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Abstract

Simple digital audio formats such as mp3s and various

others lack the symbolic information that musicians and other

organizations need to retrieve the important details of a given

piece. However, there have been recent advances for converting

from a digital audio format to a symbolic format a problem

called Music Transcription. Rewind is an Automatic Music

Transcription (AMT) system that boasts a new deep learning

method for generating transcriptions at the frame level and web

application. The web app was built as a front end interface to

visualize and hear generated transcriptions. Rewind’s new deep

learning method utilizes an encoder-decoder network where the

decoder consists of a gated recurrent unit (GRU) or two GRUs

in parallel and a linear layer. The encoder layer is a single

layer autoencoder that captures the temporal dependencies of

a song and consists of a GRU followed by a linear layer. It

was found that Rewind’s deep learning method is comparable

to other existing deep learning methods using existing AMT

datasets and a custom dataset. In other words, Rewind is a web

application that utilizes a deep learning method that allows users

to transcribe, listen to, and see their music.

Key Words: Deep learning, Automatic Music Transcription,

Music Information Retrieval, and Machine Learning.

1 Introduction

Many musicians, bands, and other artists make use of MIDI, a

symbolic music instruction set, in popular software to compose

music for live performances, portability across other formats,

and recording. However, most music is often recorded into

raw formats such as Wav, MP3, OGG, and other digital

audio formats. These formats do not often contain symbolic

information, but may contain some form of metadata that

does not typically include symbolic information. Symbolic

formats, such as sheet music have been used by bands, choirs,
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and artists to recreate or perform songs. These symbolic

formats are effectively the spoken language of music that can

be re-translated back into sound. Communities such as Mirex

are actively working many different problems on retrieving

information from music so that creating, categorizing, and

extracting information is easier. The Symbolic format is not

only portable, but can be leveraged for doing different types of

analysis such as genre classification, artist classification, mood

detection.

Automatic Music Transcription (AMT) is the process of

converting an acoustic musical signal into a symbolic format

[14]. There are a few music transcription applications having

varying degrees of accuracy that have been built mostly for

Windows, Linux, Mac and the web browser [19]. Only a few

of these applications have the ability to visualize the results

of the transcription. A piano roll is an intuitive visualization

of music that does not require a user to learn a more complex

symbolic available for music such as sheet music. These

applications allow a user to get a symbolic format of their music

that can be used for many different reasons such as changing

a song, portability to other applications, live performances,

and for generating sheet music. However, most of these

applications do not use state of the art algorithms from advances

in Deep Learning that have contributed to theMusic Information

Retrieval (MIR) field.

There has been recent work in the AMT field with [5, 6, 25]

that have produced higher transcription accuracies than previous

methods. These advances along with the creation of web

audio frameworks such as WebAudio or WebMidi have made

it possible to playback many different types of audio formats

such as mp3, wav, and MIDI. Web frameworks such as Django

and Flask make it possible to create a web application that does

automatic music transcription and allows users to visualize the

transcription and hear the results. Rewind [8, 9] is a tool and

method that will make use of a new Deep Learning method

based on previous work, visualize the results of the transcribed

file, and allow the user to edit the transcribed results.

The following paper is structured as follows: Section 2

covers background related to the MIR and Deep Learning field.

ISCA Copyright© 2017
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Figure 1: An example of a raw audio file

Figure 2: An example of a spectrogram

Section 3 discusses the implementation and design of Rewind

tool. Section 4 gives the results of the Rewind method. Finally

Section 5 concludes and details future direction that Rewind can

take.

2 Background

AMT systems are designed to make transcriptions at the three

levels of detail in music, those being the stream, note, and frame

level [14]. The stream level is simply a raw acoustic signal

which is contained in an audio digital file, an example of which

can be seen in Figure 1. The goal of the frame level is to capture

all pitches within each frame provided by a spectrogram. An

example of a spectrogram is demonstrated in Figure 2. At the

note level, a set of pre-existing notes are used to generate a brand

new set of notes or create a record of the notes. The note level

can be represented as a piano roll or as sheet music. An example

of sheet music and piano roll is demonstrated in Figures 3 and

4. Most AMT systems evaluate their effectiveness by means

of various metrics, including recall, accuracy, precision, and f-

measure [3]. Precision determines how relevant a transcription

is given irrelevant entries in a frame. It is defined as follows:

Precision =
∑

T
t=1T P(t)

∑
T
t=1T P(t)+FP(t)

(1)

Recall is the percentage of relevant music transcribed, and is

given by Equation 2.

