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Abstract

Compression is widely used in both scientific research and 

industry. The most common use is that people compress the 

backup data and infrequently used data to save space. 

Compression is significantly meaningful for big data because 
it will save a lot of resources with the help of a good 

compression algorithm. There are two criteria for a good 

compression algorithm�compression ratio and time 

consumption. GFC is one of the fastest compression 

algorithms with a mediocre compression ratio, which is 

designed for real-time compression with the help of Graphics 

Processing Units (GPU). This paper introduces three methods 

to increase the speed of GFC algorithm by using the clzll

function, removing if-else statements, and using multi-GPUs.

The first and third methods improve the original algorithm 

performance. However, the if-else-removal method cannot 
always guarantee better results. The final compression speed 

is more than 1,000 gigabits/s, which is much faster than 75 

gigabits/s�the original GFC algorithm speed.

Key Words: GFC; lossless compression; high-speed; 

floating-point data.

1 Introduction

Big data and its management is a hot topic for both 

businessmen and scientists. The digital era brings us many 

opportunities and also tons of problems. Almost every device 

keeps generating data all the time. For example, the Large 

Synoptic Survey Telescope (LSST) needs to manage over 100 

PB of data [4]. The Facebook warehouse stores upwards of 
300 PB with a daily incoming rate around 600 TB [16]. There 

are 300 hours of video material uploaded to YouTube every 

minute [6]. However, it is hard to manage and analyze big 

data. To uncover the �gold mines� buried in these datasets, 
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researchers hold many conferences to resolve these hard big 

data problems, such as XLDB [15].

Compression is one of the keys to manage big data and it 

helps businessmen and scientists save resources. One of the 
most common rules is that the data management system will 

compress data if the data is not frequently used. If a 

compression algorithm compresses original data 20% smaller 

than before, it means people can save 20% more space, which 

means a lot for petabyte-scale datasets. Therefore, a good 

compression algorithm is significant to a big data project. 

Also, compression is very significant for some big data web-

based application. Dr. Holub and his colleagues introduced a 

method about how to transmit HD, 2K, and 4K videos with

the low-latency network in their paper [7]. The core idea of 

this project is to compress and decompress JPEG efficiently 
with the help of GPUs. Figure 1 displays a simplified network 

diagram of the pilot deployment of their project [7].

There are many mature and good CPU compression 

algorithms. Some of them are designed for image 

compressions, such as JPEG [17], some of them are designed 

for audio and video compression, such as MPEG [10], and 

some of them are for general use, such as LZ4 [3]. Also, some 

scientists tried to take advantage of GPU to increase the speed 

of CPU compression algorithms. For example, [2] tried to 

improve the Huffman compression algorithm using GPU.

GPU is short for Graphics Processing Unit. It is originally 

designed for computer graphics and image processing, and it 

is very popular in high-performance computing today. Also,

there is a trend that scientists use multi-GPUs, instead of a

single GPU to improve performances of different algorithms. 
However, GPU is not suitable for all kinds of algorithms.. If 

an algorithm is not parallelizable or highly divergent, it is 

better not to use GPU.

Here are some reasons that we chose GFC instead of other 

algorithms. First, GFC is one of the fastest existing lossless 

compression algorithms. The original algorithm is 75 

gigabits/s [14]. It is gigabit, instead of gigabyte, because the 

core ideas of GFC algorithm are based on bitwise operations. 

The speed is much faster than most other compression 

algorithms. 

For example, LZ4 is around 14.56 gigabits/s [3], which is 

much slower than wide-band network speed.  If we do not 

choose a fast algorithm for high-speed web-based 



IJCA, Vol. 23, No. 4, Dec. 2016 233

Figure 1: Transfer HD videos with slow network by compressing each frame in the server 

side and uncompressing the frame in the client side

applications, the algorithm will slow down the throughput of 

these applications. Second, GFC is designed for GPU directly.

To contrast to GFC, most of the GPU algorithms are 
converted from CPU algorithms, which means some 

compromises have have to be made and it will have a negative 

impact on the algorithm performance most of the time.  Third, 

GFC aims to compress large datasets, which is critical for both 

business and scientific uses.  

Some basic concepts about GPU, such as grid, block, warp, 

and thread can be found in the paper [12] and Figure 2 dis-

plays a common GPU structure, which presents the relations 

between threads, blocks, and grids.  Different GPU video card

structures may be different from each other, but they all share 
some common features:  if users want their GPU algorithms to

perform best, they have to use all the threads in a warp; if 

different threads, in the same block need to communicate with 

each other, programmers can use shared memory; if different 

threads, in different blocks need to communicate with each 

other, programmers can use global memory.

