
232 IJCA, Vol. 23, No. 4, Dec. 2016

ISCA Copyright� 2016

Data Lossless Compression Using Improved GFC Algorithm with Multiple GPUs

Rui Wu*

University of Nevada Reno, Reno, Nevada USA

Muhanna Muhanna�

Princess Sumaya University for Technology, Amman, JORDAN

Sergiu M. Dascalu*, Lee Barford*,�, Frederick C. Harris, Jr*

University of Nevada Reno, Reno, Nevada USA

Abstract

Compression is widely used in both scientific research and

industry. The most common use is that people compress the

backup data and infrequently used data to save space.

Compression is significantly meaningful for big data because
it will save a lot of resources with the help of a good

compression algorithm. There are two criteria for a good

compression algorithm�compression ratio and time

consumption. GFC is one of the fastest compression

algorithms with a mediocre compression ratio, which is

designed for real-time compression with the help of Graphics

Processing Units (GPU). This paper introduces three methods

to increase the speed of GFC algorithm by using the clzll

function, removing if-else statements, and using multi-GPUs.

The first and third methods improve the original algorithm

performance. However, the if-else-removal method cannot
always guarantee better results. The final compression speed

is more than 1,000 gigabits/s, which is much faster than 75

gigabits/s�the original GFC algorithm speed.

Key Words: GFC; lossless compression; high-speed;

floating-point data.

1 Introduction

Big data and its management is a hot topic for both

businessmen and scientists. The digital era brings us many

opportunities and also tons of problems. Almost every device

keeps generating data all the time. For example, the Large

Synoptic Survey Telescope (LSST) needs to manage over 100

PB of data [4]. The Facebook warehouse stores upwards of
300 PB with a daily incoming rate around 600 TB [16]. There

are 300 hours of video material uploaded to YouTube every

minute [6]. However, it is hard to manage and analyze big

data. To uncover the �gold mines� buried in these datasets,

* Department of Computer Science and Engineering. Email: {rui,

dascalus, fred.harris}@cse.unr.edu.
�Department of Computer Graphics. Email:
m.muhanna@psut.edu.jo.
� Keysight Laboratories, Keysight Technologies, Reno, NV. Email:

lee_barford@ieee.org.

researchers hold many conferences to resolve these hard big

data problems, such as XLDB [15].

Compression is one of the keys to manage big data and it

helps businessmen and scientists save resources. One of the
most common rules is that the data management system will

compress data if the data is not frequently used. If a

compression algorithm compresses original data 20% smaller

than before, it means people can save 20% more space, which

means a lot for petabyte-scale datasets. Therefore, a good

compression algorithm is significant to a big data project.

Also, compression is very significant for some big data web-

based application. Dr. Holub and his colleagues introduced a

method about how to transmit HD, 2K, and 4K videos with

the low-latency network in their paper [7]. The core idea of

this project is to compress and decompress JPEG efficiently
with the help of GPUs. Figure 1 displays a simplified network

diagram of the pilot deployment of their project [7].

There are many mature and good CPU compression

algorithms. Some of them are designed for image

compressions, such as JPEG [17], some of them are designed

for audio and video compression, such as MPEG [10], and

some of them are for general use, such as LZ4 [3]. Also, some

scientists tried to take advantage of GPU to increase the speed

of CPU compression algorithms. For example, [2] tried to

improve the Huffman compression algorithm using GPU.

GPU is short for Graphics Processing Unit. It is originally

designed for computer graphics and image processing, and it

is very popular in high-performance computing today. Also,

there is a trend that scientists use multi-GPUs, instead of a

single GPU to improve performances of different algorithms.
However, GPU is not suitable for all kinds of algorithms.. If

an algorithm is not parallelizable or highly divergent, it is

better not to use GPU.

Here are some reasons that we chose GFC instead of other

algorithms. First, GFC is one of the fastest existing lossless

compression algorithms. The original algorithm is 75

gigabits/s [14]. It is gigabit, instead of gigabyte, because the

core ideas of GFC algorithm are based on bitwise operations.