Recall =
∑

T
t=1T P(t)

∑
T
t=1T P(t)+FN(t)

(2)

The accuracy determines the correctness of a transcription, and

is given by Equation 3.

Accuracy =
∑

T
t=1T P(t)

∑
T
t=1T P(t)+FP(t)+FN(t)

(3)

While the F-measure determines the overall quality between the

precision and recall.

F-measure =
2∗ precision∗ recall

precision+ recall
(4)

These metrics in turn are calculated with true positives, false

positives, and false negatives

There has been some work using LSTMs and semitone filter

banks to transcribe music [5]. In Sigtia’s work [25], the idea of

an acoustic model converting an audio signal to a transcription

is introduced. Additionally this paper introduces using a music

language model to improve the accuracy of a transcription of a

acoustic model like Boeck [5] and others as well. Boulanger-

Lewandowski [6] uses a deep belief network to extract features

Figure 3: An example of sheet music
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Figure 4: An example of a piano roll

from a spectrogram and utilizes a rnn to create a transcription

along with a innovative beam search to transcribe music.

Boulanger-Lewandowski’s beam search is possible thanks to the

generative properties of the deep belief network that is merely
a collection of restricted Boltzman machines or RBMs that

are stacked. This beam search is also utilized in combination

with recurrent neural network with an neural autoregressive

distribution estimator (rnn-nade) as a music language model and

an acoustic model that uses a deep neural network. A follow-up

paper produces a hash beam search that finds a more probable

transcription in fewer epochs [24]. Both the beam search and

hash beam search produce the most accurate transcriptions.

Recently, encoder-decoder networks have been used for

unsupervised learning in terms of autoencoders [26], translation

[12], caption generation for images, video clip description,

speech recognition [11, 13] or video generation. Autoencoders,

like an encoder-decoder network, are commonly used for

unsupervised learning to learn features contained inside the

data, by using the identity of the data. An autoencoder

is powerful for learning features contained within a dataset.

However, there are more complex encoder-decoder networks

[12, 11, 13], where they learn a context and then map English to

French. They are less concerned with learning the identity and

more for learning the context of the data presented. Rewind

utilizes these types of encoder-decoder networks to learn an

encoding for a spectrogram presented to it. An example layout

of this network is demonstrated in Figure 5. These networks

have proven to be beneficial, and are state of the art.

Figure 5: A picture of a encoder-decoder network with a

context C demonstrated between the encoder-decoder

network [11]

3 Rewind

Rewind is very much like other AMT systems in that it

determines the fundamental frequencies of the notes and what

notes are active at the frame level. Like most other frame

based systems, Rewind utilizes a spectrogram as its main input

and a ground truth midi as the target. All audio samples are

constructed at a 22 kHz sample rate and turned into a normalized

spectrogram with a 116 ms window size, which can be either

a 10 ms or a 50 ms stride. It has been found that a window

size larger than 100ms produces the most accurate results with

a rnn-lstm [5]. A multitude of existing datasets were utilized

for training Rewind’s models: Nottingham [1], JSB Chorales

[2], Poliner and Ellis [20], Maps [15], MuseData [10], and

Piano.midi.de [16]. All of these datasets were split into 70%

for training, 20% for testing, and 10% for validation. These

datasets consisted of midi only or midi with aligned audio and

made into datasets with timidity, Torch’s audio library, and a

midi library [4]. Rewind’s models were implemented with rnn

[18] and optim. A simple auto-correlation method was also

constructed as a way to implement Rewind’s web service and

website for quick testing. The auto-correlation is also compared

against the encoder-decoder network. Rewind has two types

of models: the encoder and the decoder model. The encoder

and decoder is very similar to the encoder-decoder network in

Figure 5 [11, 12, 13]. The encoder model of Rewind utilizes an

autoencoder, which utilizes a single GRU for its encoder, whose
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Figure 6: A screenshot of piano roll notes lighting up

output is squashed by a rectified linear unit and a linear layer

for its decoding layer. While the decoder model has an identical

layout, but its outputs are squashed with a sigmoid activation

function and may have a second GRU in parallel.

