D graph of the

precip’ variable.

Data Basin (2014) enables users to analyze and map data from

etCDF files. This is an online tool requiring an account to use the

ool and special permission to be able to upload one’s own NetCDF

les rather than work with the data that Data Basin provides (NetCDF

ata in Data Basin, 2014). The tool is free and it does not require

ophisticated computer knowledge of programming languages to use.

The process of using Data Basin requires the user to first upload

file, then they have to select from a number of settings. Results are

hen presented to the user.

The Interactive Data Language (IDL) was created to enable users

o analyze data. It supports the use of many types of files used

n the scientific fields such as Hierarchical Data Format 5 (HDF5),

etCDF-3, NetCDF-4, Common Data Format (CDF), Hierarchical Data

ormat-Earth Observing System (HDF-EOS), Hierarchical Data Format

(HDF4), GRidded Binary (GRIB), and others. The language is ready

o access data in large files and can even access data from remote lo-

ations via the HyperText Transfer Protocol (HTTP) and File Transfer

rotocol (FTP). Programming knowledge and skill are required as the

anguage looks much like a modern programming language.

.4. Comparison

When comparing tools, we do so from a user perspective because

ur knowledge of how these tools were designed or coded is very



I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85 83

Table 8

Approach comparison: CS = climate scientist, KD = knowledge domain.

Test User? Command line KD? Programming KD? NetCDF KD?

ncdump and ncgen CS Yes No Yes

MATLAB CS Yes Yes Yes

EverView Slice and Dice CS No No Yes

Ncview CS No No Yes

Data Basin CS No No Yes

Interactive Data Language CS Yes Yes Yes

Our method CS No No Yes

l

a

t

a

d

t

a

p

5

h

b

c

a

o

p

w

o

s

fi

s

p

p

e

t

a

o

c

a

N

w

s

6

c

m

p

O

c

o

U

t

a

o

a

m

t

i

i

t

n

s

r

o

t

a

e

t

i

t

a

c

n

c

s

t

C

c

o

t

D

l

t

A

S

A

p

r

R

B

B

B

B

B

B

imited. By comparing from a user’s point of view we also hope to

chieve a picture of the actual utility of these tools to a user rather

han a plain listing of various features. Table 8 shows all of the tools

nd the presence or absence of specific user related features. We broke

own the required information by the user into different mental loads

hat are pushed onto the user when using a tool. These mental loads

re categorized according to knowledge domains of command line,

rogramming, and NetCDF knowledge domains.

.5. Discussion

We performed a benefit/drawback analysis of the application to

elp assess its current state of development. The benefits offered

y this application are a search UI based on real usability studies,

ode generation aiding in productivity gains, a favorable comparative

nalysis, and a simple UI which does not require knowledge outside

f the realm of climate science. The drawbacks are a complex build

rocess regarding generation and the need to understand how to

rite grammars, dependency on Xtext and Eclipse, and the awareness

f climate scientists that the tool exists.

Other options are available to users besides using our tool de-

cribed here. There are many tools that can be used to subset NetCDF

les and those in this comparison are a small sample. Some climate

cientists may feel great independence and freedom in being able to

rogram and therefore resist changing to a simpler application. If a

articular organization is large enough, they may assign a NetCDF

xpert to do the work of subsetting NetCDF files and consequently

here would not be as much of a productivity gain by the use of our

pplication.

There are a few expected impacts of creating a final version of

ur tool to release to climate scientists. First, we expect that some

limate scientists will find the tool helpful. The use of the tool may

t first be limited due to awareness of its existence in the world of

etCDF tools. In order for the tool to slowly increase a user base, it

ill need to be updated with advances in NetCDF files, new operating

ystem platforms, error fixes, and change requests.

. Conclusions and future work

We have presented a new methodology, described its specific con-

epts and steps, and provided a detailed example of applying the

ethodology. We have also evaluated the methodology through com-

arison with related work, usability studies, and analysis of its results.

ur assertion (Section 2.1.4) has been that a separation-based UI ar-

hitecture can enhance the process of software development. A key to

ur proposed approach is the use of a DSL to bridge the gap between

I design and writing code. Much of the research, development, and

esting conducted has been promising regarding the validity of our

ssertion, but inherently more work remains to be done to fully prove

ur methodology.