The speed is much faster than most other compression

algorithms.

For example, LZ4 is around 14.56 gigabits/s [3], which is

much slower than wide-band network speed. If we do not

choose a fast algorithm for high-speed web-based

IJCA, Vol. 23, No. 4, Dec. 2016 233

Figure 1: Transfer HD videos with slow network by compressing each frame in the server

side and uncompressing the frame in the client side

applications, the algorithm will slow down the throughput of

these applications. Second, GFC is designed for GPU directly.

To contrast to GFC, most of the GPU algorithms are
converted from CPU algorithms, which means some

compromises have have to be made and it will have a negative

impact on the algorithm performance most of the time. Third,

GFC aims to compress large datasets, which is critical for both

business and scientific uses.

Some basic concepts about GPU, such as grid, block, warp,

and thread can be found in the paper [12] and Figure 2 dis-

plays a common GPU structure, which presents the relations

between threads, blocks, and grids. Different GPU video card

structures may be different from each other, but they all share
some common features: if users want their GPU algorithms to

perform best, they have to use all the threads in a warp; if

different threads, in the same block need to communicate with

each other, programmers can use shared memory; if different

threads, in different blocks need to communicate with each

other, programmers can use global memory.

The rest of this paper is organized as follows in the remain-

Figure 2: GPU structure. Threads in different blocks should try to avoid communicating

with each other because it cannot use local memory and performance is not good

234 IJCA, Vol. 23, No. 4, Dec. 2016

remaining part: Section 2 introduces the original GFC

algorithm; Section 3 introduces our three methods to improve

GFC algorithm; Section 4 introduces the results and our

opinions about these results; Section 5 concludes the main

ideas of this paper.

2 Original GFC Algorithm

GFC is a lossless double-precision floating-point data com-

pression algorithm. It is designed for GPU specifically. By

using [9], GFC algorithm replaces 64-bit floating-point values

with 64-bit integers. Therefore, GFC needs only integer

operations, although it compresses floating-point datasets.

Overview of warp, block and chunk assignment of GFC is

displayed in Figure 3. The uncompressed data is separated

into r chunks and each chunk contains 32 doubles. Each chunk

is processed by one warp in the GPU. After all warps finish

compressing the assigned chunk, GFC combines all the results

together, which is compressed data. The reason that each
chunk contains 32 doubles is that there are 32 threads in each

warp for most of GPU video cards and it is most effective

when a program uses all the threads in a warp.

Figure 4 presents the details about GFC compression

algorithm. According to GFC, we need to subtract p, which is

in the previous chunk, from i, which is in the current chunk,

and [14]. Dim means
�dimension� in this equation. If the subtraction is negative, we

need to use operation�negate to make it positive. The magic

part of GFC is the rectangle named residual in the bottom part

of Figure 4. By counting the leading zeros of this part,

removing these zeros, and adding the leading zeros

metadata, GFC compresses the original datasets. The most

significant theory behind GFC algorithm is that most scientific

datasets interleave values from multiple dimensions [14]. For

example, weather temperature will follow a pattern each year

for most of the time, which means temperature scientific data

can have many leading zeros by using GFC compression
algorithm. Users need to find the interleave orders, gets the

maximum leading zeros and removes them to have the highest

compression ratio.

It is possible that the compressed data is larger than the

original data using GFC compression algorithm if we choose a

bad interleave dimensionality. For example, all the eight

bytes of residuals are non-zeros and it results in the output

sub-chunk being 16 bytes larger than the original chunk,

which is 6% larger than the original part [14]. Before users

use GFC compression with their data, it is better to preprocess

their data and find out the suitable data interleave

dimensionality to obtain the best performance.
O'Neil and Burtscher created GFC and published this

algorithm in [14]. They avoided using long if-else statements

and assigned datasets reasonably according to the structure of

GPU to improve the performance of their algorithm. If-else

statements can slow down a program, especially a GPU

program. This is because of the structure of video cards. Each

warp has 32 threads (for most video cards) and all these

threads (in the same wrap) must execute the same instruction

in one cycle [12]. When these threads execute If-else

statements, some threads may fulfill the if statement and

execute that part of the code, and the remaining threads will.