The encoder network utilizes an autoencoder to create an

encoding for a spectrogram. An autoencoder was chosen

because a deep neural network (stacked auto encoders) has been

used for extracting features from a spectrogram in the case of

speech recognition [7] and other similar works that utilize deep

belief networks (stacked restricted Boltzman machines) have

been used to extract features [17]. A deep belief network, along

with an autoencoder, are used to produce a generative model

for a spectrogram [13]. The generic representations generated

by autoencoders can be further improved with recurrences [26],

where the encoder and decoder of the autoencoder are both

LSTMs for learning over video sequences and generating video

sequences. Rewind’s encoder model utilizes a linear neural

network for the decoder and a GRU for the encoder with a

rectified linear unit (ReLU) for it’s activation function [26]. The

encoder network is trained with a mean squared error function.

The decoder network consists of two types of networks being

a GRU with a linear layer and two GRUs stacked onto each

other in parallel with a linear layer. Both types of networks are

squashed with a sigmoid function. The GRU in both networks

was chosen because it produced the lowest error rate. This

network’s objective function is binary cross entropy, so that

this decoder network will learn a distribution of notes where

a probability of one indicates a note on and a probability of

zero indicates a note off. Binary cross entropy is used for

minimizing the log probability [6, 25], which also utilizes a

sigmoid function to create binary probabilities[23]. The binary

cross entropy function is demonstrated in Equation 5, where the

sum is taken over all distributions [25]:

∑
i

ti log pi +(1− ti) log(1− pi) (5)

The probabilities constructed from the sigmoid function can

be used to construct a MIDI, and are utilized in previously

mentioned papers. The decoder network’s job is to generate

these probabilities for each encoding passed by the encoder

network.

The auto-correlation method is a very noisy method. The

process creates a spectrogram of the required audio file and then

each bin of the spectrogram is normalized with the standard

deviation and mean. After these transformations have been

made, a threshold is applied, where anything greater than the

threshold is a 1 and anything less is a 0. Subsequently, one

simply only needs to go to each frequency bin that matches a

midi note and extract the frequencies that have a value of 1.

This auto correlation method is only meant as a test model for a

web service. However, in Section 4, results are reported for its

accuracy in comparison to Rewind’s Network.

3.1 Architecture

Rewind’s architecture consists of multiple parts that consist

of: the client, models and web service, and the server. Each

part is unique and has been designed to handle different parts

of Rewind’s functionality. The models are used for producing

transcription, and the web service is used to interface with the

model and send outputs to the client through the server. All

visualization, downloads, and uploads are handled by the client.

The server pushes all content needed to run the website to the

client. An overall diagram of the architecture is demonstrated in

Figure 7.

The models and web service component of the architecture

are used to process data for training a model, generating
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Figure 7: The Architecture of Rewind

transcriptions with a preexisting model to be sent through the

web service, and training models. This component contains

Rewind’s method, or AMT algorithm, for creating transcriptions

of digital audio formats. The web service was created as a way

for Rewind’s models to send transcriptions to the client. The

web service for Rewind was written in Flask [22], as it requires

a small amount of code to get a web service written.

Rewind’s server was created with Django’s web framework

[21]. The rewind server serves up the website to the client,

which includes all of the HTML, Javascript, and CSS files. It

also handles sending uploaded audio files to the web service

and forwarding the content back to the client.

The client is a web browser, such as Google Chrome or

Mozilla Firefox, that is to be utilized by the user. The client

handles creating a piano roll for visualization, uploading audio

files to the web service, and giving the ability to download a

transcription. All sound playback is handled by the client and

allows the user to pause and play sounds. The client’s job is to

light up the notes in the piano roll as the note on hits.

3.2 Use Case Modeling

This section describes the use cases of Rewind and covers

the different scenarios of Rewind. The use cases were created

to understand what the user needs are for Rewind. Both the

back end of Rewind, being the models and web service, and the

front end of Rewind, being the Graphical User Interface (GUI)

of Rewind or the client, are covered by these use cases.

In the full use case diagram shown in Figure 8, there are

four actors being the: User, Developer, Web Service, and the

Rewind Server. The User are those who are interested in

creating a transcription of a digital audio song. The Developer

is one whom that is expanding and/or improving the accuracy of

Rewind. The Web Service is a service that allows the Rewind

client to convert a digital audio format into transcription. The

Rewind Server serves a website to the Rewind client. The rest

of the section explains each use case of Figure 8.

Play/Pause Playback

The user has the option to pause or playback a given

transcription in the Rewind client.

Download Transcription

When a transcription has been received from the server, the

user may download a transcription that one had requested.