The rest of this paper is organized as follows in the remain-

Figure 2: GPU structure.  Threads in different blocks should try to avoid communicating

with each other because it cannot use local memory and performance is not good
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remaining part:  Section 2 introduces the original GFC 

algorithm; Section 3 introduces our three methods to improve 

GFC algorithm; Section 4 introduces the results and our 

opinions about these results; Section 5 concludes the main 

ideas of this paper.

2 Original GFC Algorithm

GFC is a lossless double-precision floating-point data com-

pression algorithm. It is designed for GPU specifically. By 

using [9], GFC algorithm replaces 64-bit floating-point values 

with 64-bit integers. Therefore, GFC needs only integer 

operations, although it compresses floating-point datasets.

Overview of warp, block and chunk assignment of GFC is 

displayed in Figure 3. The uncompressed data is separated 

into r chunks and each chunk contains 32 doubles. Each chunk 

is processed by one warp in the GPU. After all warps finish 

compressing the assigned chunk, GFC combines all the results 

together, which is compressed data. The reason that each 
chunk contains 32 doubles is that there are 32 threads in each 

warp for most of GPU video cards and it is most effective 

when a program uses all the threads in a warp.

Figure 4 presents the details about GFC compression 

algorithm. According to GFC, we need to subtract p, which is 

in the previous chunk, from i, which is in the current chunk, 

and [14]. Dim means 
�dimension� in this equation. If the subtraction is negative, we 

need to use operation�negate to make it positive. The magic 

part of GFC is the rectangle named residual in the bottom part 

of Figure 4. By counting the leading zeros of this part, 

removing these zeros, and adding the leading zeros 

metadata, GFC compresses the original datasets.  The most 

significant theory behind GFC algorithm is that most scientific 

datasets interleave values from multiple dimensions [14]. For 

example, weather temperature will follow a pattern each year 

for most of the time, which means temperature scientific data 

can have many leading zeros by using GFC compression 
algorithm. Users need to find the interleave orders, gets the 

maximum leading zeros and removes them to have the highest 

compression ratio.

It is possible that the compressed data is larger than the 

original data using GFC compression algorithm if we choose a 

bad interleave dimensionality. For example, all the eight 

bytes of residuals are non-zeros and it results in the output 

sub-chunk being 16 bytes larger than the original chunk, 

which is 6% larger than the original part [14]. Before users 

use GFC compression with their data, it is better to preprocess 

their data and find out the suitable data interleave 

dimensionality to obtain the best performance.
O'Neil and Burtscher created GFC and published this 

algorithm in [14]. They avoided using long if-else statements 

and assigned datasets reasonably according to the structure of

GPU to improve the performance of their algorithm. If-else 

statements can slow down a program, especially a GPU 

program. This is because of the structure of video cards. Each

warp has 32 threads (for most video cards) and all these 

threads (in the same wrap) must execute the same instruction 

in one cycle [12]. When these threads execute If-else 

statements, some threads may fulfill the if statement and 

execute that part of the code, and the remaining threads will.

Figure 3: Overview of GFC algorithm warp, block, and chunk assignment.

Each warp is assigned 32 doubles because there are usually 32 threads in each warp
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Figure 4: GFC compression algorithm

The original file is shrunk by removing the leading zeros.

stay idle, which means threads are not fully used. Therefore, 

GFC avoids using long if-else statements

The line chart is not always above zero.  This means �if-

else-removal� method cannot always improve the 

performance.

3 Improved GFC Algorithm

We tried to improve the performance of GFC algorithm with 

three methods: 1) using clzll to count the leading zeros; 2) 

removing if-else statements in the program; 3) using multi-

GPUs. 

3.1 Clzll

In the summary and conclusions part of [14], the authors 

mentioned that they wrote their own function to count the 

leading zeros, because their video card was GTX-285 and it 
does not support clzll, which is used to count the number of 

consecutive leading zeros bits, starting at the most significant 

bit (bit 63) of x [13]. They believe GFC could be improved by 

using clzll to count the leading zeros to replace their code. We 

agree with their idea because professional programmers in 

Nvidia know secrets of their video cards. Therefore, it is not 

strange that their GPU functions are more suitable to the 

structure of video cards and more effective than our codes. 

The results in Section 5 also prove this idea is right.

3.2 If-Else-Removals

In our opinion, if-else statements can slow down programs, 

especially for GPU programs. Because if-else statements will 

make some of the threads in a warp idle, when these threads

cannot fulfil the if-else statement. Here is an example

presented in Figure 5:

Figure 5: If-else Statement Example

Each warp has 32 threads (for most current video cards). 

Only the threads that fulfil the condition, a > 3, they will 

execute a =7. Other threads will be idle till the whole warp 
goes through this if-statement.

There are some materials, such as [11], proving long if-else 

statements will also have a negative impact on the performance 

of normal programs. Therefore, we tried to remove if-else 

statements in GFC algorithm by using bitwise operations.