Figure 3: Overview of GFC algorithm warp, block, and chunk assignment.

Each warp is assigned 32 doubles because there are usually 32 threads in each warp

IJCA, Vol. 23, No. 4, Dec. 2016 235

Figure 4: GFC compression algorithm

The original file is shrunk by removing the leading zeros.

stay idle, which means threads are not fully used. Therefore,

GFC avoids using long if-else statements

The line chart is not always above zero. This means �if-

else-removal� method cannot always improve the

performance.

3 Improved GFC Algorithm

We tried to improve the performance of GFC algorithm with

three methods: 1) using clzll to count the leading zeros; 2)

removing if-else statements in the program; 3) using multi-

GPUs.

3.1 Clzll

In the summary and conclusions part of [14], the authors

mentioned that they wrote their own function to count the

leading zeros, because their video card was GTX-285 and it
does not support clzll, which is used to count the number of

consecutive leading zeros bits, starting at the most significant

bit (bit 63) of x [13]. They believe GFC could be improved by

using clzll to count the leading zeros to replace their code. We

agree with their idea because professional programmers in

Nvidia know secrets of their video cards. Therefore, it is not

strange that their GPU functions are more suitable to the

structure of video cards and more effective than our codes.

The results in Section 5 also prove this idea is right.

3.2 If-Else-Removals

In our opinion, if-else statements can slow down programs,

especially for GPU programs. Because if-else statements will

make some of the threads in a warp idle, when these threads

cannot fulfil the if-else statement. Here is an example

presented in Figure 5:

Figure 5: If-else Statement Example

Each warp has 32 threads (for most current video cards).

Only the threads that fulfil the condition, a > 3, they will

execute a =7. Other threads will be idle till the whole warp
goes through this if-statement.

There are some materials, such as [11], proving long if-else

statements will also have a negative impact on the performance

of normal programs. Therefore, we tried to remove if-else

statements in GFC algorithm by using bitwise operations.

Here is an example, as Figure 6 displays:

236 IJCA, Vol. 23, No. 4, Dec. 2016

Figure 6: If else-removal example, less lines but more

complex
�>>31� means a right shift for 31 bits. For most cases, signed

integers have 32 bits and the left most bit is used for a sign

(positive or negative). (b � 2)>>31 is -1 when b � 2 is negative

and it is 0 when (b � 2)>>31 is positive. Therefore, the two

statements are the same in Figure 6.

However, we found when if-else statement is short (for

example, there is just one line of statement under �if�), the

replacement of if-else statements with bitwise operations will

slow down the program. We think it may be because

something undisclosed in the compiler to optimize the program.

The authors of [14] also tried to avoid long if-else statements in

their program, except one part in the decompress kernel.

Therefore, we replaced that part with bitwise operations as
Figure 7 shows.

Figure 7: If-else-removal in GFC decompress

But, the method cannot guarantee better results all the time.

Figure 8 displays the delta time between the original algorithm

and the improved algorithm for a dataset named obs_info.

When the line is above zero, it means the improved algorithm is

faster. Even if the improved algorithm is better, the

improvement is not really obvious. Therefore, we don�t apply

this method in the final improved algorithm. In our opinion, the

reasons that this method does not improve the performance are
that each thread needs to spend more time than before because

the code is more complex and the total time consumption is

worse, even if there are no idle threads in the wrap.

3.3 Multi-GPUs

After reading some GPU technique papers, we found that

Figure 8: If-else-removal time delta

some authors try to improve the performance of an algorithm

by parallelizing the algorithm and others try to enhance an

algorithm by parallelizing tasks. For example, in [8], the author

proposed to separate strings and assign a thread for each

segment to increase the speed of Boyer-Moore algorithm. We

also found there was a trend that scientists used multi-GPUs
instead of a single GPU to improve their algorithms.