Inspect Piano Roll

The user may look around the piano roll within the Rewind

client.

Get Information About Project

The Rewind client will provide the user the option to get

information about the Rewind project and how the project

works.

Upload Audio File

The user in this use case will upload a file that they wish to

transcribe.

Receive Transcription

When the server has received a transcription from the web

service, the Rewind client will receive the transcription for

playback and visualization.
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Figure 8: A Use Case Diagram of Rewind

Create Piano Roll

After receiving the transcription the rewind client will build

a piano roll transcription for the user to see.

Playback Available

After the piano roll has been inside of the Rewind

client, then the client will allow the user to playback the

transcription and will let the user know that playback is

available.

Receive Audio File

In this use case, the web service receives an audio from

the server and is now ready to preprocess the audio file for

transcription by the models.

Create Transcription

The create transcription use case can occur in two different

ways: one is when the web service sends an audio file to the

models for transcription or a developer invokes the service.

Send Transcription

When the models have finished transcribing, then the

transcription will be sent to the web service where the

Rewind server will then send the data to client.

Preprocess Audio

The models before they can transcribe any audio have to

make sure that the files themselves are the proper format.

If they are not proper, then by default the models will

transform the music into the proper format.

Generate Dataset

The developer may wish to generate a new dataset for

training the models, which is possible. This is so

the developer may tweak Rewind and make its overall

transcription accuracy better.

Create Model

The developer is also able to create new models that can be
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Figure 9: A diagram of Rewind’s web service

utilized for transcription or research.

Combine Models

The developer may wish to combine multiple models

together in order to improve transcription.

Train Models

The developer has the option of training the models in

order to determine if the new model is better than the

current model utilized by the web service.

3.3 Website and Web Service

Rewind’s web service was implemented in Flask as a

small web service that could be utilized by Rewind’s server

for making transcriptions of uploaded audio files. A small

web service was implemented for transcribing audio files so

that Rewind would remain scalable. All audio files and

transcriptions are handled through post requests. Figure 9

demonstrates a diagram of the communication of audio files and

transcriptions going in and out of the web service. This web

service communicates with the models of Rewind and creates

a midi file from the passed in audio file. All transcriptions

generated by the web service are piano only. Rewind’s website

was implemented in the Django web framework and utilized

the following javascript libraries: remodal, jQuery, jQuery UI,

and midi.js. Django was chosen for Rewind because it allows

Rewind to be scalable for future development, stable database

integration, and future incorporation of security. Midi.js is

utilized for its ability to parseMIDI files and generate sounds for

those MIDI files. The jQuery and jQuery UI libraries has many

useful features for designing interfaces, such as animations,

element manipulation, and 3D effects. The remodal library

allows for seamless modal windows to be displayed on the

website. A small web service was implemented in Flask to

wrap Rewind’s models in order to be utilized by Rewind to

generate transcriptions through http requests. This service was

implemented so that the small web service could be independent

and be used in other applications if needed. These libraries have

made it possible to make a website for Rewind. An example

of Rewind’s website is demonstrated in Figure 6. This figure

also demonstrates Rewind’s ability to visualize the playback of

a midi file in the form of a piano roll where the colors denote the

note level. The user has the ability to scroll through the piano

roll using the time bar and inspect the piano roll validity.

Rewind has a built in web synthesizer, which is used to

playback transcriptions generated by Rewind’s models. Midi.js

has several dependencies, which are used to playback sounds

and can handle different platform setups. It can parse midi

events and make it possible to extract time delta for constructing

piano rolls and note information. Midi.js can load many

different sound fonts to load different sounds such as piano,

flute, drums, and other sounds. The piano roll constructed

for visualization in Rewind is based on the time duration and

time position information collected from midi.js. The user has

the ability to scroll through the piano roll using the time bar

and inspect the piano roll validity. As a song plays the piano

roll will light up each note with different colrs based on the

note number as demonstrated in Figure 6, and the screen will

transition to another part of the piano every second. There is

some future work to be developed regarding the ability of adding

or removing certain notes from the transcription using the piano

roll. In conclusion, these libraries allow Rewind to be scalable

for more complex models in the future.

4 Results

In this section we present the precision, recall, f-measure, and

accuracy of Rewind’s transcriptions on the following datasets:

Nottingham consisting of 1000 or more songs, JSB Chorales

consisting of 200 or more songs, Poliner-Ellis consisting of 30
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songs, MuseData consisting of 700 songs, the Maps dataset

consisting of 169 songs, and a custom dataset that consists of

160 songs split evenly from country, rock, jazz and classical.