We have shown that there is a clear communication gap between

UX professional and programmer working on a software develop-

ent project. Our architecture addresses this communication gap and
he associated methodology illustrates how to use this architecture

n a development process. With regards to problem (4) and its result-

ng effect of problem (1), we did not find an adequate GUI builder

hat does not require programming knowledge and therefore were

ot able to address these problems in this work. The use of a DSL to

eparate the UI and Code components provides a significant tool to

educe the communication gap and thereby addresses problem (2)

f the current status quo. Secondly, the DSL also provides separa-

ion of concerns between the UI and Code components and therefore

ddresses problem (3) of the current status quo.

We expect that our approach contributes to reducing the gulfs of

xecution and evaluation as described by Norman (2013). Specifically,

hey can be reduced because the UX designer knows how the software

s expected to behave (by the user), and the programmer knows how

o implement the software to make that happen.

In considering future work, we must discuss both work on the

rchitecture and the developer’s experience. In the case of the UI

omponent, we did not find a suitably flexible GUI builder that would

ot require the need to understand code. Having a suitable UI builder

ould really make our approach easier to implement. Though we have

hown how to create the DSL, we still want to find a generic solu-

ion for passing the DSL messages back and forth from the UI and

ode components. And, with regards to the Code component, we

ould work with different code generation techniques to find a best

f breed. In addition, more testing may further specialize the archi-

ecture, with three major roles rather than just two: UX professional,

SL designer, and code programmer. And although our methodology

ooks promising in the climate science environment, we still need to

est to determine if it is effective in other areas.

cknowledgments

This material is based in part upon work supported by the National

cience Foundation under grants no. EPS-0814372 and IIA-1301726.

ny opinions, findings, and conclusions or recommendations ex-

ressed in this material are those of the authors and do not necessarily

eflect the views of the National Science Foundation.

eferences

ass, L., John, B.E., 2003. Linking usability to software architecture patterns through
general scenarios. J. Syst. Softw. 66, 187–197. doi:10.1016/S0164-1212(02)00076-

6.

ass, L., John, B.E., Juristo, N., Sanchez-Segura, M.I., 2004. Usability-supporting archi-
tectural patterns. In: Proceedings of the 26th International Conference on Software

Engineering. IEEE Computer Society, Washington, DC, USA, pp. 716–717.
endsen, P., 2004. Model-driven business UI based on maps. In: Proceedings of the

2004 ACM SIGMOD International Conference on Management of data. ACM, New
York, NY, USA, pp. 887–891. doi:10.1145/1007568.1007678.

erger, S., Grossmann, G., Stumptner, M., Schrefl, M., 2010. Metamodel-based infor-
mation integration at industrial scale. In: Proceedings of the 13th International

Conference on Model Driven Engineering Languages and Systems: Part II. Springer-

Verlag, Berlin/Heidelberg, pp. 153–167.
ettini, L., 2013. Implementing Domain-Specific Languages with Xtext and Xtend, first

ed. Packt Publishing, Birmingham, UK.
ostock, M., Ogievetsky, V., Heer, J., 2011. D3 data-driven documents. IEEE Trans. Visual.

Comput. Graph. 17, 2301–2309. doi:10.1109/TVCG.2011.185.

http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.1016/S0164-1212(02)00076-6
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib001
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib002
http://dx.doi.org/10.1145/1007568.1007678
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib003
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib004
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib005
http://dx.doi.org/10.1109/TVCG.2011.185
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib006


84 I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85

N

N

N

N

P

P

P

R

R

R

R

R

R

R

S

S

S

S

S

T

U

U

U

V

W

Y

Brooks Jr., F.P., 1995. The Mythical Man-month (Anniversary Ed.). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Burke, R.E., Fitzgerald, T., 2003. The aptitudes of software engineers: Technical Report
1. Johnson O’Connor Research Foundation, Inc.

Calvary, G., Coutaz, J., Thevenin, D., 2001. A unifying reference framework for the
development of plastic user interfaces. In: Little, M., Nigay, L. (Eds.), Engineering

for Human-Computer Interaction. Lecture Notes in Computer Science, vol. 2254,
Springer Berlin/Heidelberg, pp. 173–192. doi:10.1007/3-540-45348-2_17.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N., Bouillon, L., Florins, M.,

Vanderdonckt, J., 2002. Plasticity of user iInterfaces: A revised reference framework.
In: Proceedings of the First International Workshop on Task Models and Diagrams

for User Interface Design. INFOREC Publishing House Bucharest, pp. 127–134.
Card, S.K., Newell, A., Moran, T.P., 1983. The psychology of human-computer interac-

tion. L. Erlbaum Associates Inc., Hillsdale, NJ, USA.
Ceri, S., Brambilla, M., Fraternali, P., 2009. The history of WebML lessons learned from

10 years of model-driven development of web applications. Conceptual Model-

ing: Foundations and Application. Springer-Verlag, Berlin/Heidelberg, pp. 273–292.
doi:10.1007/978-3-642-02463-4_15.