Here is an example, as Figure 6 displays:
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Figure 6: If else-removal example, less lines but more 

complex
�>>31� means a right shift for 31 bits. For most cases, signed 

integers have 32 bits and the left most bit is used for a sign

(positive or negative). (b � 2)>>31 is -1 when b � 2 is negative 

and it is 0 when (b � 2)>>31 is positive. Therefore, the two 

statements are the same in Figure 6.

However, we found when if-else statement is short (for 

example, there is just one line of statement under �if�), the 

replacement of if-else statements with bitwise operations will 

slow down the program. We think it may be because 

something undisclosed in the compiler to optimize the program. 

The authors of [14] also tried to avoid long if-else statements in 

their program, except one part in the decompress kernel. 

Therefore, we replaced that part with bitwise operations as 
Figure 7 shows.

Figure 7:  If-else-removal in GFC decompress

But, the method cannot guarantee better results all the time.  

Figure 8 displays the delta time between the original algorithm 

and the improved algorithm for a dataset named obs_info.  

When the line is above zero, it means the improved algorithm is 

faster.  Even if the improved algorithm is better, the 

improvement is not really obvious.  Therefore, we don�t apply 

this method in the final improved algorithm.  In our opinion, the 

reasons that this method does not improve the performance are 
that each thread needs to spend more time than before because 

the code is more complex and the total time consumption is 

worse, even if there are no idle threads in the wrap.

3.3 Multi-GPUs

After reading some GPU technique papers, we found that

Figure 8: If-else-removal time delta

some authors try to improve the performance of an algorithm 

by parallelizing the algorithm and others try to enhance an 

algorithm by parallelizing tasks. For example, in [8], the author 

proposed to separate strings and assign a thread for each 

segment to increase the speed of Boyer-Moore algorithm. We

also found there was a trend that scientists used multi-GPUs 
instead of a single GPU to improve their algorithms.

We found the task�compression is parallelizable. �Paral-

lelizable� means that we can separate the task into several parts 

and each part can be processed independently. GFC is a GPU 

algorithm and it uses both blocks and threads. Therefore, we 

need to assign a GPU for every segment to enhance the 

performance. So we tried to use multi-GPUs instead of single 

GPU and the basic idea is displayed in Figure 9. The 

uncompressed dataset is separated into N chunks, each chunk is 

pro-cessed by a GPU, and each GPU processes the assigned 

data with GFC algorithm. After all the GPUs finish their jobs,

a CPU will combine the results together, which is the 
compressed data.

Figure 9:  Multi-GPUs method

4 Results

We did experiments with a Cubix machine, which has eight 
GeForce GTX 780 video cards, Intel(R) Xeon(R) CPU E5-2620 

@ 2.00GHz, and PCI 3.0.

All the flowing experiment datasets are offered by Martin 

Burtscher, who is one of the authors of [14].  The datasets can 

be downloaded in [1].  From our experiences about GPU 

programming, the best results of different problems need 

different numbers of blocks and threads.  After experiments 

with four of these datasets, we found that we need to use all the 

threads in the chosen number of blocks to get the best results 

(throughputs).  Therefore, we only did experiments to find the 
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best number of blocks for each dataset and used all the threads.  

All the experiments were ran 11 times and we chose the median 

value of these 11 results to be theJ final result.  For example, in 

multi-GPUs part, we tested different numbers of blocks for a 

dataset named obs_info.  We did the same experiment 11 times 

and finally found we should use 51 blocks and all the threads in 
these blocks to get the maximum throughput 1073.376 

gigabits/s. 

Because [14] mentioned that PCIe bus is too slow for GFC 

(compression speed is limited to 8GB/s [5]), O'Neil and

Burtscher did not record the time of transferring data from CPU 

to GPU.  Therefore, we did not do that for all the following 

experiments.  We also compared decompressed files with 

original files to make sure that our methods do not change files.

4.1 Clzll

The first improvement is to use __clzll(), which is used to 

count the number of consecutive leading zeros bits, starting at 

the most significant bit (bit 63) of x [13]. The results are 

presented in Figure 10.

In Figure 10, we subtracted original GFC�s throughput from 

improved GFC�s throughput. And we found most of the time, 

the deltas are above zero, which means the improved 

algorithms� throughput are better. This proves the idea that is 
introduced in Section 3.1.

4.2 Multi-GPUs

We did the experiments with one, two, four, and eight GPUs to 

study the relation between the number of GPUs and the 

speedup. We recorded time consumptions of each GPU and 

used the maximum time to be the final time consumption. For 

example, we used 8 GPUs and GPU1 spent T1, � GPU2 spent 

T2 � GPU8 spent T8. The final time consumption was 

Max(T1, T2, � T8). We used the maximum time for the final 

time because we set up a synchronizing point, which resulted 

in GPUs waiting for others until all the GPUs finish their jobs. 