We found the task�compression is parallelizable. �Paral-

lelizable� means that we can separate the task into several parts

and each part can be processed independently. GFC is a GPU

algorithm and it uses both blocks and threads. Therefore, we

need to assign a GPU for every segment to enhance the

performance. So we tried to use multi-GPUs instead of single

GPU and the basic idea is displayed in Figure 9. The

uncompressed dataset is separated into N chunks, each chunk is

pro-cessed by a GPU, and each GPU processes the assigned

data with GFC algorithm. After all the GPUs finish their jobs,

a CPU will combine the results together, which is the
compressed data.

Figure 9: Multi-GPUs method

4 Results

We did experiments with a Cubix machine, which has eight
GeForce GTX 780 video cards, Intel(R) Xeon(R) CPU E5-2620

@ 2.00GHz, and PCI 3.0.

All the flowing experiment datasets are offered by Martin

Burtscher, who is one of the authors of [14]. The datasets can

be downloaded in [1]. From our experiences about GPU

programming, the best results of different problems need

different numbers of blocks and threads. After experiments

with four of these datasets, we found that we need to use all the

threads in the chosen number of blocks to get the best results

(throughputs). Therefore, we only did experiments to find the

IJCA, Vol. 23, No. 4, Dec. 2016 237

best number of blocks for each dataset and used all the threads.

All the experiments were ran 11 times and we chose the median

value of these 11 results to be theJ final result. For example, in

multi-GPUs part, we tested different numbers of blocks for a

dataset named obs_info. We did the same experiment 11 times

and finally found we should use 51 blocks and all the threads in
these blocks to get the maximum throughput 1073.376

gigabits/s.

Because [14] mentioned that PCIe bus is too slow for GFC

(compression speed is limited to 8GB/s [5]), O'Neil and

Burtscher did not record the time of transferring data from CPU

to GPU. Therefore, we did not do that for all the following

experiments. We also compared decompressed files with

original files to make sure that our methods do not change files.

4.1 Clzll

The first improvement is to use __clzll(), which is used to

count the number of consecutive leading zeros bits, starting at

the most significant bit (bit 63) of x [13]. The results are

presented in Figure 10.

In Figure 10, we subtracted original GFC�s throughput from

improved GFC�s throughput. And we found most of the time,

the deltas are above zero, which means the improved

algorithms� throughput are better. This proves the idea that is
introduced in Section 3.1.

4.2 Multi-GPUs

We did the experiments with one, two, four, and eight GPUs to

study the relation between the number of GPUs and the

speedup. We recorded time consumptions of each GPU and

used the maximum time to be the final time consumption. For

example, we used 8 GPUs and GPU1 spent T1, � GPU2 spent

T2 � GPU8 spent T8. The final time consumption was

Max(T1, T2, � T8). We used the maximum time for the final

time because we set up a synchronizing point, which resulted

in GPUs waiting for others until all the GPUs finish their jobs.

Table 1 displays the throughputs (gigabits/s) of a dataset

named num_plasma. To save time, we did not do the
experiment with block number from 1 to 1024. The step of

BlockNum in Table 1 is int(sqrt(2)).

Table 1: Num_plasma throughputs
BlockNum 8-GPU 4-GPU 2-GPU 1-GPU

1 159.26 81.40 41.18 21.25

2 304.68 158.78 81.51 42.00

3 436.46 233.39 120.21 62.06

5 668.01 376.61 196.12 102.86

8 987.06 572.33 304.24 159.44

12 1,233.31 804.09 438.55 233.19

17 1,214.70 768.86 420.02 219.24

25 1,219.77 715.74 386.17 202.43

36 1,212.85 803.42 438.75 233.02

51 1,268.61 815.37 465.57 250.08

73 1,365.97 955.67 541.73 261.71

104 1,381.89 876.36 481.61 258.48

148 1,312.64 871.23 523.82 264.98

210 1,266.23 860.80 500.14 274.39

297 1,214.87 838.03 496.44 274.89

421 1,170.78 818.49 480.72 266.15

596 1,140.80 743.96 457.01 264.19

843 1,079.34 715.57 439.54 253.56

Table 2 presents the maximum throughputs of different

number of GPUs. From this table, we can tell that the speedup
is better with more GPUs. However, the relationship between

the speedup and the GPU number is not linear. For example, 8-

GPU speedup does not equal eight times 1-GPU speedup. In

Figure 10: Clzll throughput delta.