Condon, C., Schroeder, D., 2005. Statistical bulletin 2005-14, occupational plots: Dis-
played by occupation. Technical Report. Johnson O’Connor Research Foundation,

Inc.
Cooper, A., 1999. The Inmates are Running the Asylum. Macmillan Publishing Co., Inc.,

Indianapolis, IN, USA.

Cooper, A., Reimann, R., Cronin, D., 2007. About Face 3: The Essentials of Interaction
Design. John Wiley & Sons, Inc., New York, NY, USA.

Coutaz, J., 2010. User interface plasticity: model driven engineering to the limit! In: Pro-
ceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Computing

Systems. ACM, New York, NY, USA, pp. 1–8. doi:10.1145/1822018.1822019.
Data Basin, 2014. http://databasin.org/ (accessed April 2014).

Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., Arnautovic, E., 2006. A discourse

model for interaction design based on theories of human communication. In: CHI’06
Extended Abstracts on Human Factors in Computing Systems. ACM, New York, NY,

USA, pp. 754–759. doi:10.1145/1125451.1125602.
Falb, J., Popp, R., Rock, T., Jelinek, H., Arnautovic, E., Kaindl, H., 2009. Fully au-

tomatic generation of web user interfaces for multiple devices from a high-
level model based on communicative acts. Int. J. Web Eng. Technol. 5, 135–161.

doi:10.1504/IJWET.2009.028618.

Fatolahi, A., Somé, S., Lethbridge, T.C., 2011. Model-driven web development for mul-
tiple platforms. J. Web Eng. 10, 109–152.

Gause, D.C., Weinberg, G.M., 1990. Are Your Lights On? How to Figure Out What the
Problem REALLY Is. Dorset House Publishing, New York, NY.

Gibbs, I., 2013. A Separation-Based UI Architecture with a DSL for Role Specialization
(Ph.D. thesis). University of Nevada, Reno.

Goderis, S., Deridder, D., 2004. A Declarative DSL Approach to UI Specification—Making

UI’s Programming Language Independent. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.58.7041 (accessed January 2014).

Goderis, S., Deridder, D., Van Paesschen, E., D’Hondt, T., 2007. DEUCE: A Declarative
Framework for Extricating User Interface Concerns. J. Obj. Technol. 6, 87–104.

doi:10.5381/jot.2007.6.9.a5.
Golden, E., John, B.E., Bass, L., 2005. The value of a usability-supporting architectural

pattern in software architecture design: a controlled experiment. In: Proceedings
of the 27th International Conference on Software Engineering. ACM, New York, NY,

USA, pp. 460–469. doi:10.1145/1062455.1062538.

Helms, J., Abrams, M., 2008. Retrospective on UI description languages, based on eight
years’; experience with the user interface markup language (UIML). Int. J. Web Eng.

Technol. 4, 138–162. doi:10.1504/IJWET.2008.018095.
Hunt, A., Thomas, D., 1999. The Pragmatic Programmer: From Journeyman to Master.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
Intentional Software, 2014. http://www.intentsoft.com/ (accessed April 2014).

John, B.E., Bass, L., Golden, E., Stoll, P., 2009. A responsibility-based pattern language for

usability-supporting architectural patterns. In: Proceedings of the 1st ACM SIGCHI
Symposium on Engineering Interactive Computing Systems. ACM, New York, NY,

USA, pp. 3–12. doi:10.1145/1570433.1570437.
Johnson, J. (Ed.), 2000. GUI Bloopers: Don’ts and Do’s for Software Developers and Web

Designers. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Jones, C., Blanchette, C., Brooke, M., Harris, J., Jones, M., Schildhauer, M., 2007. A

Metadata-Driven Framework for Generating Field Data Entry Interfaces in Ecol-

ogy. Ecological Informatics 2, 270–278. Meta-information systems and ontologies.
A Special Feature from the 5th International Conference on Ecological Informatics

ISEI5, Santa Barbara, CA, December 4–7, 2006 Novel Concepts of Ecological Data
Management S.I. http://dx.doi.org/10.1016/j.ecoinf.2007.06.005.