Table 1 displays the throughputs (gigabits/s) of a dataset 

named num_plasma. To save time, we did not do the 
experiment with block number from 1 to 1024. The step of 

BlockNum in Table 1 is int(sqrt(2)).

Table 1: Num_plasma throughputs
BlockNum 8-GPU 4-GPU 2-GPU 1-GPU

1 159.26 81.40 41.18 21.25

2 304.68 158.78 81.51 42.00

3 436.46 233.39 120.21 62.06

5 668.01 376.61 196.12 102.86

8 987.06 572.33 304.24 159.44

12 1,233.31 804.09 438.55 233.19

17 1,214.70 768.86 420.02 219.24

25 1,219.77 715.74 386.17 202.43

36 1,212.85 803.42 438.75 233.02

51 1,268.61 815.37 465.57 250.08

73 1,365.97 955.67 541.73 261.71

104 1,381.89 876.36 481.61 258.48

148 1,312.64 871.23 523.82 264.98

210 1,266.23 860.80 500.14 274.39

297 1,214.87 838.03 496.44 274.89

421 1,170.78 818.49 480.72 266.15

596 1,140.80 743.96 457.01 264.19

843 1,079.34 715.57 439.54 253.56

Table 2 presents the maximum throughputs of different 

number of GPUs.  From this table, we can tell that the speedup 
is better with more GPUs.  However, the relationship between 

the speedup and the GPU number is not linear.  For example, 8-

GPU speedup does not equal eight times 1-GPU speedup.  In 

Figure 10:  Clzll throughput delta.

Most cases on the line charts are above zero. This means �Clzll� function can improve the performaces.
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our opinions, this is because of the more GPUs we have, the 

more segment file will be generated (our program will separate

the original file into N parts and each GPU is in charge of a 

segment).  Our program needs to combine all the segment files 

together to be the fiinal compressed file in the last compression 

step, which is done by a CPU sequentially.  This step will use 
more time if we have more segment files.

Table 2: Maximum throughput

Name
Max Throughput

(gigabits/s)
BlockNum Speedup

8-GPU 1,381.89 104 5.03

4-GPU 955.67 73 3.48

2-GPU 541.73 73 1.97

1-GPU 274.89 297 1.00

Figure 11 visualizes the relation between the throughputs of 

each number of GPUs with a line chart. For each line in Figure 

11, we found they went up first and then went down, which 

means that too many blocks will reduce the throughputs 

(gigabit/s) after a certain threshold. When the blocks number is 

small, N GPUs will increase the throughput almost N times. 

However, when the blocks number is increased, the speedup is 

less than N times. We think it may be because of the impact of 

blocks, as we just discussed. This negative impact will reduce 

the gap between each of the multi-GPUs results. Therefore, the 

final results are less than N times, when the blocks number is 
large.

4.3 Final Improved GFC Algorithm

Finally, we combined two methods�clzll and multi-GPUs 

together to improve GFC.  We did experiments to datasets from 

[1] and obtained speedup results (the improved GFC algorithm 

over the original GFC algorithm) as Figure 12 presents.
The maximum speedup of the improved GFC algorithm is 

8.705 and the maximum throughput of the improved GFC 

algorithm is  2454.603 gigabits/s, which is much faster than 

original GFC throughputs in [10]. Of course, the good result is 

partially because we used better hardware than the original 

GFC paper.

5 Conclusion and Future Work

In this paper, we introduced three methods to increase the 

speed of a lossless compression algorithm named GFC. These 

three methods are: 1) using clzll to count the leading zeros; 2) 

replacing if-else statements with bitwise operations in the 

program; 3) using multi-GPUs instead of a single GPU.

After some experiments with datasets downloaded from [15], 

we found 1) and 3) were effective and the maximum speedup is 

8.705 and the maximum throughput of the improved GFC 

algorithm is 2,454.60 gigabits/s, by using 1) and 3) together.  

However, 2) cannot guarantee good results all the time.
In the future, we want to do more experiments to find out the 

rules between the performance and number of blocks and 

GPUs.  For example, an equation can obtain the number of 

blocks and GPUs for a specific problem to get the best results 

done sequentially using a CPU core.  We have designed a new 

Figure 11: Multi-GPUs throughput of num_plasma
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(throughputs).  The last step of our method is to combine all the 

compressed file segments into the final compressed file.  This is 

method to do it parallel using multiple CPU cores. Figure 13

presents the details of this method.  The basic idea is to use one 

CPU core to combine two compressed file segments.  

Therefore, we can use N CPU cores to combine 2N file 

segments in one step. We also want to extend our previous 

work introduced in [18, 19, 20] with the improved data 

compression algorithm.

Figure 13: Segment files combination in parallel

Figure 12: Speedup of improved GFC algorithm

The speedups of most cases are above 4 for all the datasets
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