Most cases on the line charts are above zero. This means �Clzll� function can improve the performaces.

238 IJCA, Vol. 23, No. 4, Dec. 2016

our opinions, this is because of the more GPUs we have, the

more segment file will be generated (our program will separate

the original file into N parts and each GPU is in charge of a

segment). Our program needs to combine all the segment files

together to be the fiinal compressed file in the last compression

step, which is done by a CPU sequentially. This step will use
more time if we have more segment files.

Table 2: Maximum throughput

Name
Max Throughput

(gigabits/s)
BlockNum Speedup

8-GPU 1,381.89 104 5.03

4-GPU 955.67 73 3.48

2-GPU 541.73 73 1.97

1-GPU 274.89 297 1.00

Figure 11 visualizes the relation between the throughputs of

each number of GPUs with a line chart. For each line in Figure

11, we found they went up first and then went down, which

means that too many blocks will reduce the throughputs

(gigabit/s) after a certain threshold. When the blocks number is

small, N GPUs will increase the throughput almost N times.

However, when the blocks number is increased, the speedup is

less than N times. We think it may be because of the impact of

blocks, as we just discussed. This negative impact will reduce

the gap between each of the multi-GPUs results. Therefore, the

final results are less than N times, when the blocks number is
large.

4.3 Final Improved GFC Algorithm

Finally, we combined two methods�clzll and multi-GPUs

together to improve GFC. We did experiments to datasets from

[1] and obtained speedup results (the improved GFC algorithm

over the original GFC algorithm) as Figure 12 presents.
The maximum speedup of the improved GFC algorithm is

8.705 and the maximum throughput of the improved GFC

algorithm is 2454.603 gigabits/s, which is much faster than

original GFC throughputs in [10]. Of course, the good result is

partially because we used better hardware than the original

GFC paper.

5 Conclusion and Future Work

In this paper, we introduced three methods to increase the

speed of a lossless compression algorithm named GFC. These

three methods are: 1) using clzll to count the leading zeros; 2)

replacing if-else statements with bitwise operations in the

program; 3) using multi-GPUs instead of a single GPU.

After some experiments with datasets downloaded from [15],

we found 1) and 3) were effective and the maximum speedup is

8.705 and the maximum throughput of the improved GFC

algorithm is 2,454.60 gigabits/s, by using 1) and 3) together.

However, 2) cannot guarantee good results all the time.
In the future, we want to do more experiments to find out the

rules between the performance and number of blocks and

GPUs. For example, an equation can obtain the number of

blocks and GPUs for a specific problem to get the best results

done sequentially using a CPU core. We have designed a new

Figure 11: Multi-GPUs throughput of num_plasma

IJCA, Vol. 23, No. 4, Dec. 2016 239

(throughputs). The last step of our method is to combine all the

compressed file segments into the final compressed file. This is

method to do it parallel using multiple CPU cores. Figure 13

presents the details of this method. The basic idea is to use one

CPU core to combine two compressed file segments.

Therefore, we can use N CPU cores to combine 2N file

segments in one step. We also want to extend our previous

work introduced in [18, 19, 20] with the improved data

compression algorithm.

Figure 13: Segment files combination in parallel

Figure 12: Speedup of improved GFC algorithm

The speedups of most cases are above 4 for all the datasets

240 IJCA, Vol. 23, No. 4, Dec. 2016

Acknowledgements

The authors of this paper acknowledge the help from O'Neil
and Burtscher. They kindly answered some hard questions
about GFC by email and offered us test datasets.