Juristo, N., Moreno, A., Sanchez-Segura, M.I., 2007. Guidelines for eliciting usability
functionalities. IEEE Trans. Softw. Eng. 33, 744–758. doi:10.1109/TSE.2007.70741.

Luyten, K., Meskens, J., Vermeulen, J., Coninx, K., 2008. Meta-Gui-builders: generat-

ing domain-specific interface builders for multi-device user interface creation. In:
CHI’08 Extended Abstracts on Human Factors in Computing Systems. ACM, New

York, NY, USA, pp. 3189–3194. doi:10.1145/1358628.1358829.
Lynch, A., 2014. Communication model explained and basic concepts related to the

model. http://www.comprofessor.com/2009/10/i.html (accessed January 2014).
Mathworks, 2014. MATLAB NetCDF capabilities. http://www.mathworks.com/help/

matlab/ref/netcdf.html (accessed April 2014).

MetaCase, 2013. MetaEdit+Modeler. http://www.metacase.com/mep/ (accessed March
2013).

Nebeling, M., Grossniklaus, M., Leone, S., Norrie, M.C., 2012. XCML: providing context-
aware language extensions for the specification of multi-device web applications.

World Wide Web 15, 447–481. doi:10.1007/s11280-011-0152-2.
etCDF Data in Data Basin [Video file], 2014. http://www.youtube.com/watch?v=
L3ydfi5BqEk (accessed April 2014).

etCDF Slice and Dice Tool, 2014. http://www.jem.gov/Modeling/SliceAndDice (ac-
cessed April 2014).

ichols, J., Myers, B.A., 2009. Creating a lightweight user interface description language:
an overview and analysis of the personal universal controller project. ACM Trans.

Comput.-Hum. Interact. 16, 17:1–17:37. doi:10.1145/1614390.1614392.
orman, D.A., 2013. The Design of Everyday Things, revised and expanded edition.

Basic Books, New York, NY, USA.

ierce, D.W., 2014. Ncview: A NetCDF visual browser. http://meteora.ucsd.edu/~pierce/
ncview_home_page.html (accessed April 2014).

intos, A.F., Sharma, V., Jalobeanu, M.R., Feliberti, V., Clark, B., 2009. Constructing User
Interfaces on Top of Cmdlets. U.S. Patent 7,581,190, filed 2006.

opp, R., Raneburger, D., 2011. A high-level agent interaction protocol based on a
communication ontology. In: Huemer, C., Setzer, T. (Eds.), E-Commerce and Web

Technologies, Lecture Notes in Business Information Processing, vol. 85. Springer,

pp. 233–245. doi:10.1007/978-3-642-23014-1_20.
afla, T., Robillard, P.N., Desmarais, M., 2007. A method to elicit architecturally sensitive

usability requirements: Its integration into a software development process. Softw.
Qual. Control 15, 117–133. doi:10.1007/s11219-006-9009-9.

aneburger, D., Kaindl, H., Popp, R., Šajatović, V., Armbruster, A., 2014. A process for
facilitating interaction design through automated GUI generation. In: Proceedings

of the 29th Annual ACM Symposium on Applied Computing. ACM, New York, NY,

USA, pp. 1324–1330. doi:10.1145/2554850.2555053
ogers, Y., 2012. HCI Theory: Classical, Modern, and Contemporary. Morgan & Claypool

Publishers.
ogers, Y., Sharp, H., Preece, J., 2011. Interaction Design: Beyond Human–Computer

Interaction, third ed. Wiley Publishing.
ossi, G., 2013. Web modeling languages strike back. IEEE Internet Comput. 17, 4–6.

doi:10.1109/MIC.2013.78

oszell, D., Conzelmann, C., Chimmula, S., Chandrasekaran, A., Hunnicut, C., 2009. Users’
Manual and Installation Guide for the EverVIEW Slice and Dice Tool, open-file report

2009-1177 edition. U.S. Geological Survey. Denver Federal Center, Denver, CO.
oszell, D., Conzelmann, C., Chimmula, S., Chandrasekaran, A., Hunnicut, C., 2014. Users’