The custom dataset was added since all of the benchmark

datasets currently used in the AMT are currently only classical

piano music and orchestral music. All datasets are primarily

midi and a synthesizer is used to generate wav except for the

Poliner-Ellis and Maps dataset that have a aligned wav file and

midi file. Rewind’s model ran with two different models and

both compared at a 10 ms and 50 ms stride. In Tables 1 and

2, the overall results of Rewind at a 10 ms stride, a standard

for AMT systems, at the frame level are demonstrated and

compared to Boulanger-Lewandowski’s work [6, 24]. The 50

ms results are demonstrated in Table 3, but the results are not

reported for the maps dataset. The 10 ms stride results were

trained with two parallel GRUs with a linear layer and the 50

ms results were trained with a single GRU and linear layer. The

results demonstrated in Table 2 are compared against ConvNet

acoustic model at the frame level [24].

Upon examining the table, the Convnet is better overall in

accuracy, recall, and f-measure, but Rewind has the higher

precision. The ConvNet [24] utilizes a hash beam search to find

the most probable sequence. If Rewind was to utilize the same

hash beam search, it may have been able to achieve an even

better accuracy, recall, and f-measure.

5 Conclusions and Future Work

Rewind demonstrated a encoder-decoder network that is

comparable to the results of Boulanger-Lewandowski rnn-

rbm [6] in terms of the Nottingham and JSB dataset. It also

achieved a higher precision than the rnn-nade [24] on the Maps

dataset. However, it suffered from issues in connection with

choosing a threshold to generate an on value in the transcription

on datasets such as MuseData and the custom dataset built

by Rewind. The custom dataset demonstrated that AMT

systems can work with multiple genres, but there may be other

factors that cause transcription metrics to go down, such as

multiple instruments being existent in the song or an improper

threshold. Despite these issues, Rewind does manage to follow

the underlying frame distribution in the lower classified datasets.

Rewind’s encoder-decoder has demonstrated a model that has

a high precision and comparable results coupled with a web

app that can generate transcriptions. Rewind’s website provides

users with a way to hear and see their transcriptions.

Rewind has demonstrated a model that works at the frame

level. Previous work, such as [24], have used a frame level

model in conjunction with a note level model to get a note

level transcription. One key thing for the encoder-decoder

network would be to add another layer, which can do note level

transcription and utilize other algorithms from [6] to produce

Table 1: Rewind’s results at 10 ms stride for the spectrogram (1 is the proposed model and 2 is the rnn-nade [6])

Accuracy Precision Recall F-Measure

Models 1 2 1 2 1 2 1 2

Nottingham 95.1% 97.4% 98.0% 96.9% 97.5%

JSB 82.8% 91.7% 92.4% 88.8% 90.6%

Poliner-Ellis 34.4% 79.1% 66.9% 41.5% 34%

MuseData 34% 66.6% 56.8% 45.9% 50.8%

Custom 16.2% 51.1% 19.2% 27.9%

Table 2: Rewind’s performance on the Maps dataset compared to [24] at 10 ms.

Proposed Simple Auto-Correlation ConvNet[24]

Accuracy 51.6% 6.4% 58.87%

Precision 76.5% 21.8% 72.40%

Recall 61.4% 8.2% 76.50%

F-Measure 68.1% 11.2% 74.45%

Table 3: Rewinds results at a 50 millisecond stride for the spectrogram where 2 is the proposed model and 1 is the Simple Auto-

Correlation model

Accuracy Precision Recall F-Measure

Models 1 2 1 2 1 2 1 2

Nottingham 21.5% 94.0% 29.2% 97.9% 44.7% 95.9% 35.3% 96.9%

JSB 20.8% 81.6% 32.9% 92.1% 36.2% 87.7% 34.5% 89.9%

MuseData 11.8% 23.0% 15.8% 60.2% 31.9% 27.2% 21.1% 37.4%

Poliner-Ellis 6.6% 42.6% 17.7% 70.5% 9.7% 51.8% 12.5% 55.8%

Custom 8.5% 20.4% 12.2% 44.5% 21.8% 27.3% 15.6% 33.9%
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a more probable transcription. This is possible due to the

separation of the encoder and decoder in the encoder-decoder

network. Another encoder for Rewind could be designed for

other problems such as genre classification, audio generation

like [26], or audio transformation where a sound is transform

into another sound. A deeper architecture could be considered

for experimentation for the encoder network, using possibly

more GRUs or LSTMs for larger datasets. One other issue

that Rewind would like to solve is being able to produce a

transcription for each instrument in a song and be able to

determine what instrument is being played. Rewind’s web has

the potential for new features and interfaces for new problems.