This material is based upon work supported in part by The
National Science Foundation under grant numbers IIA-
1301726 and IIA-1329469, and by Cubix Corporation through
use of their PCIe slot expansion hardware solutions and
HostEngine.

Any opinions, finds, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation or Cubix Corporation.

Reference

[1] M. Burscher, �Martin Burscher/FPdouble,�
http://cs.txstate.edu/~burtscher/research/datasets/FPdoubl
e/, (accessed 5/5/2015).

[2] R. L. Cloud, M. L. Curry, H. L. Ward, A. Skjellum, and
P. Bangalore, �Accelerating Lossless Data Compression
with GPUs,� arXiv, 3:26-29, 2009.

[3] Y. Collet, �LZ4-Extremely Fast Compression
Algorithm,� https://code.google.com/p/lz4/ , (accessed
5/4/2015).

[4] P. Cudr�-Mauroux, H. Kimura, K. T. Lim, J. Rogers, R.
Simakov, E. Soroush, P. Velikhov, D. L. Wang, M.
Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S.
Madden, J. Patel, M. Stonebraker and S. Zdonik, �A
Demonstration of SciDB: A Science-Oriented DBMS�
Proceedings of the VLDB Endowment, 2(2):1534-1537,
2009.

[5] A. Eirola, Lossless Data Compression on GPGPU
Architectures,� arXiv preprint arXiv: 1109.2348, 2011.

[6] Google Inc., �Statistics�YouTube,� https://www.you
tube.com/yt/press/statistics.html, (accessed 5/4/2015).

[7] P. Holub, M. �rom, M. Pulec, J. Matela, and M. Jirman,
�GPU-Accelerated DXT and JPEG Compression
Schemes for Low-Latency Network Transmissions of
HD, 2K, and 4K Video,� Future Generation Computer
Systems, 29(8):1991-2006, 2013.

[8] M. Jaiswal, �Accelerating Enhanced Boyer-Moore String
Matching Algorithm on Multicore GPU for Network
Security,� International Journal of Computer

Applications, 97(1):30-35, 2014.
[9] W. Kahan, Lecture Notes on the Status of IEEE Standard

754 for Binary Floating-Point Arithmetic.� Manuscript,

30 pp., May 1996.
[10] D. Le Gall, �MPEG: A Video Compression Standard for

Multimedia Applications,� Communications of the ACM,
34(4), 46-58, 1991.

[11] S. Loinel, �Does a Lot of �if � else� Statements Slow
Down the Code?� https://software.intel.com/en-
us/forums/topic/283268, (accessed 5/5/2015).

[12] J. Luitjens and S. Rennich, �CUDA Warps and
Occupancy,� GPU Computing Webinar, 11:2-19, 2011.

[13] NuDoq. �NuDoq � CUDAfy.NET,� http://www.nudoq.
org/#!/Packages/CUDAfy.NET/Cudafy.NET/IntegerIntri
nsicsFunctions/M/clzll, (accessed 5/5/2015).

[14] M. A. O'Neil and M. Burtscher, �Floating-Point Data
Compression at 75 Gb/s on a GPU,� Proceedings of the

Fourth Workshop on General Purpose Processing on

Graphics Processing Units, ACM, p. 7, 2011.
[15] M. Stonebraker, J. Becla, D. J. DeWitt, K. T. Lim, D.

Maier, O. Ratzesberger, and S. B. Zdonik,
�Requirements for Science Data Bases and SciDB,�
Proceedings of the Fourth Biennial Conference on

Innovative Data System, 7:173-184, January 2009.
[16] P. Vagata. and K. Wilfong, �Scaling the Facebook Data

Warehouse to 300 PB,� https://code.facebook.com/posts/
229861827208629/scaling-the-facebook-data-warehouse-
to-300-pb/, (accessed 5/4/2015).

[17] G. K. Wallace, �The JPEG Still Picture Compression
Standard,� Communications of the ACM, 34(4):30-44,
1991.