Manual and Istallation Guide for the EverVIEW Slice and Dice Tool (Version 1.0 Beta).
U.S. Geological Survey, Denver Federal Center, Denver, CO. http://pubs.usgs.gov/of/

2009/1177/pdf/OF09-1177.pdf (accessed April 2014).

ears, A., Jacko, J.A., 2007. The Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies, and Emerging Applications (Human Factors and Ergonomics

Series). L. Erlbaum Associates Inc., Hillsdale, NJ, USA.
htelma, M., Cartsburg, M., Milanovic, N., 2009. Executable domain specific language

for message-based system integration. In: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems. Springer-Verlag,

Berlin/Heidelberg, pp. 622–626. doi:10.1007/978-3-642-04425-0_48

ommerville, I., 2010. Software Engineering, 9th ed. Addison-Wesley Publishing Com-
pany, USA.

parx Systems, 2014. Sparx Enterprise Architect. http://www.sparxsystems.com/
products/ea/index.html (accessed September 2014).

toll, P., Bass, L., Golden, E., John, B.E., 2009. Supporting usability in product line archi-
tectures. In: Proceedings of the 13th International Software Product Line Confer-

ence. Carnegie Mellon University, Pittsburgh, PA, USA, pp. 241–248.
hevenin, D., Coutaz, J., 1999. Plasticity of user interfaces: Framework and research

agenda. In: Sasse, M.A., Johnson, C. (Eds.), Proceedings of INTERACT 99—IFIP TC13

Seventh International Conference on Human-Computer Interaction. IOS Press, Lans-
dale, PA. doi:10.1007/978-3-540-85992-5_14

nidata, 2014a. ncdump. UCAR Community Programs and the University for At-
mospheric Research. https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/

ncdump.html (accessed April 2014).
nidata, 2014b. ncgen. UCAR Community Programs and the University for At-

mospheric Research. http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/

ncgen.html (April 2014).
nidata, 2014c. Network Common Data Form (NetCDF). http://www.unidata.ucar.edu/

software/netcdf/ (accessed January 2014).
isualizing NetCDF Files by Using the EverVIEW Data Viewer, 2013. http://pubs.usgs.

gov/fs/2010/3046/pdf/FS10-3046.pdf (accessed August 2013).
ienands, C., Golm, M., 2009. Anatomy of a visual domain-specific language project in

an industrial context. In: Proceedings of the 12th International Conference on Model

Driven Engineering Languages and Systems. Springer-Verlag, Berlin/Heidelberg, pp.
453–467. doi:10.1007/978-3-642-04425-0_35

oYo Games, 2014. GameMaker: Studio. https://www.yoyogames.com/studio (ac-
cessed April 2014).

Ivan Gibbs is an independent researcher and consultant.
The University of Nevada, Reno awarded him a BS in Electri-

cal Engineering and a BS in Engineering Physics. After a ca-

reer in industry he returned to academia and was awarded
an MS and recently a Ph.D. in Computer Science and En-

gineering from the University of Nevada, Reno. He has
published several papers on software engineering, model

driven engineering, and usability.