Rewind could be expanded into an application that allows a

user to edit existing music that has been transcribed. Another

addition would be to allow Rewind to recognize the lyrics of the

music being played. One more thing that Rewind could provide

is a way for users to collaborate and learn about music.
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Abstract

Effectiveness of any software system depends on techniques 
employed during access, storage, and retrieval. Securing a 

course management system with the latest security approaches

is vital since it can contain information about students and 

faculty. Encryption is the most efficient way of securing data 
stored as it ensures that integrity of data is maintained even if an 

attacker should gain access to the physical data in the database. 

Encryption can occur at different levels starting from data, disk 

to the entire device. This paper presents the implementation of 

Rijndael Algorithm for a database encryption on a Course 

Management System, to provide an additional level of security 

to the information of students, faculty and overall data of the 

software. We have also provided benefits and drawbacks of 

various database encryptions based on the amount of data 

encrypted and te modes of access to keep a balance between 

efficiency and security. Furthermore, we apply these techniques 
on a web interface which uses Microsoft technologies to accept 

users� login details, goes though encryption process, and stores 

cipher text in the database.

Key Words:  Encryption, cipher, database, cryptography, 

Microsoft dot net.

1 Introduction

Ability of the computer to perform more functions creates the 
need for more data to be stored. When a computer had less 

power, it did not store much information because it could be 

compromised. Only passwords were considered secure data and 

the computer took as much time to encrypt and decrypt it. 

However, we have seen the computer�s ability increase with 

proven strength that it can secure more than just passwords. 

Today, data retrieved from users range from login details to 

personal data of individuals which they would not share with any 

human. The confidence users have come from the fact that once 

their information is encrypted and stored, not even the system 

admin can retrieve its plan text data.  Encryption is a very

efficient way of securing data, it helps ensure data
_________________
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confidentiality and integrity in different communication 

systems, data storage and networks [11]. As defined in [3], 

encryption algorithms consist of complex mathematical 
formulas that define the rules of conversion process from plain 

text to cipher text and vice versa combined with a key. 

Encryption is achieved using the technique of Cryptography, 

which is a science that learns the mathematical techniques of 

keeping information secured [25]. Cryptography converts the 

original message into unreadable codes and makes sure the 

original message cannot be retrieved except by reverse process 

using an appropriate key [7].

Encryption algorithms can come in two forms, public or 

private Encryption keys, depending on the specifics of each 

service, application and volume of data to be secured. Public 
key encryption is a cryptographic system that makes use of pairs 

of keys. While one key if disseminated publicly, the other is 

known only to the party that decrypts the message. Amongst the 

widely known public encryption algorithms is RSA which is a 

short form for Rivest-Shamir-Adleman who were the developers 

of the algorithm [18]. Private key encryption is a cryptographic 

system that uses the same key for encryption and decryption. 

The cryptographic key used in a symmetric algorithm is often 

transferred over a secured channel and kept secret by both 

parties. Some of the private encryption algorithms, also called 

symmetric algorithms include Data Encryption Standard (DES).

Triple DES (TDES), which was derived from encrypting DES 
three times and Advanced Encryption Standard (AES) which is 

a standard specification for electronic data. Encryption 

algorithms can also be classified based on the size of data 

encrypted in each encryption cycle and size of key. Encryption 

algorithms are designed to use different length of keys, from 56-

bits up to 256-bits, the more the key length, the more secured 

would be the algorithm and the more resistant it would be for 

brute force attack [6].

Encryption keys must have two basic attributes to be 

determined secured; key space and random selection. The key 

space is determined by the key length and composed of all 
possible permutations of the keys. Key spaces are designed to 

make almost impossible for an attacker to search through the set 

of all possible keys. Random selection determines keys are

chosen randomly from all possible keys. Otherwise, an attacker 

can derive some similar factor that may determine how the key 

selection was done. Brute force takes the encrypted file and 

checks all possible combinations of generated keys until a match 

is found [17]. Most attackers first try dictionary attack before 
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