[18] M. Zhang, T. Yang, and R. Wu, �Space-Efficient
Multiple String Matching Automata. International

Journal of Wireless and Mobile Computing, 5(3):308-
313, 2012.

[19] R. Wu., S. Dascalu, and F. Harris, (2015) Environment
for Datasets Processing and Visualization Using SciDB.
Proceedings of the 24th International Conference on

Software Engineering and Data Engineering (SEDE

2015), San Diego, CA, pp. 223-229, October 12-14,
2015.

[20] R. Wu, C. Chen, S. Ahmad, J. Volk, C. Luca, F. Harris,
and S. Dascalu, �A Real-time Web-Based Wildfire
Simulation System, Proceedings of the 2016 IEEE

Industrial Electronics Conference (IECON 2016),
Florence, Italy, Oct 24-27, 2016.

Rui Wu is a Ph.D. student in the
Department of Computer Science and
Engineering at the University of
Nevada, Reno, USA. He started the
Ph.D. program in Spring 2014 after
obtaining in 2013 a Bachelor's degree in

Computer Science and Technology from Jilin University,
China. His main research interests are in data analysis, data
visualization, and software engineering.

IJCA, Vol. 23, No. 4, Dec. 2016 241

Muhanna Muhanna is an Assistant

Professor in the Department of

Computer Graphics at Princess Sumaya

University for Technology, Jordan,
which he joined in 2011 after receiving

his Ph.D. in Computer Science and

Engineering from the University of

Nevada, Reno earlier that year. In

2007, he received his M.S. in

Computer Science from the University

of Nevada, Reno as well. His main

research interests are in human-computer interaction, user

experience, and software engineering. Moreover, he has been

the Assistant President for Accreditation and Quality

Assurance at Princess Sumaya University for Technology

since 2013.

Sergiu Dascalu is a Professor in the

Department of Computer Science and

Engineering at the University of

Nevada, Reno, USA, which he joined

in 2002. In 1982 he received a

Master�s degree in Automatic Control

and Computers from the Polytechnic
University of Bucharest, Romania and

in 2001 a Ph.D. in Computer Science

from Dalhousie University, Halifax,

NS, Canada. His main research interests are in the areas of

software engineering and human�computer interaction. He

has published over 140 peer-reviewed papers and has been

involved in numerous projects funded by industrial companies

as well as federal agencies such as NSF, NASA, and ONR.

Lee Barford is a Fellow at Keysight

Laboratories and Professor of Computer

Science and Engineering (adjunct) at the

University of Nevada, Reno, Nevada.
He leads research to identify and apply

emerging technologies in software,

applied mathematics, and statistics to

enable new kinds of measurements and

increase measurement accuracy and speed. Lee�s work has

been used to improve R&D productivity and reduce

manufacturing cost in the leading companies in the technology

and transportation industries, including Apple, Boeing, Cisco,

Ford, HP, Microsoft, and NASA. Dr. Barford has given

invited talks at universities worldwide, including MIT,

Cambridge, Stanford, and Tsinghua. Previously, he managed

a number of research projects at Agilent Laboratories and
Hewlett-Packard Laboratories, for example in visible light and

X-ray imaging systems, calibration methods for non-linear and

dynamical disturbances, and fault isolation from automatic test

equipment results. He is the author of over 50 peer-reviewed

publications and inventor of approximately 60 patents.

Frederick C. Harris, Jr. is a

Professor in the Department of
Computer Science and Engineering

and the Director of the High

Performance Computation and

Visualization Lab and the Brain

Computation Lab at the University of

Nevada, Reno, USA. He received his

B.S. and M.S. degrees in

Mathematics and Educational

Administration from Bob Jones University in 1986 and 1988

respectively, and his M.S. and Ph.D. degrees in Computer

Science from Clemson University in 1991 and 1994

respectively. He is a SeniorMember of ACM and ISCA, and a
member of IEEE. His research interests are in parallel

computation, computational neuroscience, computer graphics

and virtual reality.