http://refhub.elsevier.com/S0164-1212(14)00270-2/bib007
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib008
http://dx.doi.org/10.1007/3-540-45348-2_17
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib009
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib010
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib011
http://dx.doi.org/10.1007/978-3-642-02463-4_15
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib012
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib013
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib014
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib015
http://dx.doi.org/10.1145/1822018.1822019
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib016
http://databasin.org/
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib017
http://dx.doi.org/10.1145/1125451.1125602
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib018
http://dx.doi.org/10.1504/IJWET.2009.028618
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib019
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib020
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib021
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib022
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.7041
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib023
http://dx.doi.org/10.5381/jot.2007.6.9.a5
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib024
http://dx.doi.org/10.1145/1062455.1062538
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib025
http://dx.doi.org/10.1504/IJWET.2008.018095
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib026
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib027
http://www.intentsoft.com/
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib028
http://dx.doi.org/10.1145/1570433.1570437
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib029
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib030
http://dx.doi.org/http://dx.doi.org/10.1016/j.ecoinf.2007.06.005
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib031
http://dx.doi.org/10.1109/TSE.2007.70741
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib032
http://dx.doi.org/10.1145/1358628.1358829
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib033
http://www.comprofessor.com/2009/10/i.html
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib034
http://www.mathworks.com/help/matlab/ref/netcdf.html
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib035
http://www.metacase.com/mep/
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib036
http://dx.doi.org/10.1007/s11280-011-0152-2
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib037
http://www.youtube.com/watch?v=L3ydfi5BqEk
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib038
http://www.jem.gov/Modeling/SliceAndDice
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib039
http://dx.doi.org/10.1145/1614390.1614392
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib040
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib041
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib042
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib043
http://dx.doi.org/10.1007/978-3-642-23014-1_20
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib044
http://dx.doi.org/10.1007/s11219-006-9009-9
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib045
http://dx.doi.org/10.1145/2554850.2555053
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib046
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib047
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib048
http://dx.doi.org/10.1109/MIC.2013.78
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib049
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib050
http://pubs.usgs.gov/of/2009/1177/pdf/OF09-1177.pdf
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib051
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib052
http://dx.doi.org/10.1007/978-3-642-04425-0_48
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib053
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib054
http://www.sparxsystems.com/products/ea/index.html
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib055
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib056
http://dx.doi.org/10.1007/978-3-540-85992-5_14
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib057
https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/ncdump.html
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib058
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/ncgen.html
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib059
http://www.unidata.ucar.edu/software/netcdf/
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib060
http://pubs.usgs.gov/fs/2010/3046/pdf/FS10-3046.pdf
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib061
http://dx.doi.org/10.1007/978-3-642-04425-0_35
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib062
https://www.yoyogames.com/studio
http://refhub.elsevier.com/S0164-1212(14)00270-2/bib063


I. Gibbs et al. / The Journal of Systems and Software 101 (2014) 69–85 85
Sergiu Dascalu is a Professor in the Department of Com-

puter Science and Engineering at the University of Nevada,
Reno, USA, which he joined in 2002. In 1982 he received a

Master’s degree in Automatic Control and Computers from
the Polytechnic University of Bucharest, Romania and in

2001 a Ph.D. in Computer Science from Dalhousie Univer-
sity, Halifax, NS, Canada. His main research interests are

in the areas of software engineering and human–computer

interaction. He has published over 140 peer-reviewed pa-
pers and has been involved in numerous projects funded

by industrial companies as well as federal agencies such as
NSF, NASA, and ONR.
Frederick C. Harris, Jr. is a Professor in the Department

of Computer Science and Engineering and the Director of
the High Performance Computation and Visualization Lab

and the Brain Computation Lab at the University of Nevada,
Reno, USA. He received his B.S. and M.S. degrees in Math-

ematics and Educational Administration from Bob Jones
University in 1986 and 1988 respectively, and his M.S. and

Ph.D. degrees in Computer Science from Clemson Univer-

sity in 1991 and 1994 respectively. He is a Senior Member of
ACM and ISCA, and a member of IEEE. His research interests

are in parallel computation, computational neuroscience,
computer graphics and virtual reality.


	A separation-based UI architecture with a DSL for role specialization
	1 Introduction
	2 The approach
	2.1 Derivation of the approach
	2.1.1 Premise 1: Role specialization increases productivity and success
	2.1.2 Premise 2: Communication gaps cause confusion and inefficiency
	2.1.3 Premise 3: The largest communication gap in a separation-based UI architecture is the UI–Code gap, between the user and machine knowledge domains
	2.1.4 Assertion: A commonly understood DSL can bridge the gap between the user and machine knowledge domains

	2.2 Description of the proposed approach
	2.2.1 Code creation
	2.2.2 UX creation
	2.2.3 Steps of implementation


	3 Application
	3.1 Step 1: Identify the gaps
	3.2 Step 2: Identify the knowledge domains
	3.3 Step 3: Create a DSL for the domains to talk to one another
	3.4 Step 4a: Creating the UI
	3.5 Step 4b: Creating the code
	3.6 Step 5: Integration

	4 Related work
	4.1 UI architectural patterns
	4.2 User Interface Markup Languages
	4.3 Comparison
	4.4 Discussion

	5 Evaluation
	5.1 Usability analysis
	5.2 Code generation
	5.3 Comparative analysis
	5.4 Comparison
	5.5 Discussion

	6 Conclusions and future work
	Acknowledgments
	References


